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Abstract

Background: Identifying complexes from PPI networks has become a key problem to elucidate protein functions
and identify signal and biological processes in a cell. Proteins binding as complexes are important roles of life activity.
Accurate determination of complexes in PPI networks is crucial for understanding principles of cellular organization.

Results: We propose a novel method to identify complexes on PPI networks, based on different co-expression
information. First, we use Markov Cluster Algorithm with an edge-weighting scheme to calculate complexes on PPI
networks. Then, we propose some significant features, such as graph information and gene expression analysis, to
filter and modify complexes predicted by Markov Cluster Algorithm. To evaluate our method, we test on two
experimental yeast PPI networks.

Conclusions: On DIP network, our method has Precision and F-Measure values of 0.6004 and 0.5528. On MIPS
network, our method has F-Measure and Sn values of 0.3774 and 0.3453. Comparing to existing methods, our method
improves Precision value by at least 0.1752, F-Measure value by at least 0.0448, Sn value by at least 0.0771. Experiments
show that our method achieves better results than some state-of-the-art methods for identifying complexes on PPI
networks, with the prediction quality improved in terms of evaluation criteria.
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Background
Detecting of protein complexes from PPI networks is a
key problem to elucidate protein functions and identify
biochemical, signal and biological processes in a cell. Like
other biological molecules, most proteins do not work
in isolation; they cooperate with other proteins to per-
form a particular biological function. These complexes are
molecular aggregations of two or more proteins assem-
bled by PPIs [1]. Accurate determination of complexes in
PPI networks is crucial for understanding principles of
cellular organization.
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In past several years, a large number of technolo-
gies have been developed for the large-scale analysis of
complex detection from PPI networks [2–13]. Heuristic-
based algorithms find dense network regions by searching
heuristically for potential cluster regions using an itera-
tive greedy seed and extend strategy, one of the seminal
efforts is MCODE [14] and proposed a density-based
clustering approach to detect complexes, which picked
vertices with large weights as initial clusters and fur-
ther augmented them to detect dense connective clusters.
Similar to MCODE, Altaf-UI-Amin proposed an algo-
rithm called DPClus [15] with good accuracy. Li [16]
proposed IPCA, it searches for subgraphs having small
diameter and whose cluster property is above the interac-
tion probability threshold. And Restricted Neighborhood
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Search Clustering (RNSC) algorithm [17] deploys a cost-
based partitioning algorithm. The ClusterONE method
[18], detects overlapping clusters in a PPI network using
a greedy seed and extend heuristic, an advantage of Clus-
terONE is the ability to not just find overlapping clusters,
but also clusters that may be contained in another cluster.

One of the most widely used graph clustering algo-
rithm is Markov Cluster Algorithm (MCL) [19], which is
a fast and robust method, which simulate random walk in
the graph to cluster. Lots of studies indicated that MCL
can tolerate more noises than other clustring algorithms
on PPI networks [8]. Algorithms such as R-MCL [20],
SR-MCL [21], MCL-CA [22] and RRW [23] were pro-
posed to overcome further weaknesses of MCL. However,
SR-MCL still predicted too many complexes, and RRW
predicted complexes of a particular size. On the basis
of these limitations, we design a novel edge-weighting
MCL method to detect complexes on PPI networks, which
can effectively improve accuracy of clustering results.
Then, there are some classic clustering algorithms that
can be used on the ClustEval framework [24], such
as DBSCAN [25], Spectral Clustering [26], Transitiv-
ity Clustering [27], fanny [28], but our study is not a
complete clustering problem, classical clustering algo-
rithm need combining with the post-processing or some
improvements.

Complete enumeration algorithms aim to enumerate all
possible subgraphs in G with density exceeding a spec-
ified threshold. Spirin and Mirny [29] proposed three
techniques for detecting protein complexes and functional
modules from PPI networks. The first approach finds
cliques as modules by complete enumeration. The sec-
ond approach leverages the notion of super-paramagnetic
clustering (SPC), which assigns to each vertex a spin
with several states. Lastly, they proposed a Monte Carlo
optimization-based technique (MC) where finding highly
connected set of vertices is formulated as an optimiza-
tion problem. The CFinder method [30] identifies a set
of k-clique modules in a PPI network where k-cliques
correspond to k node complete subgraphs of G with
a maximum density of 1. It is based on a determin-
istic approach called the Clique Percolation Method
(CPM) [31], which generates overlapping clusters by find-
ing k-clique percolation communities. Then, Cui [32]
showed on the yeast PPI network that near-cliques may
reveal better quality functional modules compared to
overlapping cliques. The Clustering − based on Max-
imal Cliques (CMC) [33] method generated maximal
cliques from a weighted PPI network and combined or
removed them, considering to connectivity and overlap-
ping rate. A common theme among complete enumera-
tion algorithms is exhaustive search. While such search
enables identification of all relevant modules within a
PPI network, it is computationally expensive. Therefore,

their applications are limited to relatively small PPI
networks.

Leung [34] developed a core-attachment approach for
identifying complexes from PPI networks of single species
and studying the organization of complexes. Ulitsky and
Shamir [10] reformulated the problem of finding modules
with high confidence connectivity as finding subgraphs
to satisfy a weight threshold of their minimum cut. Shi
[11] proposed a neural network-based semi-supervised
learning method, which leverages proteomic features of
subgraphs in a weighted PPI network with their topolog-
ical features to generate complexes. Macropol [23] pro-
posed a protein complex prediction algorithm, named by
RRW, which constructed a cluster of proteins according
to the stationary probability of a random walk. Maruyama
[35] extended the RRW by introducing a random walk
via restarts with a cluster of proteins, each of which is
weighted by the sum of strengths for directly physical
interactions. Also, Maruyama proposed a novel method
based on random walks, Naive Bayes classifiers, and sam-
pling methods [36–40].

Above methods only focus on static PPI networks. In
reality, PPI networks in a cell are not static but dynamic
[41–43]. The dynamic PPI network can be changing over
time, environments and different stages of cell cycles
[44, 45]. Lots of methods used dynamic PPI networks
to predict complexes accurately [46, 47]. Li [12] pro-
posed a new DPC algorithm to identify complexes based
on gene expression profiles and PPI networks, based on
static expressed core in all molecular cycles and short-
lived dynamic attachments. Also, Luo [13] proposed a
DCA method to identify more accurate protein com-
plexes in dynamic PPI networks. Srihari [48] incorporated
time in the form of cell-cycle phases into the analysis of
complexes from PPI networks and studied the temporal
phenomena of complex assembly and disassembly across
phases.

Existing methods constructed PPI networks, based on
gene expression variance of each protein [49, 50]. Segal
[7] introduced a unified probabilistic model to detect
functional modules from gene expression, based on the
assumption that genes in the same pathway display similar
expression profiles and products of genes work together to
accomplish certain task. Maraziotis [9] proposed a DMSP
algorithm finding functional modules by integrating gene
expression and PPI data. In general, if a protein is at active
time point, the expression level of corresponding gene
is at the peak point. Some researchers use the dynamic
information from gene expression data to construct time-
evolving dynamic protein interaction networks, which
divided proteins into active and inactive and combined
active proteins at the same time to form a new network
[12, 31, 42, 43, 49, 50]. We design a new co-expression
analysis method to measure each protein complex, based
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on differential co-expression information. Different pro-
teins in the same complex have similar trend on gene
expression intervals.

We propose a novel method to identify complexes on
PPI networks. First, we design an edge-weighting MCL
method to calculate complexes on PPI networks. Sec-
ond, we propose a novel co-expression analysis method
to evaluate predicted complexes, based on differential co-
expression information. To evaluate our method, we test
on two experimental yeast PPI networks. On DIP net-
work, our method has Precision and F-Measure values
of 0.6004 and 0.5528. On MIPS network, our method
has F-Measure values of 0.3774. Comparing to existing
methods, our method improves Precision value by at least
0.1752, F-Measure value by at least 0.0448, Sn value by at
least 0.0771.

Methods
We propose a novel method to identify protein complexes
on PPI networks. First, we use Markov Cluster Algorithm
with an edge-weighting scheme to calculate complexes on
PPI networks. Second, we design a novel co-expression
analysis method to measure each protein complex, based
on differential co-expression information. Figure 1 shows
the overall process of our method and the analysis pipeline
to detect complexes from PPI network.

Edge-weighting scheme
A PPI network is formulated as an undirected graph
G = (V , E), where vi ∈ V represents a protein and

(vi, vj) ∈ E denotes that protein vi interacts with
protein vj.

Given a graph G, N(vi) denotes all neighbors of vi in
the PPI network. Let A be a |V | × |V | adjacency matrix,
and A(i, j) denotes the confidence weight of edge (vi, vj),
defined as follows.

A(i, j) =

⎧
⎪⎨

⎪⎩

|N(vi)∩N(vj)|
|N(vi)∪N(vj)| if (vi, vj) ∈ E
maxk �=j{A(i, k)} if vi = vj
0 else

where |N(vi) ∩ N(vj)| is the intersection of neighbors
between N(vi) and N(vj), and |N(vi) ∪ N(vj)| is the union
of neighbors between N(vi) and N(vj).

Since two vertices having a larger proportion of com-
mon neighbors, one vertex can move to another vertex
with great probability. A canonical flow matrix M indi-
cates the probability of transitions via a random walk, and
M(i, j) represents the probability of a transition from vi to
vj, defined as follows.

M(i, j) = A(i, j)
∑n

k=1 A(k, j)

where n is the number of all vertices in the graph, and each
column of M sum up to 1.

Markov cluster algorithm
Markov Cluster Algorithm proposed by Stijn van Dongen
[19], is an iterative process of applying two operations,

Fig. 1 The overall process of our method and analysis pipeline to detect complexes from PPI network
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namely Expand and Inflate. These two operations are
alternately applied to an initial stochastic matrix M, iterat-
ing until convergence. In addition, Prune is performed at
the end of each iteration, in order to remove entries with
very small values.

Expand and inflate
The operation of Expand is simply expressed as Mexp =
M × M. We calculate Mexp on the basis of M, and then
assign the obtained matrix Mexp to M.

The operation of Inflate raises each entry in M using
parameter r, and re-normalizes elements in each column
that sum up to 1. Then, we assign the obtained matrix
Minf to M. The operation of Inflate, named by Minf (i, j), is
expressed as follows.

Minf (i, j) = M(i, j)r
∑n

k=1 M(k, j)r

where n is the number of all vertices in the graph, and r is
the parameter of Inflate, by default r = 2, .

Prune
In the iterative process, there are some entries with very
small values, and let these entries to be zero. This opera-
tion can make convergence faster, and keep the key part of
aggregation information.

We use Lj = {k|M(k, j) > 0} to represent a collection
of vertices in column j with values greater than zero; in
other words, it is a collection of vertices that flow to vertex
vj. We calculate the average value of all elements in Lj as
follows.

avg(j) =
∑|Lj|

k=1 M(Lj(k), j)
|Lj|

And also, we calculate the threshold to filter entries with
small values in column j of M as follows.

thd(j) = avg(j) − w ×
∑|Lj|

k=1(M(Lj(k), j) − avg(j))2

|Lj|

where w is a parameter to adjust the threshold value, by
default w = 1.

We remove entries with very small values less than
thd(j) in column j of M, filled with zero. After the oper-
ation, M must be re-normalized, and elements in each
column of M sum up to 1.

Cluster
After lots of iterations, we find that most vertices flow to
one vertex, and there exists one non-zero entry per col-

umn in the flow matrix M. We assign all vertices flowing
to the same vertex as belonging to one cluster.

Feature analysis
We propose some significant features, such as graph
information and gene expression, to filter and modify
complexes predicted by Markov Cluster Algorithm.

Connection
The direct connection (edge) in the PPI network, denotes
that one protein interacts with another protein. We not
only use the interaction information, but also consider
indirect connection with a n-length shortest path as n-
connection.

If there exists a n-connection between vi and vj, we can
define Connect(vi, vj, n) = 1; else, Connect(vi, vj, n) = 0.
Moreover, PathNum(vi, vj, n) denotes the total number of
n-length shortest paths from vm to vn.

Given a protein vk and a complex C, we calculate the
ratio of n-connection proteins in C from vk , defined as
follows.

ConnectRatio(vk , C, n) =
∑|C|

i=1 Connect(vk , vi, n)

|C|
Also, we calculate the ratio of total n-length shortest

paths for n-connection proteins in C from vk , defined as
follows.

PathRatio(vk , C, n) =
∑|C|

i=1 PathNum(vk , vi, n)

|C|
Here, we calculate these features of 2-connection and

3-connection.

Density
We can use the density of complex C to describe intensive
degree of n-connection proteins, defined as follows.

Den(C, n) =
∑

vi,vj∈C Connect(vi, vj, n)

|C| × |C|
When a protein vk is added into complex C, a new com-

plex C′ can be formed. We calculate the density difference
between these two complexes, as follows.

DenDiff (vk , C, n) = Den(C′) − Den(C)

where C′ = {C, vk}.
Here, we also calculate these features of 2-connection

and 3-connection.

Co-expression
Gene expression data could reflect features of proteins
under various conditions in a biological process [43, 51].
It is the numerical expression value of one protein within
the time period. For a protein, the fluctuation range of
its expression value is not the same. We normalize each
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Fig. 2 The gene expression data of eIF3 complex on 36 intervals

value to compare the similarity of expression intervals of
proteins, as follows.

T ′
i (l) = Ti(l)

maxl{Ti(l)}

where Ti(l) represents the expression value of protein vi
at the time point l.

On 36 intervals, Fig. 2 shows the gene expression data
for eIF3 complex, and Fig. 3 shows the gene expression
data for Succinate Dehydrogenase complex (complex II).
We find that six proteins in one complex tend to have sim-
ilar tendency of expression values at the fixed time interval
(indicated as gray-shadowed intervals).

Two proteins have a similar degree of expression at the
same time interval leading to a high co-expression value. If
the gene expression data of proteins are not similar, their

Fig. 3 The gene expression data of Succinate Dehydrogenase complex (complex II) on 36 intervals
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co-expression value is low. Therefore, we calculate the co-
expression value Eco(vi, vj) of proteins vi and vj, defined as
follows.

Eco(vi, vj) =
m∑

l=1
ln

T ′
i (l) + T ′

j (l)
|T ′

i (l) − T ′
j (l)|

where m is the number of expression intervals.
For a complex C, we can measure the co-expression

value, as follows.

Eco(C) =
∑

vi,vj∈C Eco(vi, vj)

|C| × |C|
And, the co-expression value between one protein vk

and a complex C is defined as follows.

Eco(vk , C) =
∑|C|

i=1 Eco(vk , vi)

|C|
We calculate average co-expression value of all pairs

of proteins in the PPI network, defined as Eco(avg).
If Eco(vi, vj) > Eco(avg), we set Co(vi, vj) = 1, else,
Co(vi, vj) = 0.

We calculate the ratio of co-expression protein pairs in
a given complex C, as follows.

CoRatio(C) =
∑

vi,vj∈C Co(vi, vj)

|C| × |C|
When a protein vk is added into complex C, a new com-

plex C′ can be formed. We calculate the co-expression
difference between these two complexes, as follows.

CoDiff (vk , C) = Eco(C′) − Eco(C)

where C′ = {C, vk}.
For protein vk , we calculate the number of co-expression

proteins in a complex C, as follows.

CoProNum(vk , C) =
|C|∑

i=1
Co(vk , vi)

Also, we calculate the ratio of co-expression proteins for
protein vk in a complex C, as follows.

CoProRatio(vk , C) = CoProNum(vk , C)

|C| .

Complex detection
We set two thresholds, a lower bound and a higher bound
for each of three features, to filtering predicted complexes:
Den(C, n), Eco(C), Cotadio(C). We reserve complexes

with high qualities, discard complexes with low values,
and modify median complexes. Algorithm 1 shows the
overall algorithm of filtering method.

Algorithm 1 Filtering method
1: function FILTERING

METHOD(complex_ set, Vectorth)
2: while Ci ∈ complex_ set do
3: if Vector(Ci) > Vectormax then
4: Reserve(Ci)
5: else
6: if Vector(Ci) < Vectormin then
7: Remove(Ci)
8: else
9: Modify(Ci)

10: end if
11: end if
12: end while
13: return complex_ set
14: end function

We use a linear function of seven features to determine
how to modify a given complex: ConnectRatio(vk , C, n),
PathRatio(vk , C, n), DenDiff (vk , C, n), Eco(vk , C),
CoDiff (vk , C), CoProNum(vk , C), CoProRatio(vk , C). We
delete proteins in a complex with low qualities, and add
neighbor proteins with high values into the complex.
Algorithm 2 shows the overall algorithm of modifying
method.

Algorithm 2 Modifying method
1: function MODIFYING METHOD(C, neighbor_ set, th)
2: for vi ∈ neighbor_ set do
3: if L(vi, C) > thresholdadd then
4: Add(vi)
5: end if
6: end for
7: for vj ∈ C do
8: if L(vj, C − {vj}) < thresholddelete then
9: Delete(vj)

10: end if
11: end for
12: return C
13: end function

Results and discussion
Experiments show that our method achieves better
results than some state-of-the-art methods for identify-
ing protein complexes on PPI networks, with the pre-
diction quality improved in terms of many evaluation
criteria.
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Table 1 Validity of our filtering threshold parameters (max, min) of Eco(C)

Eco(C) |complex| Ncp Ncb Sn PPV Acc Precision Recall F-Measure

(+∞,0) 1563 739 231 0.5464 0.4887 0.5167 0.4728 0.5662 0.5153

(+∞,50) 1466 717 225 0.5448 0.4885 0.5159 0.4891 0.5515 0.5184

(80,0) 1563 757 228 0.5641 0.4930 0.5273 0.4843 0.5588 0.5189

(80,40) 1540 754 227 0.5640 0.4929 0.5273 0.4896 0.5564 0.5209

(80,42) 1532 753 226 0.5640 0.4927 0.5272 0.4915 0.5539 0.5209

(80,44) 1519 749 226 0.5635 0.4924 0.5268 0.4931 0.5539 0.5217

(80,46) 1504 746 226 0.5630 0.4922 0.5264 0.4960 0.5539 0.5234

(80,48) 1487 740 223 0.5625 0.4926 0.5264 0.4976 0.5466 0.5210

(80,50) 1466 735 222 0.5625 0.4929 0.5266 0.5014 0.5441 0.5219

(80,52) 1434 728 220 0.5604 0.4937 0.5260 0.5077 0.5392 0.5230

(80,54) 1409 724 219 0.5599 0.4955 0.5267 0.5138 0.5368 0.5251

(80,56) 1375 713 216 0.5583 0.4967 0.5266 0.5185 0.5294 0.5239

(80,58) 1323 697 212 0.5542 0.4986 0.5256 0.5268 0.5196 0.5232

(80,60) 1265 669 206 0.5464 0.5015 0.5234 0.5289 0.5049 0.5166

(70,50) 1466 737 216 0.5688 0.4907 0.5283 0.5027 0.5294 0.5157

(75,50) 1466 735 215 0.5656 0.4916 0.5273 0.5014 0.5270 0.5138

(80,50) 1466 735 222 0.5625 0.4929 0.5266 0.5014 0.5441 0.5219

(85,50) 1466 727 224 0.5547 0.4922 0.5225 0.4959 0.5490 0.5211

(90,50) 1466 723 224 0.5531 0.4913 0.5212 0.4932 0.5490 0.5196

All 1563 756 213 0.5812 0.4871 0.5321 0.4836 0.5221 0.5021

Data set
Our method is applied on two experimental yeast PPI
networks. One is retrieved from the Database of Inter-
acting Proteins (DIP) [52], which was used in COACH
[34]. Another is downloaded from Munich Information

Center for Protein Sequences (MIPS) database [53]. We
remove self-connecting interactions and repeated inter-
actions. The DIP network includes 4930 yeast proteins
and 17,201 interactions, and the MIPS network contains
12,319 interactions among 4546 yeast proteins.

Table 2 Validity of our filtering threshold parameters (max, min) of CoRatio(C)

CoRatio(C) |complex| Ncp Ncb Sn PPV Acc Precision Recall F-Measure

(0.60,0) 1409 730 213 0.5771 0.4907 0.5321 0.5181 0.5221 0.5201

(0.65,0) 1409 730 212 0.5755 0.4908 0.5315 0.5181 0.5196 0.5189

(0.70,0) 1409 735 215 0.5750 0.4911 0.5313 0.5216 0.5270 0.5243

(0.75,0) 1409 735 215 0.5740 0.4920 0.5314 0.5216 0.5270 0.5243

(0.80,0) 1409 731 213 0.5719 0.4930 0.5310 0.5188 0.5221 0.5204

(0.85,0) 1409 729 213 0.5677 0.4933 0.5292 0.5174 0.5221 0.5197

(0.90,0) 1409 727 211 0.5661 0.4936 0.5286 0.5160 0.5172 0.5166

(0.75,0.10) 1404 734 215 0.5740 0.4919 0.5313 0.5228 0.5270 0.5249

(0.75,0.15) 1404 734 215 0.5740 0.4919 0.5313 0.5228 0.5270 0.5249

(0.75,0.20) 1402 734 215 0.5740 0.4919 0.5313 0.5235 0.5270 0.5252

(0.75,0.25) 1399 733 214 0.5739 0.4918 0.5312 0.5239 0.5245 0.5242

(0.75,0.30) 1393 730 213 0.5729 0.4922 0.5310 0.5240 0.5221 0.5231

(0.75,0.35) 1368 718 211 0.5708 0.4919 0.5299 0.5249 0.5172 0.5210

(0.75,0.40) 1365 718 211 0.5708 0.4919 0.5299 0.5260 0.5172 0.5215

All 1563 756 213 0.5812 0.4871 0.5321 0.4836 0.5221 0.5021
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Table 3 Validity of our filtering threshold parameters (max, min) of Den(C, 2)

Den(C, 2) |complex| Ncp Ncb Sn PPV Acc Precision Recall F-Measure

(0.14,0) 1409 736 214 0.5750 0.4956 0.5338 0.5224 0.5245 0.5234

(0.16,0) 1409 735 213 0.5734 0.4959 0.5333 0.5216 0.5221 0.5218

(0.18,0) 1409 741 218 0.5714 0.4959 0.5323 0.5259 0.5343 0.5301

(0.20,0) 1409 741 217 0.5708 0.4964 0.5323 0.5259 0.5319 0.5289

(0.22,0) 1409 738 217 0.5698 0.4962 0.5317 0.5238 0.5319 0.5278

(0.24,0) 1409 738 217 0.5698 0.4961 0.5317 0.5238 0.5319 0.5278

(0.26,0) 1409 734 217 0.5693 0.4963 0.5315 0.5209 0.5319 0.5263

(0.18,0.04) 1152 678 208 0.5406 0.5203 0.5304 0.5885 0.5098 0.5464

(0.18,0.05) 1128 663 207 0.5349 0.5251 0.5300 0.5878 0.5074 0.5446

(0.18,0.06) 1094 649 207 0.5328 0.5288 0.5308 0.5932 0.5074 0.5469

(0.18,0.07) 1079 640 205 0.5281 0.5308 0.5295 0.5931 0.5025 0.5440

(0.18,0.08) 1059 630 205 0.5250 0.5347 0.5298 0.5949 0.5025 0.5448

(0.18,0.09) 1034 613 204 0.5182 0.5371 0.5276 0.5928 0.5000 0.5425

(0.18,0.10) 1027 606 202 0.5099 0.5400 0.5247 0.5901 0.4951 0.5384

All 1563 756 213 0.5812 0.4871 0.5321 0.4836 0.5221 0.5021

All predicted complexes are compared with the bench-
mark data, referred to as CYC2008 [54]. There are 408
manually annotated complexes, which are considered as
the gold standard data.

We analyze gene expression data GSE3431 [55] down-
loaded from Gene Expression Omnibus (GEO), entitled as
logic of the yeast metabolic cycle. This data set includes
6,777 gene products that cover more than 95% proteins in
PPI networks.

Assessment
At present, there are two popular measurements for eval-
uating the performance of complexes detection method,
from many literatures [14, 56].

Sensitivity, Positive Predictive Value, Accuracy
In addition, Sensitivity (Sn), Positive Predictive Value
(PPV ) and geometric Accuracy (Acc) have recently been
proposed to evaluate the quality of protein complex pre-
diction [56]. Give n benchmark complexes and m pre-
dicted clusters, let as Ti,j denote the number of common
proteins between the i-th benchmark complex and the
j-th predicted cluster. Then, Sn, PPV and Acc are defined
as follows.

Sn =
∑n

i=1 maxj{Ti,j}
∑n

i=1 |Ci|

PPV =
∑m

j=1 maxi{Ti,j}
∑n

i=1
∑m

j=1 Ti,j

Acc = √
Sn × PPV

Generally, Sn indicates that predicted complexes have a
good coverage of proteins in benchmark complexes, and
PPV indicates that predicted complexes are likely to be
true positive. The geometric accuracy (Acc) indicates the
tradeoff between Sn and PPV. It is obtained by computing
the geometrical mean of them.

Precision, Recall, F-measure
The overlapping score O(Cp, Cb) is used to assess how
effectively a predicted complex Cp matches a benchmark
complex Cb [14], defined as follows.

O(Cp, Cb) = |Cp ∩ Cb|2
|Cp| × |Cb|

where |Cp| is the number of proteins in the predicted
complex, and |Cb| is the number of proteins in the
benchmark complex. If a predicted complex Cp that has

Table 4 Validity of our deleting method

Errors No. of Deleting No. of Correct Deleting Acc

1 1000 480 0.480

1 10000 4818 0.4818

2 1000 620 0.620

2 1000 635 0.635

2 10000 6367 0.6367

2 10000 6317 0.6317

3 10000 7056 0.7056

3 10000 7024 0.7024

3 10000 7065 0.7065
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Table 5 Validity of our adding method

No. of Adding No. of Correct Adding Acc

P > 0.5 54725 4189 0.0765

P > 0.6 2127 368 0.1730

P > 0.7 249 73 0.2932

P > 0.8 78 26 0.3333

All 105553 6189 0.0586

no common proteins with a benchmark complex Cb,
then O(Cp, Cb) = 0.

Usually, a predicted complex and a benchmark com-
plex are considered as a match if their overlapping score
is no less than a threshold value [14]. Let P be the set
of complexes predicted by computational methods and B
be the set of benchmark complexes in the PPI network.
Then, the number of complexes in P at least match-
ing one real complex is denoted by Ncp = |{Cp|Cp ∈
P, ∃Cb ∈ B, O(Cp, Cb) ≥ ω}|, while the counterpart num-
ber in B can be denoted by Ncb = |{Cb|Cb ∈ B, ∃Cp ∈
P, O(Cp, Cb) ≥ ω}|, by default ω = 0.2.

Based on above definitions of Ncp and Ncb, Precision and
Recall can be defined as follows.

Precision = Ncp
|P|

Recall = Ncb
|B|

And, F-measure is their harmonic mean, defined as
follows.

F − Measure = 2 × Precision × Recall
Precision + Recall

Filtering threshold
We consider three features Vector(C) to filtering pre-
dicted complexes. Based on co-expression value as
Eco(C), CoRatio(C) as well as graph information as
Den(C, n), the preliminary complex clustering result will
be determined to be either reserved, removed or further
modified. Two thresholds including a upper bond and a

lower bond are set for each of the three features. The
Tables 1, 2 and 3 show the extent of improvement of our
result enhanced solely by each one of the three features
respectively under distinctive thresholds. Both the gene
expression and graph information are effective and make
a contribution to a significantly improved result by 0.04 to
0.10 in Precision.

In addition, the optimized parameter thresholds are
obtained from the three tables.The minimum value of
Eco(C) can be set to 50; that is, our method removes com-
plexes with low co-expression values, and Ncb and Recall
decrease slightly, but Precision increases a lot. The maxi-
mum value of Eco(C) can be set to 80; that is, our method
reserves complexes with high co-expression values, and
Precision and F-Measure increase slightly. Moreover, the
threshold of CoRatio(C) can be set to (0.75, 0.20), and the
threshold of Den(C, n) can be set to (0.18, 0.06).

Modifying analysis
We use a linear function of seven features to evaluate the
probability of a protein adding into a complex, as follows.

L(vk , C) =
7∑

i=1
wi × Featurei(vk , C)

P(vk , C) = 1
1 + e−L(vk ,C)

We discuss the effectiveness of our linear function, by
using some randomly generated positive and negative
samples to regression. First, we randomly select a protein
in the network, and choose the size of generated complex.
Then, we randomly choose another protein from the col-
lection of neighbors. Repeat this step until producing a
complex. Finally, we calculate the neighboring collection
of this generated complex. If adding a neighboring protein
makes new complex better than old one, we assign it is
positive; else, it is negative. Similarly, we traverse all pro-
teins in this complex. If deleting a internal protein makes
new complex better than old one, we assign it is positive;
else, it is negative. We use 1894 positive samples and 9309
negative samples to produce the optimal parameters, as
w = {0.01, 0.02, 0.01, 0.24, 0.36, 0.03, 0.33}. Gene Expres-
sion information as CoProRatio(vk, C), CoDiff (vk, C),
Eco(vk, C) contribute the most.

Table 6 Results by our method and three existing methods on DIP network

|P| Ncp Ncb Sn PPV Acc Precision Recall F-Measure

Our Method 1081 649 209 0.5313 0.5300 0.5306 0.6004 0.5123 0.5528

MCL 799 188 160 0.7776 0.2551 0.4454 0.2353 0.3922 0.2941

Coach 746 216 147 0.4245 0.5222 0.4708 0.2896 0.3603 0.3211

ClusterONE 341 145 132 0.3609 0.6701 0.4918 0.4252 0.3235 0.3675
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Table 7 Results by our method and three existing methods on MIPS network

|P| Ncp Ncb Sn PPV Acc Precision Recall F-Measure

Our Method 866 354 143 0.3453 0.3766 0.3606 0.4088 0.3505 0.3774

MCL 658 273 104 0.2531 0.4050 0.3202 0.4149 0.2549 0.3158

Coach 489 135 93 0.2682 0.3797 0.3191 0.2760 0.2279 0.2497

ClusterONE 293 116 117 0.2521 0.6603 0.4080 0.3959 0.2794 0.3326

Deleting
For CYC2008, we filter some complexes with less than
three proteins, keeping 236 complexes with average size
of 6.68 proteins. For each complex, we randomly put in a
protein from PPI network to form a new complex. When
randomly delete a protein, the probability of correct delet-
ing is Prandom = 1

1+6.68 ≈ 0.130, but accuracy of our
deleting method is 0.48. When randomly putting in two or
three proteins, accuracy of our deleting method are 0.63
and 0.70, respectively. The analysis of deleting method is
shown in Table 4.

Adding
On DIP network, we generate 1507 complexes and use
P(vk , C) for adding neighboring proteins. When ran-
domly add a protein, the probability of correct adding is
Prandom = 6189

105553 ≈ 0.0586. However, accuracy of our
adding method is 0.0765 if P > 0.5, and accuracy of our
adding method is 0.3333 if P > 0.8. The analysis of adding
method is shown in Table 5.

Comparison to existing methods
We compared the performance of our method with three
existing methods, such as COACH, ClusterONE and
MCL. COACH is a novel core-attachment method to
detect complexes with two stages [34]. It detected cores of
complexes and then added attachments into these cores
to form biologically meaningful structures. ClusterONE is
a method for detecting potentially overlapping complexes
from the PPI data, clustering with overlapping neighbor-
hood expansion [18]. MCL is a graph clustering algorithm
based on stochastic flow simulation [19], which is effective
in clustering biological networks. To evaluate our method,
we test on two experimental yeast PPI networks.

On DIP network, results by our method and three exist-
ing methods are shown in Table 6. Our method has Preci-
sion and F-Measure values of 0.6004 and 0.5528. COACH
achieves Precision and F-Measure values of 0.2896 and
0.3211, ClusterONE achieves Precision and F-Measure
values of 0.4252 and 0.3675, and MCL achieves Precision
and F-Measure values of 0.2353 and 0.2941. Comparing to
existing methods, our method improves Precision value
by at least 0.1752, and F-Measure value by at least 0.1853.

On MIPS network, results by our method and three
existing methods are shown in Table 7. Our method has

F-Measure value of 0.3774. COACH achieves F-Measure
values of 0.2497, ClusterONE achieves F-Measure values
of 0.3326, and MCL achieves F-Measure values of 0.3158.
Comparing to existing methods, our method improves F-
Measure value by at least 0.0448, and also improves Sn
value by at least 0.0771. Although our method did not
achieve the best recall value, as we can see from the table,
method with high recall values like DPClus and RRW,
unavoidably have a particular poor precision, which indi-
cates the high recall is based on counting into a overall
large number of clusters and hence the precision is weak-
ened. Comparatively, our method remains a relatively high
recall value and achieves the best precision revealing the
overall efficiency of our model.

An available COACH system is downloaded from
http://www.comp.nus.edu.sg/~lixl/, and a fast and free
implementationof ClusterONE is available at http://www.
paccanarolab.org/cluster-one/. Also, we compare our
method to many other complex detection methods in
Table 8, and results of these methods are from many
literatures [10, 14, 30, 33].

Running time
Our experiments are conducted on a PC with Intel(R)
Xeon(R) CPU E5-1620 of 3.7 GHz and 12.0 GB RAM.
Here, we compare the running time of different methods
on the PPI network with 4930 nodes and 17201 edges.
Our method completes complex detection within 736 s, as
shown in Table 9.

Table 8 Results by our method and other complex detection
methods

Data Set Precision Recall F-Measure

Our Method DIP 0.6004 0.5123 0.5528

R-MCL DIP 0.2923 0.3995 0.3376

SR-MCL DIP 0.3281 0.4191 0.3680

Our Method MIPS 0.409 0.351 0.3774

CMC MIPS 0.339 0.346 0.3425

CFinder MIPS 0.395 0.302 0.3423

DPClus MIPS 0.204 0.531 0.2948

MCode MIPS 0.330 0.241 0.2786

RRW MIPS 0.193 0.517 0.2811

http://www.comp.nus.edu.sg/~lixl/
http://www.paccanarolab.org/cluster-one/
http://www.paccanarolab.org/cluster-one/
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Table 9 Running time of different methods on the PPI network

Runtime(sec)

Our Method 736

MCL 1924

Coach 221

ClusterONE 155

Conclusions
We propose a novel method to identify complexes on
PPI networks. First, we design an edge-weighting MCL
method to calculate complexes on PPI networks. Sec-
ond, we propose some significant features, such as graph
information and gene expression, to filter and modify
complexes predicted by Markov Cluster Algorithm.

Experiments show that our method achieves better
results than some state-of-the-art methods for identifying
complexes on PPI networks. To evaluate our method, we
test on two experimental yeast PPI networks. On DIP net-
work, our method has Precision and F-Measure values of
0.6004 and 0.5528, improves by at least 0.1752 and 0.1853.
On MIPS network, our method has F-Measure value of
0.3774, improves by at least 0.0448.

Abbreviations
CMC: Clustering?based on maximal cliques; CPM: Clique percolation method;
Den: Density; DenDiff: Density difference; DIP: Database of interacting proteins;
GEO: Gene expression omnibus; MC: Monte Carlo optimization-based
technique; MCL: Markov cluster algorithm; MIPS: Munich information center
for protein sequences database; PathNum: Path number; PPI: Protein protein
interaction; RNSC: Restricted neighborhood search clustering; SPC:
Super-paramagnetic clustering

Acknowledgements
Not applicable.

Funding
This research and this article’s publication costs are supported by a grant from
the National Science Foundation of China (NSFC 61772362) and the Tianjin
Research Program of Application Foundation and Advanced Technology
(16JCQNJC00200).

Availability of data and materials
All datasets, feature sets and the relevant algorithm are available for download
from https://figshare.com/s/0737e9bdaa6b9ec4c2e2.

About this supplement
This article has been published as part of BMC Systems Biology Volume 12
Supplement 4, 2018: Selected papers from the 11th International Conference
on Systems Biology (ISB 2017). The full contents of the supplement are
available online at https://bmcsystbiol.biomedcentral.com/articles/
supplements/volume-12-supplement-4.

Authors’ contributions
ZZ, JS and FG conceived the study. ZZ and JS performed the experiments and
analyzed the data. ZZ and FG drafted the manuscript. All authors read and
approved the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Computer Science and Technology, Tianjin University, Tianjin,
People’s Republic of China. 2Tianjin University Institute of Computational
Biology, Tianjin, People’s Republic of China. 3School of Chemical Engineering
and Technology, Tianjin University, Tianjin, People’s Republic of China.
4Department of Computer Science and Engineering, University of South
Carolina, Columbia, USA. 5School of Information Engineering, Taiyuan
University of Technology, Taiyuan, People’s Republic of China.

Published: 24 April 2018

References
1. Ji J, Zhang A, Liu C, Quan X, Liu Z. Survey: Functional module detection

from protein-protein interaction networks. IEEE Trans Knowl Data Eng.
2014;26(2):261–77. https://doi.org/10.1109/TKDE.2012.225.

2. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A,
Taylor P, Bennett K, Boutilier K. Systematic identification of protein
complexes in saccharomyces cerevisiae by mass spectrometry. Nature.
2002;415(6868):180–3.

3. Gavin AC, Bösche M., Krause R, Grandi P, Marzioch M, Bauer A, Schultz J,
Rick JM, Michon AM, Cruciat CM. Functional organization of the yeast
proteome by systematic analysis of protein complexes. Nature.
2002;415(6868):141–7.

4. Samanta MP, Liang S. Proc Natl Acad Sci U S A. 2003;100(22):12579–83.
5. Rives AW, Galitski T. Modular organization of cellular networks. Proc Natl

Acad Sci. 2003;100(3):1128–33.
6. Brohée S, Helden JV. Evaluation of clustering algorithms for

protein-protein interaction networks. BMC Bioinformatics. 2006;7(1602):
2791–7.

7. Segal E, Wang H, Koller D. Discovering molecular pathways from protein
interaction and gene expression data. Bioinformatics. 2003;19:264.

8. Bhowmick SS, Seah BS. Clustering and summarizing protein-protein
interaction networks: A survey. IEEE Transactions on Knowledge and Data
Engineering. 2016;28(3):638–58.

9. Maraziotis IA, Dimitrakopoulou K, Bezerianos A. Growing functional
modules from a seed protein via integration of protein interaction and
gene expression data. BMC Bioinformatics. 2007;8(1):1–15.

10. Ulitsky I, Shamir R. Identifying functional modules using expression
profiles and confidence-scored protein interactions. Bioinformatics.
2009;25(9):1158.

11. Lei S, Lei X, Zhang A. Protein complex detection with semi-supervised
learning in protein interaction networks. Proteome Sci. 2011;9(1):1–9.

12. Li M, Chen W, Wang J, Wu FX, Pan Y. Identifying dynamic protein
complexes based on gene expression profiles and ppi networks.
Bioinformatics and Biomedicine. 2014;2014(2):375262.

13. Luo J, Liu C, Nguyen HT. A Core-Attach Based Method for Identifying
Protein Complexes in Dynamic PPI Networks. Springer International
Publishing; 2015. pp. 228–39.

14. Bader GD, Hogue CW. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics.
2003;4(1):1–27. https://doi.org/10.1186/1471-2105-4-2.

15. Shigehiko K, Ken K, Kenji M, Yoko S, Md AUA. Development and
implementation of an algorithm for detection of protein complexes in
large interaction networks. BMC Bioinformatics. 2006;7(1):1–13.

16. Min L, Chen JE, Wang J, Hu B, Gang C. Modifying the dpclus algorithm
for identifying protein complexes based on new topological structures.
BMC Bioinformatics. 2008;9(1):398.

17. King AD, Przulj N, Jurisica I. Protein complex prediction via cost-based
clustering. Bioinformatics. 2004;20(17):3013–20.

18. Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes
in protein-protein interaction networks. Nat Methods. 2012;9(5):471–2.

https://figshare.com/s/0737e9bdaa6b9ec4c2e2
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-4
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-4
https://doi.org/10.1109/TKDE.2012.225
https://doi.org/10.1186/1471-2105-4-2


Zhang et al. BMC Systems Biology 2018, 12(Suppl 4):40 Page 40 of 166

19. Dongen SMV. Graph clustering by flow simulation. Phd Thesis University
of Utrecht. 2000.

20. Satuluri V, Parthasarathy S. Scalable graph clustering using stochastic
flows: applications to community discovery. In: International Conference
on Knowledge Discovery and Data Mining, Paris, France, June 28 - July.
ACM; 2009. p. 737–46.

21. Shih YK, Parthasarathy S. Identifying functional modules in interaction
networks through overlapping markov clustering. Bioinformatics.
2012;28(18):473–9.

22. Srihari S, Ning K, Leong HW. Mcl-caw: a refinement of mcl for detecting
yeast complexes from weighted ppi networks by incorporating
core-attachment structure. Bmc Bioinformatics. 2010;11(1):504.

23. Macropol K, Can T, Singh AK. Rrw: repeated random walks on
genome-scale protein networks for local cluster discovery. Bmc
Bioinformatics. 2009;10(1):283.

24. Wiwie C, Baumbach J, Röttger R. Comparing the performance of
biomedical clustering methods. Nat Methods. 2015;12(11):1033.

25. Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for
discovering clusters a density-based algorithm for discovering clusters in
large spatial databases with noise. In: International Conference on
Knowledge Discovery and Data Mining. ACM; 1996. p. 226–31.

26. Karatzoglou A, Smola A, Hornik K, Zeileis A. kernlab - an s4 package for
kernel methods in r. J Stat Softw. 2004;11(i09):721–9.

27. Wittkop T, Emig D, Lange S, Rahmann S, Albrecht M, Morris JH, Böcker S,
Stoye J, Baumbach J. Partitioning biological data with transitivity
clustering. Nat Methods. 2010;7(6):419.

28. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. Cluster: Cluster
analysis basics and extensions. 2012;1. https://cran.rproject.org/web/
packages/cluster/cluster.pdf.

29. Spirin V, Mirny LA. Protein complexes and functional modules in
molecular networks. Proc Natl Acad Sci USA. 2003;100(21):12123.

30. Adamcsek B, Palla G, Farkas I, Der JS, Nyi I, Vicsek T. Cfinder: locating
cliques and overlapping modules in biological networks. Bioinformatics.
2006;22(8):1021–3.

31. Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping
community structure of complex networks in nature and society. Nature.
2005;435(7043):814.

32. Cui G, Yhuang CD, Han K. An algorithm for finding functional modules
and protein complexes in protein-protein interaction networks. J Biomed
Biotechnol. 2008;2008(1110-7243):860270.

33. Liu G, Wong L, Chua HN. Complex discovery from weighted ppi
networks. Bioinformatics. 2009;25(15):1891–7.

34. Wu M, Li X, Kwoh C-K, Ng S-K. A core-attachment based method to
detect protein complexes in ppi networks. BMC Bioinformatics.
2009;10(1):1–16. https://doi.org/10.1186/1471-2105-10-169.

35. Maruyama O, Chihara A. Nwe: Node-weighted expansion for protein
complex prediction using random walk distances. Proteome Sci. 2011;9
Suppl 1(1):14.

36. Maruyama O, Wong L. Regularizing predicted complexes by mutually
exclusive protein-protein interactions. In: International Conference on
Advances in Social Networks Analysis and Mining; IEEE/ACM; 2015. p.
1068–75.

37. Yong CH, Maruyama O, Wong L. Discovery of small protein complexes
from ppi networks with size-specific supervised weighting. BMC Syst Biol.
2014;8(5):1–15.

38. Tatsuke D, Maruyama O. Sampling strategy for protein complex
prediction using cluster size frequency. Gene. 2013;518(1):152–8.

39. Widita CK, Maruyama O. Ppsampler2: Predicting protein complexes more
accurately and efficiently by sampling. BMC Syst Biol. 2013;7(6):1–12.

40. Maruyama O, Kuwahara Y. Rocsampler: Regularizing overlapping protein
complexes in protein-protein interaction networks. In: International
Conference on Computational Advances in Bio and Medical Sciences.
IEEE; 2016. p. 1.

41. Sabine Tornow HWM. Functional modules by relating protein interaction
networks and gene expression. Nucleic Acids Res. 2003;31(21):6283–9.

42. De LU, Jensen LJ, Brunak S, Bork P. Dynamic complex formation during
the yeast cell cycle. Science. 2005;307(5710):724–7.

43. Wang J, Peng X, Peng W, Wu FX. Dynamic protein interaction network
construction and applications. Proteomics. 2014;14(4-5):338–52.

44. Jansen R, Greenbaum D, Gerstein M. Relating whole-genome expression
data with protein-protein interactions. Genome Res. 2002;12(1):
37–46.

45. Komurov K, White M. Revealing static and dynamic modular architecture
of the eukaryotic protein interaction network. Mol Syst Biol. 2007;3(3):110.

46. Wang J, Peng X, Li M, Luo Y, Pan Y. Active protein interaction network
and its application on protein complex detection. In: International
Conference on Bioinformatics and Biomedicine. IEEE; 2011. p. 37–42.

47. Min L, Wu X, Wang J, Yi P. Towards the identification of protein
complexes and functional modules by integrating ppi network and gene
expression data. BMC Bioinformatics. 2012;13(1):109.

48. Srihari S, Leong HW. Temporal dynamics of protein complexes in ppi
networks: a case study using yeast cell cycle dynamics. BMC
Bioinformatics. 2012;13(17):1–9.

49. Tang X, Wang J, Liu B, Li M, Chen G, Pan Y. A comparison of the
functional modules identified from time course and static ppi network
data. Bmc Bioinformatics. 2011;12(1):1–15.

50. Wang J, Peng X, Li M, Pan Y. Construction and application of dynamic
protein interaction network based on time course gene expression data.
Proteomics. 2013;13(2):301–12.

51. Wang J, Yang Z, Lin H, Zhang Y, Xu B. Integrating multiple biomedical
resources for protein complex prediction. In: International Conference on
Bioinformatics and Biomedicine. IEEE; 2013. p. 456–9.

52. Xenarios I, Łukasz S, Duan XJ, Higney P, Kim SMA, Eisenberg D. Dip, the
database of interacting proteins: a research tool for studying cellular
networks of protein interactions. Nucleic Acids Res. 2002;30(1):303–5.

53. Mewes HW, Frishman D, Gruber C, Geier B, Haase D, Kaps A, Lemcke K,
Mannhaupt G, Pfeiffer F, Schüller C. Mips: a database for genomes and
protein sequences. Nucleic Acids Res. 1999;27(1):44–8.

54. Pu S, Wong J, Turner B, Cho E, Wodak SJ. Up-to-date catalogues of yeast
protein complexes. Nucleic Acids Res. 2009;37(3):825–31.

55. Tu BP, Kudlicki A, Rowicka M, Mcknight SL. Logic of the yeast metabolic
cycle: temporal compartmentalization of cellular processes. Science.
2005;310(5751):1152–8.

56. Li X, Wu M, Kwoh CK, Ng SK. Computational approaches for detecting
protein complexes from protein interaction networks: a survey. BMC
Genomics. 2010;11 Suppl 1(Suppl 1):1–19.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

https:// cran.rproject.org/web/packages/cluster/cluster.pdf
https:// cran.rproject.org/web/packages/cluster/cluster.pdf
https://doi.org/10.1186/1471-2105-10-169

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Edge-weighting scheme
	Markov cluster algorithm
	Expand and inflate
	Prune
	Cluster

	Feature analysis
	Connection
	Density
	Co-expression

	Complex detection

	Results and discussion
	Data set
	Assessment
	Sensitivity, Positive Predictive Value, Accuracy

	Precision, Recall, F-measure
	Filtering threshold
	Modifying analysis
	Deleting
	Adding

	Comparison to existing methods
	Running time

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

