Check for
updates

The dynamic trophic architecture of open-ocean protist
communities revealed through machine-quided

metatranscriptomics

Bennett S. Lambert®'®, Ryan D. Groussman?®®, Megan J. Schatz?®, Sacha N. Coesel’®, Bryndan P. Durham®®,

Andrew J. Alverson®®, Angelicque E. White®

, and E. Virginia Armbrust®

school of Oceanography, University of Washington, Seattle, WA 98195; PDepartment of Biology, University of Florida, Gainesville, FL 32611; “Genetics
Institute, University of Florida, Gainesville, FL 32611; “Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701; and *Department of

Oceanography, University of Hawai'i at Manoa, Honolulu, HI 96822

Edited by W. Doolittle, Department of Chemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; received January 18, 2021; accepted

December 13, 2021

Intricate networks of single-celled eukaryotes (protists) dominate
carbon flow in the ocean. Their growth, demise, and interactions
with other microorganisms drive the fluxes of biogeochemical
elements through marine ecosystems. Mixotrophic protists are
capable of both photosynthesis and ingestion of prey and are
dominant components of open-ocean planktonic communities. Yet
the role of mixotrophs in elemental cycling is obscured by their
capacity to act as primary producers or heterotrophic consumers
depending on factors that remain largely uncharacterized. Here,
we develop and apply a machine learning model that predicts the
in situ trophic mode of aquatic protists based on their patterns of
gene expression. This approach leverages a public collection of
protist transcriptomes as a training set to identify a subset of gene
families whose transcriptional profiles predict trophic mode. We
applied our model to nearly 100 metatranscriptomes obtained dur-
ing two oceanographic cruises in the North Pacific and found
community-level and population-specific evidence that abundant
open-ocean mixotrophic populations shift their predominant
mode of nutrient and carbon acquisition in response to natural
gradients in nutrient supply and sea surface temperature. Meta-
transcriptomic data from ship-board incubation experiments
revealed that abundant mixotrophic prymnesiophytes from the
oligotrophic North Pacific subtropical gyre rapidly remodeled their
transcriptome to enhance photosynthesis when supplied with lim-
iting nutrients. Coupling this approach with experiments designed
to reveal the mechanisms driving mixotroph physiology provides
an avenue toward understanding the ecology of mixotrophy in
the natural environment.
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ingle-celled eukaryotes (protists) form the base of marine

food webs and their growth, demise, and interactions with
other microorganisms drive the biogeochemistry of the Earth’s
oceans (1, 2). Marine protists are genetically and functionally
diverse, with representatives from all major lineages of the
eukaryotic tree of life (3). Some protists are predatory hetero-
trophs that obtain organic carbon and nutrients through the
ingestion of prey. They are commonly motile, consume smaller
prey via phagocytic engulfment (4, 5), and may consume larger
prey through veil feeding (6). Once engulfed, prey-derived
nutrients are absorbed in acidic vacuoles (4, 6, 7). Other pro-
tists are strictly photosynthetic, with the ability to biosynthesize
required organic compounds from inorganic carbon and
nutrients with sunlight as an energy source. Photosynthesis
requires a cellular organization and composition distinct from
that of heterotrophs. A growing list of marine protists are
described as mixotrophic and are capable of both photosynthesis
and phagocytic feeding (8, 9), a trait combination rarely observed
in terrestrial ecosystems (10). Marine mixotrophs are broadly
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distributed across the major eukaryotic lineages (7-9, 11-15),
including many species that form harmful algal blooms (7).
Despite the pervasiveness of mixotrophy in marine systems,
generalizations concerning the ecology of these organisms
remain elusive, given their diversity and the relative paucity of
available physiological and biogeographical data. An early “eat-
your-competitor” hypothesis (16) suggested that by consuming
bacteria, mixotrophs reduce competition for dissolved
nutrients. Subsequent experimental studies found that mixotro-
phic species can outcompete heterotrophic specialists by graz-
ing prey down to abundances below the critical threshold
required for the survival of the specialist (17, 18). The mixotro-
phic consumption of bacteria may also benefit photosynthetic
organisms (19) by reducing competition for dissolved nutrients.
Nutrient-limiting conditions and sufficient light may provide
mixotrophs with a further competitive advantage over trophic
specialists (17) through their ability to combine grazing and
photosynthesis, although subsequent studies documented
species-specific differences in mixotroph grazing behavior (20)
and differential grazing responses to light and nutrient
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limitation (21, 22). In the natural environment, mixotroph
abundance is estimated via feeding experiments in which sam-
pled communities are incubated in bottles with fluorescently
labeled bacteria added as a prey source. Through the micro-
scopic enumeration of cells that exhibit both chlorophyll auto-
fluorescence and fluorescence due to ingested prey (9, 23),
mixotrophic plankton have been detected in nutrient-rich
coastal waters (12, 14, 24), in coastal and open-ocean oligotro-
phic systems where dissolved nutrient availability is low (25,
26), and in light-limited polar waters where mixotrophy may
serve as a key survival tactic for overwintering (22, 27). Within
these environments, mixotrophs account for an estimated 40 to
>80% of the nanoplankton (2 to 20 pm) and 35 to 95% of
detected bacterivory (25, 26).

The inclusion of mixotrophic organisms that simultaneously
photosynthesize and phagocytose into global ecosystem models
dramatically alters modeled food web dynamics and carbon
cycling with an increase in the average cell size in planktonic
communities, increased efficiency of carbon transfer across tro-
phic levels, and enhanced carbon export from surface waters
(28, 29). Modeled patterns of nitrogen acquisition suggest that
the phagocytic acquisition of nitrogen in oligotrophic subtropi-
cal gyres shifts to diffusive uptake in more nutrient-rich waters.
In a direct link between field observations and model simula-
tions, Edwards (24) compiled data from over 100 environmen-
tal feeding assays conducted in a variety of environments and
interpreted the data within a resource allocation model frame-
work that balanced carbon and nutrient requirements under
different trophic modes. He proposed that mixotrophs outcom-
pete obligate heterotrophs when the ratio of prey to nutrient
availability is low, as mixotrophs can relieve potential carbon
limitation via photosynthesis. Edwards argued further that,
under conditions of nutrient limitation, mixotrophs outcompete
autotrophs because of their ability to consume prey. Edwards
thus predicted that mixotrophs will increase in relative abun-
dance at low latitudes and in nutrient-rich coastal environments
while recognizing that strategies for any individual organism
may vary across biogeochemical gradients. Together, these
models show the potential importance of mixotrophy in marine
ecosystems, although the lack of high-resolution observations
from diverse regions means the parametrizations of mixotrophy
remain simplistic.

The available data emphasize the diversity, trophic flexibility,
and importance of mixotrophs to marine ecosystem function.
However, the diversity of mixotrophic organisms and their
species-specific trophic responses to environmental conditions
make it difficult to characterize their behavior in situ. We
approached this problem with the premise that different tro-
phic modes would produce distinctive gene expression profiles.
Traditionally, differentially transcribed genes under a given set
of physiological conditions are identified via a comparative
approach, a process that tends to select for the most highly
expressed genes in an organism. Machine learning techniques
are more suited to the identification of trends within multidi-
mensional datasets, including transcriptional patterns across
multiple species and conditions. We hypothesized that trophic
mode-specific patterns of gene expression could be identified
through the development of a machine learning model, despite
limited knowledge of the underlying molecular basis for these
differences. We leveraged a large public database of transcrip-
tomes from heterotrophic, mixotrophic, and photosynthetic
aquatic protist species (30) to develop, train, and test a trophic
mode prediction model using machine learning approaches.
The application of this model to metatranscriptomes acquired
along natural biogeochemical gradients in the North Pacific
Ocean and analysis of samples from at-sea nutrient addition
experiments predict that mixotrophic protists shift their pre-
dominant mode of nutrient and carbon acquisition in response
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to natural gradients in nutrient supply and sea surface
temperature.

Results

A Machine Learning Approach to Predict Protistan Trophic Mode.
To determine whether transcriptional profiles could be used to
distinguish between different trophic modes, we developed a
pipeline (SI Appendix, Fig. S1) that leverages transcriptomes
derived from marine protists cultured in conditions that select
for a known trophic mode to generate a training dataset (S
Appendix, Fig. S1, Dataset Preparation). We distilled this train-
ing dataset into the gene families that drive trophic mode pre-
diction accuracy (SI Appendix, Fig. S1, Feature Selection) and
used these gene families to generate a predictive trophic mode
model (SI Appendix, Fig. S1, Model Training). Before applying
the predictive model to environmental data, model limits were
determined using external validation transcriptome datasets,
and the function and expression patterns of the selected gene
families within the training set were assessed (SI Appendix, Fig.
S1, Model Evaluation).

The transcriptome training dataset was derived from the 656
transcriptomes of marine protists publicly available through the
Marine Microbial Eukaryote Transcriptome Sequencing Project
(MMETSP) (30, 31). Trophic mode labels could be assigned to
~70% of the individual transcriptomes based on provided
growth conditions and available literature (unlabeled transcrip-
tomes either had insufficient metadata or conflicting literature-
based classifications), allowing more than one trophic mode to
be assigned to a species depending on growth conditions and
thus partially decoupling trophic mode from phylogeny
(Dataset S1 and File SI1; https:/github.com/armbrustlab/
trophic-mode-ml/blob/main/FileS1.html). For example, an indi-
vidual transcriptome was labeled as mixotrophic if a known
mixotroph was grown in the light and in the presence of bacte-
ria or as phototrophic if the same species was grown in the light
in the absence of bacteria. The resulting training set consisted
of 446 labeled transcriptomes (275 derived from phototrophic
growth conditions, 93 from mixotrophic, and 78 from heterotro-
phic conditions) and encompassed more than 9,000 gene fami-
lies (Pfams) (32). Categorizing our training set in this manner
allowed us to seek out representative features of trophic mode
across diverse organisms.

Gene families that impacted trophic mode classification were
identified within the training dataset via an in-house implemen-
tation of the train-test mean decrease in accuracy (MDA)
algorithm (33) using two common tree-based classification algo-
rithms: Random Forest (34) and XGBoost (35) (SI Appendix,
Fig. S1, Feature Selection). MDA functions by iteratively train-
ing the model with a single gene family’s transcription values
randomly permuted. If the shuffling of the gene family resulted
in any decrease in model prediction accuracy, the gene family
was retained for trophic mode classification as part of a
reduced feature set. All other gene families were subsequently
removed from the transcriptome training set. Accuracy was
determined via cross-validation, a process by which the model
is applied to data not used during training as a test of model
skill. Our in-house implementation varies from that in ref. 33 in
that cross-validation is used to compute accuracy and not a sin-
gle test set. This aggressive pruning approach was used to avoid
potential instabilities that can result from imbalances between
the number of features (9,000 gene families) and the number of
samples (446 transcriptomes) present in a training set (36). A
total of 901 (Random Forest) or 265 (XGBoost) candidate
gene families were retained and categorized either as a com-
mon set of gene families (f = 120; overlap between XGBoost
and Random Forest sets) or a combined set of gene families
(f = 1046; combination of XGBoost and Random Forest sets).
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Compared with a traditional differential expression analysis, very
few of the selected gene families (5%) were among the most dif-
ferentially transcribed gene families between trophic modes.
This highlighted that our model effectively used gene families
for classification that were difficult to extract from the data in a
conventional manner. Regardless of which of the two reduced
sets of gene families was used, heterotrophic and phototrophic
transcriptomes were well separated in a t-distributed stochastic
neighbor embedding (t-SNE) (37) latent space with mixotrophic
transcriptomes partially overlapping both clusters (Fig. 14 and
SI Appendix, Figs. S1, Visualization, and S2). This separation of
trophic modes was most apparent when t-SNE was applied with
the common set of gene families (f = 120; Fig. 14) rather than
all gene families (f = ~9,000; SI Appendix, Fig. S2D), emphasiz-
ing the importance of identifying a reduced set of gene families.
We chose to proceed with the tree-based models, as they have
the additional attribute of robustness to potential multicollinear-
ity among gene families (36) (SI Appendix, Fig. S3) and com-
pared favorably to several simple classifiers (Dataset S2).

The combined set of 1,046 gene families encoded a variety of
protein families, including those involved in photosynthesis, fla-
gellar motility, and carbohydrate metabolism (Dataset S3;
Function derived from Pfam summary). Those gene families
with a nonzero median expression (f = 886/1,046) were hierar-
chically clustered across the MMETSP training set (Dataset
S4) to determine whether they were differentially transcribed
depending on trophic mode (Fig. 1B). Genes families enriched
in heterotrophic transcriptomes encoded proteins involved in
signaling and cell cycle processes, whereas gene families
enriched in phototrophic transcriptomes encoded proteins
involved in lipid metabolism. Interestingly, mixotrophs dis-
played a higher median transcription of a variety of genes that
encode carbohydrate active enzymes (38), suggesting that mixo-
trophs process carbohydrates in a different manner than tro-
phic specialists. Most clusters of enriched gene families were
shared either between phototrophs and mixotrophs or between
heterotrophs and mixotrophs. Clusters of gene families with
similar relative transcript abundances within phototrophs and
mixotrophs were associated with photosynthesis, cofactor syn-
thesis, iron binding, and nitrogen metabolism, underscoring the
metabolic cost of maintaining active photosystems (Fig. 1B,
Func. 2). Clusters of gene families with similar relative tran-
script abundances in heterotrophs and mixotrophs encoded
functions such as cell motility, light sensing, and signaling (Fig.
1B, Func. 1). This is consistent with the idea that mixotrophs
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and heterotrophs employ motility to increase encounters with
prey, rely on chemotaxis and mechanosensing to recognize prey
(39, 40), and are likely attuned to the light environment to
maintain exposure to light and phototrophic prey. Additional
gene families not clearly associated with a given trophic mode
included regulatory proteins, ribosomal proteins, and proteins
involved in protein degradation. Retraining models with Func.
1 and Func. 2 gene families resulted in models with a similar
performance to those trained on the combined set of gene fam-
ilies (Datasets S2 and S5), highlighting potential redundancy of
features in the combined set of gene families. The common set
of 120 gene families clustered in similar patterns and encoded
much of the functional diversity found in the combined set
(Fig. 1B, Datasets S4 and S6, and SI Appendix, Fig. S4). The
larger combined feature set was retained for further evaluation
in order to retrieve as much information content as possible
from environmental transcriptomes in which gene family spar-
sity is more pronounced than in laboratory cultures (S/
Appendix, Investigating factors that may impact prediction quality
for environmental transcriptome bins).

We evaluated predictions derived from Random Forest and
XGBoost models for all MMETSP transcriptomes, including the
210 transcriptomes that were not part of the original training set
(Dataset S7 and SI Appendix, Fig S1, Model Evaluation) An 18S
ribosomal DNA phylogenetic tree was constructed representing
each MMETSP transcriptome, and the tree leaves were labeled by
a predicted trophic mode based either on our literature review or
an agreement between predictions derived from the two models
(Fig. 24 and Dataset S1). Trophic mode predictions for unlabeled
transcriptomes were in the greatest agreement between models for
phyla dominated by either phototrophs or heterotrophs (Fig. 24),
whereas a small proportion (10%) of transcriptomes derived pri-
marily from dinoflagellate and haptophyte species received incon-
sistent trophic mode predictions between models. To examine
prediction consistency between replicate dinoflagellate transcrip-
tomes, we aggregated model predictions to generate distributions
of predictions for dinoflagellate transcriptomes present in the
MMETSP (Fig. 2B). Upon closer inspection, 12 unlabeled dinofla-
gellate transcriptomes (25% of total) received either a combination
of mixotrophic and heterotrophic classifications or mixotrophic and
phototrophic classifications. Knyptoperidinium foliaceurn and Sym-
biodinium kawagutii received model predictions split across all tro-
phic modes, and Durinskia baltica received classifications split
between heterotrophy and phototrophy. All other dinoflagellate
transcriptomes were consistently classified (XGBoost: Fig. 2B;
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Feature selection helps distinguish trophic modes. (A) Latent representation of MMETSP phototrophic, heterotrophic, and mixotrophic transcrip-

tomes based on common selected features (f = 120). Transcriptional profiles of selected gene families were scaled and transformed through t-SNE. Color
contours indicate kernel density for each trophic mode. (B) Median transcript abundances of the combined set of selected genes (f = 1,046) in the
MMETSP highlight clusters of gene families that broadly differentiate trophic modes. The gene family annotations indicate those enriched in heterotro-
phic/mixotrophic (Func. 1), phototrophic/mixotrophic (Func. 2), and those present in the common set of selected features. TPM: Transcripts per million.
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Random Forest: SI Appendix, Fig. S5) as either phototrophic (n =
16), heterotrophic (» = 9), or mixotrophic (» = 17). Finally, we
tested MMETSP transcriptomes from known osmoheterotrophs,
which gain carbon by taking up dissolved compounds rather that by
consuming prey. All were predicted to be heterotrophs. This pro-
cess identified a cluster of gene families related to chemical sensing,
vacuoles, and motility that are transcribed by phagoheterotrophs
and mixotrophs but not by osmoheterotrophs (SI Appendix, Fig. S6
and Dataset S8), suggesting that these genes may be associated
with phagotrophy.

Finally, we challenged the models with additional transcrip-
tomes that were not part of the MMETSP dataset (summary in
Fig. 2C; complete results in SI Appendix, Fig. S7) (Fig. S1,
Model Evaluation). Both models successfully classified a tran-
scriptome from the nonphotosynthetic diatom Nitzschia sp.
(Nitz4) (41) as heterotrophic despite the fact that all other dia-
toms within the training dataset were phototrophic. We evalu-
ated available transcriptomes for three organisms (Micromonas
polaris, Pyramimonas tychotetra, and two Ochromonas species)
that are expected to shift trophic modes under different growth
conditions (Dataset S9) (42). Both models accurately classified
the organisms as mixotrophic under conditions in which cells
were observed to ingest particles or as phototrophic under high
nutrient conditions (Fig. 2C, colored triangles). However, the
models did not consistently predict the expected trophic mode
either when cells were grown in the absence of bacteria, which
was expected to induce phototrophy, or under low nutrient con-
ditions, which was expected to induce mixotrophy (Fig. 2C,
translucent triangles). This inconsistency could reflect limited
bacterial grazing documented in the low nutrient conditions
(42), absence of representative mixotrophic Pyramimonas sp.
transcriptomes in the training dataset, or the possibility that
these organisms may not uniformly behave in culture as
expected. Last, we generated and classified transcriptomes
from two Chrysochromulina species isolated from near Hawaii
in the North Pacific subtropical gyre. Chrysochromulina strain
KB-HAO1 was predicted to be mixotrophic, and AL-TEMP
had predictions split between phototrophy and mixotrophy,
consistent with observed mixotrophy in other Chrysochromulina
sp. and our own observations (SI Appendix, Fig. S8).

Collectively, these tests identified several elements that impact
model performance. First, XGBoost consistently outperformed
Random Forest when applied to the validation transcriptomes (81
versus 74% accuracy) regardless of which reduced set of gene fam-
ilies was used (Cohen’s k = 0.90 versus 0.93; Dataset S7). Second,
both sets of selected gene families included those with either no
known function or a predicted function with no obvious relation to
trophic mode. Based on these outcomes, XGBoost and the com-
bined set (1,046) of gene families were chosen for subsequent
analyses. Third, prediction accuracy and consistency increased
when predictions were made for organisms closely related to those
present in the MMETSP training set. Fourth, model interpretabil-
ity was improved through increased numbers of transcriptome rep-
licates, often by yielding a clear majority vote prediction across
replicates (Fig. 2B). Those experiments with few replicates were
difficult to interpret. Replication is of even greater importance for
field-based transcriptome data in which transcriptome complete-
ness can vary between samples (S Appendix), potentially introduc-
ing uncertainty into the model behavior. Lastly, in those instances
in which replicate transcriptomes resulted in predictions that
included both phototrophy and heterotrophy, we assumed that
these transcriptional profiles were in conflict with the decision
boundaries of our model and that the trophic mode could not be
predicted accurately for these transcriptomes.

Predicting the In Situ Trophic Mode of Marine Planktonic
Populations. Metatranscriptomes provide a snapshot of commu-
nity function and metabolism and can be deconvolved into
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transcriptomes associated with representative taxonomic bins
(SI Appendix, Fig. S9). A total of 26 species-level taxonomic
bins were derived from 95 eukaryotic (polyA-selected) meta-
transcriptomes collected on two field campaigns in the North
Pacific Ocean and were analyzed for in situ trophic status (S
Appendix, Fig. S1, Model Deployment). This analysis was
restricted to taxonomic bins closely related to transcriptomes
present in the original training set and with a minimum of four
transcriptomes that met established completeness criteria (S/
Appendix, Investigating factors that may impact prediction quality
for environmental transcriptome bins) at any given sampling site.

Samples for 48 metatranscriptomes were collected during
the Simons Collaboration on Ocean Processes and Ecology
(SCOPE) Diel cruise (KM1513; HOE-Legacy 2, July/Aug 2015;
SI Appendix, Fig. S10) near Station ALOHA (A Long-Term
Oligotrophic Habitat Assessment) (158° W, 22.75° N) in the
North Pacific subtropical gyre, a low latitude oligotrophic
region where the availability of nitrogen limits productivity in
surface waters and where ecosystem models (29) and observa-
tional studies (23, 25, 43) indicate the potential for abundant
and active mixtotrophic organisms. Duplicate samples (0.2 to
100 pm) were collected from the same water mass (by following
a Lagrangian drifter) at a depth of 15 m every 4 h over 4 d. A
total of 18 species-level taxonomic bins (Dataset S10 and S/
Appendix, Fig. S11) were retrieved (SI Appendix, Methods) that
met our established completeness criteria (SI Appendix,
Investigating factors that may impact prediction quality for
environmental transcriptome bins), including the detection of
transcripts associated with the selected feature set (1,023 of the
1,046 features were detected in the taxonomic bin transcrip-
tomes). The trophic mode predictions were made for individual
transcriptomes and summed for each taxonomic bin at a given
location to generate trophic mode prediction proportions. Most
(14/18) taxonomic bins were present throughout the day—night
cycle of the 4-d sampling period and were each represented by
at least 32 transcriptomes. A total of 16 taxonomic bins corre-
sponded to the reference species with the potential to exhibit
mixotrophy. Thus, the majority of these environmental species
had the potential to exhibit diverse nutritional strategies.

Nine environmental dinoflagellate bins were predicted to
behave primarily as either heterotrophs (n = 6) or as phototrophs
(n = 3) regardless of whether the transcriptomes were derived
from day or night samples (Fig. 34 and Dataset S11), suggesting
that these dinoflagellates were behaving as trophic specialists at
the time of sampling despite their presumed capacity for mixotro-
phy. A similar phenomenon was observed with the five environ-
mental prymnesiophyte bins, four of which also have the capacity
for mixotrophy based on laboratory studies (44, 45). Chrysochro-
mulina brevifilum was the only haptophyte species predominantly
classified as a mixotroph; all other prymnesiophytes were pre-
dicted to have behaved primarily as trophic specialists at the time
of sampling. Transcriptomes from two environmental dinoflagel-
late bins—the mixotrophic Scrippsiella trochoidea and the hetero-
trophic Oxyrrhis marina—resulted in conflicting predictions of
phototrophy and heterotrophy (>25% for both categories across
all classified transcriptional profiles) while lacking mixotrophic
predictions. This suggested that the transcriptional profiles for
these two taxonomic bins lie close to model decision boundaries
(SI Appendix, Investigating factors that may impact prediction
quality for environmental transcriptome bins) and, according to
defined criteria, were not considered further (~12% of the total
retrieved transcriptomes; see SI Appendix, Fig. S12 for profiles
including these bins). The stability of predictions over day/night
cycles despite known diel oscillations in transcript abundances
(46) further indicated that our model leverages a wide array of
transcriptional features when predicting trophic mode. Overall,
the predictions of heterotrophy dominated when the predictions
were aggregated over each individual 24-h period (n = 4), and the
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Fig. 3. The distribution of model predictions across environmental taxonomic bins. (A) Heatmaps of the proportion of XGBoost-predicted trophic modes
for each diel (KM1513, July/Aug. 2015, 22°N) transcriptome bin for samples taken during the day (Left) versus night (Right). Number of transcriptional
profiles classified per taxonomic bin indicated in parentheses. (B) Proportion of trophic mode predictions (derived from A) over a diel cycle. Individual
points represent samples obtained at the same time of day (n = 4). (C) Gradients 1 (KOK1606, April/May 2016) trophic mode prediction proportions
summed by latitude and normalized by total number of predictions at each site. Solid lines: second order regressions; points: individual station values;
shaded regions: 95% Cls; red vertical line: salinity front near 30° N. (D) Proportion of trophic mode predictions for three abundant protists across the G1

transect. Number of transcriptional profiles classified per taxonomic bin indicated in parentheses.

prediction proportions remained stable over the diel period (Fig.
3B). Thus, this low-nutrient environment with abundant sunlight
appeared to select for a predominance of heterotrophic feeding
with less reliance on photosynthesis or mixotrophy, consistent
with the hypothesis that phagotrophy provides protists with the
necessary carbon and nutrients in oligotrophic environments.

To test whether species and community-level trophic modes
changed under varying environmental conditions, we used
SCOPE Gradients 1 (KOK1606, April/May 2016; SI Appendix,
Fig. S10) metatranscriptome samples collected at a 15-m depth
from 10 stations (see Dataset S12 for replication scheme) span-
ning from 23.5 to 37.3° N along 158° W from the oligotrophic
subtropical gyre to the more nutrient-rich region of the North
Pacific transition zone (SI Appendix, Fig. S10). The southern-
most stations of Gradients 1 are within the gyre, ~1° north of
Station ALOHA, with similar community composition to that
observed on the Diel cruise. A total of 47 metatranscriptomes
(Dataset S12) were deconvolved into 437 transcriptional
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profiles representing 23 species-level taxonomic bins (Dataset
S10 and SI Appendix, Fig. S11) distributed evenly between pico-
plankton (0.2 to 3 pm) and nanoplankton/microplankton (3 to
200 pm) size fractions, with ~98% of the selected gene families
present across the collection of retrieved profiles. Based on our
required completeness and exclusion criteria (SI Appendix,
Investigating factors that may impact prediction quality for
environmental transcriptome bins), a total of 43 transcriptomes
belonging to seven taxonomic bins were excluded from the
large size fraction, and 23 transcriptomes belonging to four tax-
onomic bins were excluded from the small size fraction (remov-
ing a combined ~15% of the retrieved transcriptomes). For
both cruises, the exclusion of these bins did not affect
community-level patterns (SI Appendix, Fig. S12). Of the 23
recovered taxonomic bins, 15 were also present in the Diel
dataset.

The proportion of heterotrophic predictions was significantly
reduced with increasing latitude (P <« 0.01; Fig. 3C). In the
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large size fraction, this was accompanied by an increase in pre-
dictions of mixotrophy. In the small size class, both mixotrophy
and phototrophy predictions increased northward (Dataset
S13). Both size fractions contained a core group of organisms
present throughout the transect (SI Appendix, Fig. S13), with a
reduced number of organisms found only at higher latitudes.
We evaluated trophic mode predictions across the transect for
three taxonomic species bins broadly distributed across
sites—the mixotrophic species Chrysochromulina rotalis, C. bre-
vifilum, and Micromonas pusilla. Within the gyre (demarcated
at ~30.5° N by the salinity front; SI Appendix, Fig. S10), the two
Chrysochromulina sp. bins displayed contrasting strategies, with
C. rotalis predicted to be primarily heterotrophic and C. brevifi-
lum predicted to be mixotrophic (Fig. 3D) in agreement with
the predictions for these same environmental species sampled
during the Diel cruise in the summer of the previous year (Fig.
34). Within the more nutrient-rich waters of the transition
zone, we observed a shift to a greater reliance on photosynthe-
sis, reflected in mixotrophy predictions for C. rotalis and
increasingly split predictions between phototrophy and mixo-
trophy for C. brevifilum at higher latitudes. Although the latitu-
dinal range of M. pusilla was not as broad, we also observed a
distinct shift in trophic mode predictions from mixotrophy to
phototrophy at higher latitudes. These results support the
hypothesis that nutrient availability is an important driver of
the trophic mode employed by these flexible organisms in the
surface waters of the North Pacific.

Environmental Drivers of Planktonic Nutritional Strategies.
Resource allocation models (24) predict that the ratio of prey
to nutrient availability determines trophic status. The Gradients
1 cruise spanned gradients in inorganic nutrient concentrations,
microbial biomass, surface ocean temperature, and surface light
levels (photosynthetically available radiation or PAR) (Fig. 4).
Available nitrate, photosynthetic (satellite-derived), and bacte-
rial (measured) biomass increased northward, with particulate
carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios that
transitioned from higher than the Redfield ratio [106 C:16 N:1
P (47)] within the subtropical gyre (48) (<~30.5° N) to below
(C:N) or to (C:P) the Redfield ratio within the transition zone.
The northward increase in biomass and productivity occurred
against a backdrop of decreasing sea surface temperature, light,
and iron availability. Heterotrophic predictions decreased in
proportion northward with decreasing sea surface temperature
and increasing prey availability. This result is consistent with
the metabolic theory of ecology (MTE), which predicts a dis-
proportionate decrease in respiration rates for heterotrophic
organisms, given the light and temperature fields along the
Gradients 1 transect (Fig. 4F). Phototrophic (0.2 to 3 pm) and
mixotrophic prediction proportions increased northward with
increasing dissolved nitrate, decreasing particulate C:N, and
decreasing PAR. Our results suggest that a combination of tem-
perature dependencies and quality of prey items (i.e., particu-
late C:N for nitrogen-limited phagotrophs) influences whether
mixotrophic organisms rely primarily on nutrients derived from
prey via phagotrophy or on dissolved nutrients and photosyn-
thesis, a finding consistent with optimal foraging theory (OFT)
(49, 50). Thus, nitrogen limitation in the subtropical gyre
appears to drive mixotrophic organisms to rely primarily on
phagotrophy to meet nitrogen and organic carbon demands,
whereas increased nutrient availability at higher latitudes sup-
ports photosynthesis by mixotrophic organisms, potentially
offsetting the increased costs associated with continued phago-
trophy as temperature decreases.

We tested whether increased dissolved nutrient availability
could cause mixotrophic organisms to shift their dominant tro-
phic mode by analyzing metatranscriptomes from on-deck incu-
bation experiments carried out on the SCOPE Gradients 2
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cruise (MGL1704; May/June 2017; SI Appendix, Fig. S10). The
addition of nitrogen and phosphorus to the nitrogen-limited
subtropical gyre community allowed us to decouple shifts in
nutrient availability from community compositional changes
and shifts in environmental covariates along the cruise transect.
The samples were collected before (t = 0) and after (t = 96 h)
nutrient amendments. Logistical constraints resulting in smaller
sample sizes meant that the metatranscriptomic data were
deconvolved into mixotrophic prymnesiophyte environmental
bins rather than individual species bins as required for trophic
mode prediction. Instead, we analyzed these samples for pat-
terns of differential gene expression. An amendment of sam-
ples with 5 pM nitrate and 0.5 uM phosphate led to significant
(Paaj < 0.05; SI Appendix, Differential transcription analysis) dif-
ferential increases in transcript abundances (relative to t = 0)
for genes encoding photosynthesis-related proteins and signifi-
cant differential decreases in transcripts encoding proteins
involved in cell motility (Fig. 5 and SI Appendix, Methods and
SI Appendix, Differential transcription analysis). Other highly
up-regulated transcripts were associated with amino acid
metabolism, cytochromes, iron—sulfur enzymes, and lipid
metabolism, indicating a significant restructuring of cellular
metabolism and structure (Dataset S14). About a third of the
significantly differentially transcribed genes (with [log,(FC)| >
2) were present in the combined set of selected features. The
significant up-regulation of genes associated with phototrophy
in our analysis of MMETSP transcriptomes and down-
regulation of those related to heterotrophy suggest that mixo-
trophs such as prymnesiophytes can rapidly remodel their
metabolism and shift their trophic strategy from phagotrophy
to phototrophy in response to greater availability of limiting
nutrients. We did not observe a similar shift in prymnesiophyte
transcriptional patterns when nutrients were added to samples
derived from the more nitrogen-rich, higher latitude waters of
the transition zone (Dataset S15). Instead, additions of iron or
a combination of iron, nitrate, and phosphate to this commu-
nity resulted in a restructuring of the photosynthetic machinery
and included a significant decrease (p,q; < 0.05) in transcripts
encoding the iron-responsive protein flavodoxin (51) and a sig-
nificant increase in transcripts encoding plastocyanin (44).
Together, these results highlight the remarkable ability of mixo-
trophs to rapidly optimize their nutritional strategy to environ-
mental conditions.

Discussion

Our study introduces a machine learning approach that lever-
ages transcriptional profiles to predict the in situ trophic mode
(heterotrophy, phototrophy, or mixotrophy) of protists in the
natural environment. This method avoids potential artifacts
associated with traditional, labor-intensive, incubation-based
estimates and opens the door for large-scale studies of how car-
bon flows through specific members of microbial communities.
The model was trained with transcriptomes derived from pro-
tists grown under controlled laboratory conditions and was
challenged with a variety of validation transcriptomes. This
approach identified a subset of gene family transcriptional pro-
files that, given sufficient transcriptome replicates, resulted in
trophic mode predictions consistent with observed species-level
nutritional strategies and broad phylogenetic patterns. The
model accurately and consistently predicted the trophic mode
of heterotrophic or phototrophic specialists, whereas mixotro-
phy predictions were often coupled with those of either hetero-
trophy or phototrophy, likely reflecting both overlapping and
distinctive mixotrophic attributes. In addition, distinctive sub-
sets of gene family clusters were identified that are associated
with different trophic modes and can serve as starting points
for understanding the molecular underpinnings of different
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Fig. 4. Environmental drivers of trophic mode in Gradients 1 surface waters. (A) Counter gradients in PISCES-v2 modeled Fe (gray) and NOs (blue) or
measured nitrate + nitrite (+). (B) Moderate Resolution Imaging Spectroradiometer satellite-derived chlorophyll a concentration (SI Appendix, Methods)
and flow cytometry-based heterotrophic bacterial counts. Solid lines (A and B) represent second order fits to the data and shaded regions the 95% Cl. (C)
Synechococcus abundance and Prochlorococcus abundance derived from the shipboard flow cytometer SeaFlow. (D) Particulate C:N and C:P. The horizon-
tal dashed vertical line indicates canonical Redfield ratios (C:N: purple; C:P: black) Solid lines represent fifth order (C:N) or second order (C:P) fits to the
data and shaded regions the 95% Cls. (E) PAR and sea surface temperature derived from satellite products (73, 74). Solid lines represent a second order
fit to the data and the shaded region the 95% Cl. (F) Derived metabolic scaling relationships predict a disproportionate temperature-driven decrease in
respiration rates for heterotrophs with increasing latitude. Solid lines are a linear fit of the data, shaded regions indicate 95% Cl. See S/ Appendix,
Calculation of respiration rates via metabolic theory for details on metabolic rate calculations. Vertical red lines (A-F) indicate location of estimated salin-
ity front near 30°N.

metabolic strategies. A large public collection of microeukar-
yote transcriptomes (MMETSP) was used as the foundation for
this work. However, the MMETSP was not designed for this
particular application, and with more targeted molecular stud-
ies on mixotrophic organisms to include in the training set, the
predictive power of this model will be improved.

We predicted significant shifts in the trophic mode of natural
communities under different environmental conditions both at

a community level and for taxonomic bins corresponding to
individual populations. Within the oligotrophic gyre, our model
predicts that protists rely primarily on phagotrophy to acquire
sufficient carbon and nitrogen for growth, a result consistent
with OFT, a resource allocation model (24), and a global eco-
system model that incorporates mixotrophy (29). Observed bio-
mass C:N ratios greater than the Redfield ratio and results
from our on-deck transcriptomics experiments suggest that,
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Fig. 5. Transcriptional response of the subtropical gyre community of mixotrophic prymnesiophytes to nitrogen and phosphorous amendment. Bottle incuba-
tions were performed on the Gradients 2 cruise (MGL1704, May 26 to June 13, 2017) with cells harvested for RNA extraction before incubation and 96 h after
amendment with 0.5 uM PO, and 5 pM NO;3 (S/ Appendix, Methods and Differential transcription analysis). Significantly differentially transcribed genes
[Logx(FQ)| > 2 and p,q; < 0.05 (224 total transcripts; Dataset S11) are indicated by circles colored according to PFAM dlassification and ordered by increasing
Log,(FQ).
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under nitrogen limitation, mixotrophs prioritize phagotrophy to
acquire nitrogen from their prey (Fig. 5). The lower intracellu-
lar C:N and C:P ratios of marine prokaryotes compared with
protists (45) makes phagotrophy even better suited to fulfill the
nutrient requirements of cells in the nitrogen-limited waters of
the gyre. Given the presumed optimality of heterotrophic
metabolism, why do mixotrophic organisms with both phagotro-
phic and photosynthetic capabilities dominate protist communi-
ties within the oligotrophic gyre? We propose that, similar to
what was observed in the amendment experiments, ephemeral
injections of nitrogen into surface waters (52, 53) rapidly shift
the mixotrophic community to more energetically favorable
photosynthesis-based growth, thus preventing their displace-
ment by heterotrophic specialists. During the dominant low-
nutrient conditions, the ability of mixotrophs to consume prey
(including photosynthetic prey) to fulfill their carbon and nitro-
gen requirements prevents their displacement by protist photo-
trophic specialists. The variable conditions of the gyre thus
appear to mitigate potential costs associated with maintaining
the complicated cellular machinery required for both photosyn-
thesis and phagotrophy.

In the nutrient-rich North Pacific transition zone, a different
scenario likely regulates the trophic modes of the protist commu-
nity. As nutrient concentrations increase, our model predicts that
the community shifts from a primary reliance on phagotrophy in
the gyre toward an increasing reliance on phototrophy and mixo-
trophy by smaller protists (0.2 to 3 um) and mixotrophy by larger
protists (3 to 200 pm). A similar shift with latitude is predicted for
individual species, with increased predictions of phototrophy for
the small chlorophyte Micromonas and mixotrophy for the larger
Chrysochromulina sp. The differing proportions of phototrophy
predictions between size classes likely reflects the relationship
between size-dependent uptake kinetics and nutrient availability,
as smaller cells with a greater surface area:volume can more effi-
ciently capitalize on lower dissolved nutrient concentrations (54).
However, the MTE predicts rates of heterotrophic metabolism
will decrease disproportionately with decreasing temperature (55,
56). Why, then, do the larger mixotrophs continue to carry out
phagotrophy in the cooler, nutrient-rich waters of the transition
zone? Recent studies suggest that mixotrophic cells use the reduc-
tants generated via photosynthesis for organic carbon metabolism
rather than carbon fixation (57). Moreover, the mixotrophs within
our training set were distinguished by the transcription of gene
families encoding distinctive varieties of carbohydrate active
enzymes. Thus, we propose that, at the highest latitudes reached
on the Gradients cruise, these larger mixotrophs fulfill their nutri-
ent requirements via prey engulfment despite reduced sea surface
temperatures with the necessary reductants for organic carbon
metabolism supplemented through photosynthesis. We further
propose that, in accordance with the results from the Edwards
model (24), the reduced light levels we observed at the higher lati-
tudes remain sufficient to have little impact on mixotroph abun-
dance in surface waters.

Deciphering the functional role of mixotrophic protists in
the marine carbon cycle has been a longstanding challenge,
made difficult by the many caveats involved with current meth-
ods. Here, we introduced a machine learning approach, made
possible by the recent explosion of available transcriptomic
data, and demonstrated that the model is skilled at inferring
the trophic mode of natural populations based on the transcrip-
tional patterns of select gene families. When we applied the
model to metatranscriptomic data from the open ocean, the
predicted patterns in trophic mode compare favorably with
other results based on resource allocation models (24), global
ecosystem models (29), the MTE (58), and OFT (49). By com-
bining model predictions with the bioinformatic analysis of
metatranscriptomes obtained during on-board incubation
experiments, we were able to develop intuitive explanations for
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observed functional differences between organisms and high-
light the potential drivers of mixotroph ecosystem function. As
the ubiquity of mixotrophy in the marine environment becomes
increasingly apparent, so does the need to incorporate mixo-
trophs into our understanding of the ocean’s carbon cycle and
the microbial ecology of the marine water column. The future
coupling of our machine learning technique with targeted field
experiments and numerical modeling will enable detailed dis-
section of the role that mixotrophs play in marine ecosystem
processes.

Methods

Model Training and Evaluation. The MMETSP represents an imbalanced data-
set for classification purposes (275 phototrophic, 93 mixotrophic, 78 hetero-
trophic, and remainder unknown). We therefore carried out feature selection
using four datasets consisting of randomly under-sampled phototrophic tran-
scriptomes (n = 80, 100, 120, and 140) together with all mixotrophic and het-
erotrophic transcriptomes. The features that impacted classification accuracy
were determined for the Random Forest and XGBoost classifiers using an
in-house version of the train-test MDA method (59). In our implementation of
the MDA, the reduction in accuracy for a model is determined for each feature
by randomly shuffling each feature across samples and carrying out fivefold
cross-validation. The features that resulted in a decrease in classification accu-
racy were retained. To examine the clustered median expression of selected
features in labeled MMETSP transcriptomes, data were reduced to the set of
selected features, grouped by trophic mode, genes with zero median tran-
script abundances removed, and values were log transformed. T-SNE was car-
ried out on reduced data to visualize the impact of feature selection on the
separation between trophic modes in the t-SNE latent space. T-SNE was car-
ried out with a high perplexity (100) in order to emphasize global relation-
ships between the reduced transcriptomes (60). After feature selection, model
performance was re-evaluated against the two reduced datasets (combined
and common set). The list of selected Pfams is available in Dataset S3. The
tree-based algorithms of Random Forest (90 + 8%) and XGBoost (88 + 10%)
were significantly more precise than an artificial neural network (77 + 6%)
(Kruskal-Wallis H test; post-hoc Wilcoxon rank sum test; P < 0.05), and metric
values increased when reduced feature sets were used during model training
(SI Appendix, Fig. S14). Statistical measures were computed via the
Kruskal-Wallis H test with a post-hoc pairwise Wilcoxon rank sum test with
the Benjamini-Hochberg correction for multiple comparisons.

Validation Transcriptome Processing. The validation transcriptomes (Dataset
S9) were retrieved from National Center for Biotechnology Information’s
short read archive (SRA) through the SRA Toolkit and processed using an
assembly and annotation pipeline similar to that presented in Johnson et al.
(2018). Briefly, the reads were quality controlled using Trimmomatic (v0.36)
(61) and normalized using the normalize-by-median.py script from the khmer
software package (62). Normalized reads were assembled with Trinity (v2.9.1)
(63) and annotated via the dammit! pipeline (v1.2; https://github.com/dib-lab/
dammit). Bowtie2 (64) was used to assess the percentage of quality-controlled
paired-end reads that mapped back to the assemblies. For dammit! annota-
tions, only matches to the Pfam database with an e-value < 107> were
retained. The read counts in transcripts per million were generated for each
assembly using Salmon (v1.2.1) in quasi-mapping mode.

Metatranscriptomic Data Processing. The environmental transcriptome bins
were obtained as follows: quality-controlled short reads were assembled using
the Trinity de novo transcriptome assembler version 2.3.2 (63) on the Pitts-
burgh Supercomputing Center’s Bridges Large Memory system. The parame-
ters included using in silico normalization, a minimum k-mer coverage of 2,
and a minimum contig length of 300 base pairs. The raw assemblies were qual-
ity controlled with Transrate v1.0.3 (65). The assemblies were merged and clus-
tered at the 99% amino acid identity threshold level with linclust in the
MMseqs2 package (66). The translated contigs were aligned to a reference
sequence database that included peptide sequences from hundreds of marine
eukaryotic transcriptomes (67) using DIAMOND (double index alignment of
next-generation sequencing data) v 0.9.18 (68). Taxonomy was assigned with
DIAMOND by using the top 10% of hits with e-value scores below 107> to
establish the lowest common ancestor of each contig. The putative function
was assigned using hmmsearch [from HMMER 3.1b2 (69) using given trusted
cutoff bitscores, —cut_tc] to find the best-scoring gene family from Pfam 31.0
(32). The contig abundances were quantified by the pseudoalignment of the
paired reads to the assemblies with kallisto (70) and normalized to the total
assigned read pool of the taxonomic bin. Species-level transcriptional profiles
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were normalized in silico to generate transcripts per million profiles. Bin com-
pleteness was estimated by the number of nonzero transcript abundances
within each bin. A completeness cutoff of 800 nonzero transcripts was selected
based on the distribution present in the MMETSP dataset (S/ Appendix,
Investigating factors that may impact prediction quality for environmental
transcriptome bins). Detailed information concerning RNA extraction and
library preparation can be found in S/ Appendix, Methods.

Environmental Metadata Sourcing and Processing. The environmental meta-
data and cruise data were obtained from the Simons Collaborative Marine
Atlas Project pycmap API (71) (https:/simonscmap.com/; data originating from
refs. 72 to 76). The respiration rates were calculated following the equations
presented in ref. 77 using satellite-derived sea surface temperature (75) and
PAR (74) as input. The details of these rate calculations are presented in S/
Appendix, Calculation of respiration rates via metabolic theory. A detailed dis-
cussion concerning the origin and preprocessing of ancillary environmental
metadata may be found in S/ Appendix, Methods.

At-Sea Incubation Experiments. A total of 20 L seawater was collected into
replicate polycarbonate carboys from 15-m depth and incubated at in situ
temperature for 96 h in on-deck, temperature-controlled incubators screened
with 1/8-in light blue acrylic panels to approximate in situ light levels at 15 m
[55% of surface irradiance to approximate in situ light levels assuming an
attenuation coefficient of 0.04 m~" (78)]. Triplicate carboys were amended
with 5 uM nitrate and 0.5 uM phosphate at t = 0. Duplicate carboys with no
amendment served as a control. After 96 h, the samples were filtered onto a
3-pm polycarbonate filter. The cells passing through the 3-um filter were col-
lected on a 0.2-um polycarbonate filter. RNA extraction and sequencing were
carried out as detailed in S/ Appendix, Methods. The metatranscriptome reads
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