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Background: Vascularized composite allotransplantation opens new possibilities in 
reconstructive transplantation such as hand or face transplants. Lifelong immunosup-
pression and its side-effects are the main drawbacks of this procedure. Mesenchymal 
stem cells (MSCs) have clinically useful immunomodulatory effects and may be able to 
reduce the burden of chronic immunosuppression. Herein, we assess and compare 
characteristics and immunomodulatory capacities of bone marrow- and adipose 
tissue-derived MSCs isolated from the same human individual across defined human 
leukocyte antigen (HLA) barriers.

Materials and methods: Samples of omental (o.) adipose tissue, subcutaneous (s.c.) 
adipose tissue, and bone marrow aspirate from 10 human organ donors were retrieved 
and MSCs isolated. Cells were characterized by flow cytometry and differentiated in three 
lineages: adipogenic, osteogenic, and chondrogenic. In mixed lymphocyte reactions, 
the ability of adipose-derived mesenchymal stem cells (ASCs) and bone marrow-derived 
mesenchymal stem cells (BMSCs) to suppress the immune response was assessed 
and compared within individual donors. HLA mismatched or mitogen stimulations were 
analyzed in co-culture with different MSC concentrations. Supernatants were analyzed 
for cytokine contents.

results: All cell types, s.c.ASC, o.ASC, and BMSC demonstrated individual differenti-
ation potential and cell surface markers. Immunomodulating effects were dependent on 
dose and cell passage. Proliferation of responder cells was most effectively suppressed 
by s.c.ASCs and combination with BMSC resulted in highly efficient immunomodulation. 
Immunomodulation was not cell contact-dependent and cells demonstrated a specific 
cytokine secretion.
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conclusion: When human ASCs and BMSCs are isolated from the same individual, 
both show effective immunomodulation across defined HLA barriers in vitro. We demon-
strate a synergistic effect when cells from the same biologic system were combined. This 
cell contact-independent function underlines the potential of clinical systemic application 
of MSCs.

Keywords: vascularized composite allotransplantation, mesenchymal stem cell, immunomodulation, human 
leukocyte antigen, adipose-derived mesenchymal stem cells, bone marrow-derived mesenchymal stem cells, 
mixed lymphocyte reaction

inTrODUcTiOn

Vascularized composite allotransplantation (VCA) is an emerging 
field, expanding the armamentarium for reconstructive surgery 
after severe trauma, illness, or other causes of extended tissue  
loss. Next to the reconstitution of anatomical and psychosocial 
integrity (1), VCA allows functional recovery of extremities 
including fine motor skills, strength, and sensibility (2). So far, 
more than 200 VCA transplantations have been performed 
worldwide, and immunosuppressive strategies improved over 
time. The principle to replace “same with same” implies multiple 
important criteria to define suitable grafts for VCA recipients and 
their individual needs. In addition to age, sex, and skin color (3), 
general solid organ matching criteria such as cytomegalovirus 
status, patient sensitization (4), and human leukocyte antigen 
(HLA) typing play an important role in graft allocation and 
patient selection. The grade of HLA mismatch has been shown to 
increase the risk of acute rejection (5) in hand transplant patients 
and represents one of the biggest hurdles in VCA due to the 
shortage of donors. Acute rejection in VCA is unique in its char
acteristics (6) and occurs in a much higher frequency compared 
with solid organ transplantation (7). Due to high immunogenic
ity of the transplanted skin, acute rejection and chronic rejection 
remain the key immunologic challenges to solve (8). Currently, 
intensive immunosuppression is necessary to reduce the risk of 
graft rejection, but is associated with several complication inclu
ding increased risks of infection (9), development of malignan cies 
(10), kidney impairment, and cardiovascular risks.

A novel approach to modulate the immunologic response 
to allografts and to potentially decrease the need of chronic 
systemic immunosuppression is the application of mesenchymal 
stem cells (MSCs) (11–14). The capacity of MSCs to interact 
with the innate and adaptive immune response to inhibit Tcell 
proliferation and to upregulate regulatory Tcells (15, 16) makes 
this cell population strong candidate for cellular therapy in VCA. 
MSCs have shown to express immunomodulating capacities 
by cell contact and paracrine effects (17, 18). Clinically, these 
cells find increasing application to improve engraftment of 
hematopoietic stem cell transplantation and to decrease the risk 
of graftvs.host disease (19). Most promising candidates for 
cytotherapy in VCA are bone marrowderived mesenchymal 
stem cells (BMSCs) and adiposederived mesenchymal stem 
cells (ASCs). There are first reports of a successful application of 
donorderived ASCs (20) and ongoing trials with donorderived 
bone marrow stem cells in kidney transplant patients (21). ASCs 
can by isolated from subcutaneous (s.c.), adipose tissue, or from 

intraabdominal fat of the omentum or perirenal fat pad. Due 
to high yields and a simple cell isolation process (22), ASCs rep
resent an appealing source of stem cells. In a transplant setting, 
donorderived MSC are plentiful, as a large amount of adipose 
tissue and bone marrow aspirate is available, in part, because 
all donor longbones can be used for cell isolation. Isolation of 
recipientderived MSCs for immunomodulation represents an 
alternative approach that potentially could be repeated through
out the posttransplant period. In this setting, lipoaspiration,  
or liposuction, represents a much less invasive procedure com
pared with bone marrow aspiration. Liposuction and local anes
thesia for ASC isolation allows a minimally invasive procedure 
to make repeated cytotherapy feasible.

Multiple studies have compared suppressive capacities of 
ASC and BMSC (23–25), using cells from multiple tissue donors. 
Systemic application of MSCs showed good results in animal 
models (13) and promising results in human VCA (14). Recent 
findings from our group demonstrated a benefit of repetitive 
applications of ASC in a rodent VCA model (26).

The overall goal of this study was to analyze and character
ize MSCs isolated from s.c.ASCs, o.ASCs, and bone marrow 
aspirate retrieved form the same biological system and com
pare between 10 human tissue donors. This is the first study to 
compare immunomodulating capacities of ASCs and BMSCs 
derived from the same individual across defined major histo
compatibility cluster (MHC) barriers from HLAtyped organ/
tissue donors. Specific aims of this study were to identify and 
characterize MSCs from the different compartments, to assess 
immunomodulating functions excluding interindividual 
differences, and to test these functions across defined HLA 
barriers.

MaTerials anD MeThODs

Tissue Procurement
This study was approved by the Committee for Oversight of 
Research and Clinical Training Involving Descents (CORID No. 
475). Tissue donors were referred after informed consent by the 
Center for Organ Recovery and Education (CORE). All donors 
were braindead cadaveric solid organ donors, HLA typed by 
CORE and deidentified. Inclusion criteria were 18–65 years of 
age male and female subjects. Exclusion criteria were the pres
ence of hepatitis B, C, or HIV, sepsis/positive serology results. 
Adipose tissue from abdominal subcutaneous fat and omental 
fat (300–500 g) was excised under sterile conditions after solid 
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TaBle 1 | De-identified tissue donor data including human leukocyte antigen 
(HLA) markers A, B, and DR for both alleles.

hla class i hla class ii

Donor # age sex a a B B Dr Dr

1 60 F 2 30 7 18 13 15
2 37 M 2 2 18 44 1 4
3 40 M 2 24 7 18 11 15
4 32 M 2 3 7 62 13 15
5 59 F 11 26 38 56 1 16
6 61 M 26 29 35 45 4 15
7 57 M 24 32 41 51 4 13
8 25 M 2 31 7 51 4 15
9 26 M 2 2 35 44 1 11

10 54 M 32 32 40 60 4 11

Highlighted a full (6/6) HLA mismatch between tissue samples from donor #1 and #5. 
Various combinations between donor samples allow HLA determined matching and 
comparable immunologic barriers between cell-based assays.
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organ retrieval. Bone marrow (30  mL) was aspirated from the 
iliac crest using an 11G Jstyle aspiration kit (DePuy Synthes, 
Procure™). The spleen was excised and placed in complete RPMI 
media. Peripheral blood (70 mL) was obtained in 10 EDTA tubes.

hla Typing and Matching
Donor sera were analyzed using a single antigen beadbased 
LUMINEX® technology and provided deidentified by CORE. 
HLA markers A, B, and DR for both alleles were collected for 
each tissue and blood sample of the 10 donors. For full (6/6) 
mismatch constellations, all six collected markers between the 
stimulating (irradiated) peripheral blood mononuclear cells 
(PBMCs) and the responding PBMCs were not matching. For 
example, cells from donor #1 (HLA A: 2,30; B: 7,18; DR: 13,15) 
stimulated by cells from donor #5 (HLA A: 11,26; B: 38,56; DR: 
1,16) represent a full HLA mismatched assay (Table 1).

cell isolation: asc
Adiposederived mesenchymal stem cells were isolated according 
to a protocol previously published by Minteer et al. (27). Briefly, 
adipose tissue was meticulously minced and digested in a type II 
collagenase solution in a water bath at 37°C with gentle agitation 
for approximately 30 min. The digested tissue was then filtered 
through sterile gauze and centrifuged at 1,500 rpm for 10 min. 
The cell pellet was suspended in erythrocyte lysis buffer and 
centrifuged at 1,500  rpm for 10  min. The pellet was then sus
pended in plating medium [EGM™2 BulletKit™ (Lonza), 10% 
fetal bovine serum, 1% penicillin/streptomycin, 1% Fungizone, 
and 0.001% dexamethasone] and filtered through sterile gauze to 
eliminate any cellular debris.

Bone Marrow-Derived Mesenchymal  
stem cells
Bone marrowderived mesenchymal stem cells were isolated 
according to a protocol previously published by Wolfe et  al. 
(28). Briefly bone marrow aspirate was diluted in Hanks bal
anced salt solution (HBSS), gently overlaid with Ficoll Paque 
Plus (GEHealthcare) and centrifuged at 1,800  g for 30  min. 

After collection of the “buffy coat,” cells were rediluted with 
Hanks Balanced Salt Solution (HBSS) and centrifuged again at 
1,000 g for 10 min. The cell pellet was suspended in EGM™2 
medium (Lonza), and plated in 175cm2 tissue culturetreated 
flasks overnight. Medium was changed 24h after plating and 
cells were expanded up to passage 5 and partially cryopreserved 
at each passage.

Peripheral Blood Mononuclear cells
Briefly, whole anticoagulated blood was diluted in HBSS, gently 
overlaid with Ficoll Paque Plus (GEHealthcare) and centrifuged 
at 400  g for 40  min. After collection of the buffy coat, cells 
were suspended in RPMI complete medium and centrifuged at 
200 g for 10 min twice. Cells were then counted manually and 
cryopreserved.

splenocytes
Briefly, splenic tissue was minced under sterile conditions and 
gently squeezed through a 22  µM filter into sterile phosphate
buffered saline (PBS) and centrifuged at 1,600 rpm. Erythrocyte 
lysis buffer was added for 2 min, 30 mL of PBS added, and cells 
centrifuged over Ficoll Paque Plus (GEHealthcare) at 1,600 rpm 
for 5  min. Cells were resuspended in RPMI, counted, and 
cryopreserved.

cell characterization
After isolation, cells were allowed to adhere to plastic culture 
dishes overnight and washed 24 h later. Media was changed every 
48 h until a confluency of 70% was reached and differentiation 
protocols and flow cytometric analysis were initiated.

adipogenic Differentiation
Mesenchymal stem cells (s.c.ASC, o.ASC, and BMSC) derived 
from the same individual were plated at passage 3 at a density of 
40,000 cells/cm2 in 6well plates using EGM2 medium [EGM
2MV BulletKit (Lonza)]. After 24 h, medium was replaced with 
adipogenic differentiation medium [STEMPRO® Adipogenesis 
Differentiation Kit (Invitrogen)] that was changed every 
3–4 days over the course of 2 weeks. Control cells were cultured 
in regular EGM 2 medium for 2 weeks that was changed every 
3–4 days.

Osteogenic Differentiation
Mesenchymal stem cells (s.c.ASC, o.ASC, and BMSC) derived 
from the same individual were plated at passage 3 at a density 
of 5,000 cells/cm2 in 6well plates using EGM2 medium [EGM
2MV BulletKit (Lonza)]. After 24 h, medium was replaced with 
osteogenic differentiation media [STEMPRO® Osteogenesis 
Differentiation Kit (Invitrogen)] that was changed every 3–4 days 
over the course of 3 weeks. Control cells were cultured in regular 
EGM2 medium for 3  weeks that was changed every 3–4  days 
respectively.

chondrogenic Differentiation
Briefly, 250,000 cells at passage 3 were suspended in 500  mL 
EGM2 medium aliquoted into 10 mL sterile tubes, centrifuged 
at 300  g for 5  min to form pellets, and incubated overnight. 
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TaBle 2 | List of primers used for RNA analysis of differentiation protocols.

gene name Forward reverse

YWHAZ hYWHAZ-F hYWHAZ-R
CCGCTGGTGATGACAAGAAAGGGAT AGGGCCAGACCCAGTCTGATAGGA

Col1a1 hCol1a1-F hCol1a1-R
GATGGCTGCACGAGTCACAC GTATTCAATCACTGTCTTGCCCC

OCN hOCN-F3 hOCN-R3
GGCAGCGAGGTAGTGAAGAG CTCACACACCTCCCTCCTG

PPary hPPARγ-F hPPARγ-R
AAGCCCTTCACTACTGTTGACT CAGGCTCCACTTTGATTG

CEBP/B C/EBPβ-F5 C/EBPβ-R5
AGCGACGAGTACAAGATC TGCTCCACCTTCTTCTGC

Aggrecan hACAN-F hACAN-R
TCAACAACAATGCCCAAGAC AAAGTTGTCAGGCTGGTTGG

Col2a1 hCOL2A1-F3 hCOL2A1-R3
CGGCTTCCACACATCCTTAT CTGTCCTTCGGTGTCAGGG

-F and -R endings represent forwarding and reversing sequences.
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Medium was replaced by chondrogenic differentiation medium 
(Invitrogen) while control cells were cultured in incomplete 
differentiation medium. Tops were attached loose to allow gas 
exchange. Culture medium was exchanged every 3–4 days over 
4 weeks.

histology/cell staining
Safranin O/Fast Green Staining
Briefly, sections were deparaffinized, hydrated with distilled 
water, and stained with Weigert’s iron hematoxylin solution. After 
rinsing, samples were stained with fast green (FCF) solution for 
5 min, rinsed with acetic acid and then stained with safranin O for 
further 5 min. After dehydrating with alcohol series and xylene, 
slides were mounted and coverslipped.

Alizarin Red Staining
Briefly, cells in 6well plates were fixed with 4% paraformaldehyde 
and stained with Mayer’s hematoxylin. Alizarin red was then 
added (0.5  mL of 40  mM solution) and incubated for 20  min. 
Excessive dye was washed off and cells coverslipped and imaged 
with an Olympus Provis 1 microscope (Olympus America, Center 
Valley, PA, USA) at 20× magnification.

Adipored™ Staining
Briefly, culture medium was removed from MSCs in 96well 
plates and cells were washed with PBS. Each well was filled with 
200 µL PBS. 5 µL Adipored was added and cells were incubated 
for 10 min. The readout was performed using a microplate reader 
(Infinite® 200 PRO NanoQuant, Tecan). After readout, cells were 
imaged with brightfield microscopy.

Flow Cytometry
Flow cytometry was performed on MSCs (s.c.ASC, o.ASC, and 
BMSC) at passage 3. The cells were trypsinized, subsequently 
centrifuged at 1,400  rpm for 5  min, and washed with PBS 
containing 0.5% bovine serum album (SigmaAldrich) and 
0.5  M EDTA (Lonza). The number of cells was determined by 

hemocytometer. A total of 2  ×  106  cells were incubated with 
different fluorochromeconjugated anti human monoclonal anti
bodies for 30 min. The following CD surface markers were tested: 
CD45/APCCy7, CD90/APC, CD105/FITC, CD73/PE, CD235a/
PECy5, CD34/AF700 (BD Biosciences, San Jose, CA, USA), 
CD31/PECy7 (BioLegend), CD33/PC5, CD14/PC5 (Beckman 
Coulter, Brea, CA, USA), and CD146/VioBlue (Miltenyi Biotec). 
For each antigen 10,000 events were collected on an LSRII flow 
cytometer (Becton Dickinson). Analysis was conducted using 
Flow Jo software (Tree Star).

RT-qPCR
RNA was isolated from ASC cell cultures using the RNAeasy 
Mini kit (Qiagen) including proteinase K digestion. cDNA was 
then synthesized from 500  ng RNA using the High Capacity 
cDNA Reverse Transcription Kit (Thermo Fisher Scientific). 
Realtime quantitative PCR was then performed using the 
SYBR Green PCR Master Mix (Thermo Fisher Scientific) 
with primers listed in Table  2 including housekeeping gene 
YWHAZ. The relative mRNA levels were calculated using the 
2−ΔΔCt method (29). The Cts were obtained from Ct normalized 
to YWHAZ. The markers used for differentiation analysis are 
listed in Table 2.

Mixed Lymphocyte Reactions (MLRs)
Responder cells were PBMC isolated according to the protocol 
mentioned above. Stimulator cells were PBMCs or splenocytes 
irradiated with 3,000 rads. For flow cytometric analysis, responder 
cells were labeled prior to the assay using carboxyfluorescein 
succinimidyl ester (CFSE), CD3 and CD4 antibody (all BD 
Bioscience).

In the allogenic suppressor assays, PBMCs (2 × 105 cells/well)  
were cocultured for 7 days with either ASC or BMSC (responder 
cell to MSC ratio of 2:1, 4:1, 8:1, and 16:1) in triplicates in round
bottom 96well plates, in the presence of irradiated stimulator 
cells (1  ×  105  cells/well). Allogenic assays were analyzed using 
a phytohemagglutinin (PHA) based and CFSE based technique.

https://www.frontiersin.org/Immunology/
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FigUre 1 | Flow cytometric analysis of mesenchymal stem cell (MSC) 
deriving from s.c. adipose tissue (s.c.ASC), omentum (o.ASC), and bone 
marrow-derived mesenchymal stem cell (BMSC). Cells isolated from four 
individual donors for each cell type were pooled (n = 4). MSCs were positive 
for CD105, CD73, and CD90 and clearly negative for CD 45, CD31, CD145, 
CD114, and CD 33. Slight differences were seen in the markers CD34 and 
CD146 which did not reach significance. Slight differences were noted 
between individual donors but showed a similar surface pattern for all 
samples.
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In the mitogen suppressor assays, PBMCs (2 × 105 cells/well) 
were cocultured for 72 h with ASCs or BMSCs (PBMCs to MSC 
ratios of 4:1, 8:1, and 16:1) while stimulated with PHA.

Alternatively, to assess Tcell proliferation, cells in both assays 
were pulsed with [3H] thymidine (1 mCi/well) for the final 8 h 
and [3HTdR] thymidine incorporation was measured as counts 
per minute in a liquid scintillation counter (Perkin Elmer).

For the transwell experiment, responder cells were added to 
96well plates and MSC were added in 0.1 µm transwell system 
(SigmaAldrich). After 5 days of stimulation, transwell baskets 
were removed and cells collected for flow cytometric analysis.

Luminex Multiplex Assay
Briefly, 20 µL of supernatant from MLRs, stimulated with PHA 
were collected after 5  days of coculture and frozen at −20°C. 
Supernatants were analyzed using a Cytokine 30Plex Human 
Luminex™ Panel according to standard protocol. Standard 
curves for all cytokines were used to proof data quality.

statistical analysis
Statistical analysis was performed using Graph Pad Prism 6.0 
(Graph Pad Software, Inc., San Diego, CA, USA). All the data 
are presented as mean ± SD. p ≤ 0.05 was considered signifi
cant. In MLRs, statistics were calculated using a paired ttest. 
Results were referred to stimulated controls, representing 100% 
of stimulation. RTqPCR results were analyzed using the 2−ΔΔCt 
method (29). Analysis of cytokine profiling was performed  
using ANOVA for multiple comparisons and the Holm–Sidak 
method with alpha = 0.05.

resUlTs

Mscs from s.c.ascs, Omental Fat and 
Bone Marrow, reveal specific cytometric 
Markers, and Multilineage Differentiation 
Potential
Using flow cytometry, we confirmed surface markers for adipose 
and BMSCs (Figure  1). Cryopreserved passaged cells (passage 
3) from individual donors (n = 4) were analyzed, demonstrating 
a typical MSC phenotype. No significant differences between 
the cell types were found when pooled from individual donors 
(Figure 1). MSCs from all three compartments were positive for 
CD 105, CD73, and CD90. Slight differences were identified in 
the hematopoietic marker CD34 which did not reach statistical 
significance (s.c.ASC vs. BMSC p  =  0.31; s.c.ASC vs. o.ASC 
p = 0.15). CD146 (mCAM) was higher in omental ASCs com
pared with s.c.ASC and bone marrowderived MSCs, but again 
no statistical significance was detected. To assess multilineage dif
ferentiation potential of the isolated cells, differentiation into the 
osteogenic, chondrogenic, and adipogenic lineage of s.c.ASCs, 
o.ASCs, and BMSCs was analyzed and compared. All samples 
were taken from the same tissue donor.

After 3 weeks of osteogenic differentiation culture condition, 
quantitative RTPCR revealed an upregulation of osteogenic 
markers osteocalcin and collagen type 1 alpha1 for all MSC types 

(n/group = 3) after differentiation culture (Figure 2A). Omental 
ASCs (p < 0.01) and bone marrow MSC (p < 0.05) showed a 
significantly higher expression of osteogenic markers compared 
with s.c.ASCs. All three cell types showed extracellular calcium 
depositions visualized by Alizarin red staining, compared with 
control cells. The most intense deposition of extracellular cal
cium was observed in BMSC (Figure 2D).

After 2  weeks of adipogenic culture conditions, cells mor
phologically demonstrated large amounts of lipid droplets 
and rounder appearance suggestive for adipose differentiation 
(Figure  2B). AdipoRed staining and florescence quantification 
all three MSC types demonstrated a significant increase of lipid 
inclusions compared with undifferentiated cells (Figure  2E). 
Notably, ASCs demonstrated a significantly higher content of 
lipid droplets if compared with standard cultured cells without 
differentiation media. Omental ASCs and subcutaneous ASCs 
exhibited more lipid inclusions compared with BMSCs, a differ
ence that was significant RTqPCR reflected these results showing 
the highest increase of adipogenic markers PPARγ and CEBP/B 
in omental ASCs and s.c.ASCs, which were both significantly 
higher for PPARγ than those of BMSC (p < 0.05).

After 4  weeks of chondrogenic differentiation condition, 
cell conglomerates were stained using a Safranin O/Fast Green 
stain, showing proteoglycan depositions in all three cell types 
(Figure  2C), while control cells were negative. Quantitative 
RTqPCR showed an increase of chondrogenic markers aggrecan 
and collagen type 2 alpha 1 in BMSCs, ASCs and o.ASCs at similar 
levels. In this experiment, samples were combined in order obtain 
sufficient RNA for analysis; therefore, no statistical analysis could 
be performed (Figure 2A).

https://www.frontiersin.org/Immunology/
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FigUre 2 | (a) Quantitative RT-PCR of mesenchymal stem cell deriving from a single individual (n = 1) showed a multiple fold upregulation of markers for 
osteogenic differentiation (collagen type1 α1 and osteocalcin), adipogenic differentiation (PPAR γ, CEPB/beta), and chondrogenic differentiation (Aggrecan and 
Collagen type 2 alpha 1). Significant differences were noted in the expression of collagen type1 α1 and osteocalcin between o.ASC, bone marrow-derived 
mesenchymal stem cells (BMSCs) compared with s.c.ASC, while s.c.ASC showed a significantly higher expression of PPAR γ. (B) AdipoRed staining of adipogenic 
differentiated s.c.ASC after 14 days showed large amounts of intracellular lipid droplets. (c) Safranin O staining of chondrogenic differentiated s.c.ASCs. (D) Alizarin 
staining of s.c.ASC, o.ASC, and BMSC after 3 weeks of osteogenic differentiation. Differentiated cells (DIFF) showed an increased red staining indicating extracellular 
calcium deposition. (e) Quantification of AdipoRed fluorescence resulted in a significant increase in fluorescence for all three cell types.
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Msc From Different Tissue compartments 
inhibit PBMc Proliferation after Mitogen 
simulation in a Dose-Dependent Manner. 
s.c.asc Demonstrate slightly higher 
inhibitory Potential compared With Paired 
o.ascs and BMscs
In proliferation assays with unspecific mitogen stimulation using 
PHA for 5 days (n = 3), MSCs isolated from all three different com
partments, demonstrated a dosedependent inhibitory effect on 
PBMCs (Figure 3A). In this assay, ratios of 1:4 to 1:16 between the 
modulating MSCs and responding cells (PBMCs) were analyzed 
using a tritiated thymidine based MLR. MSC in this experiment 

derived from the same individual as the stimulated PBMCs (n = 4) 
and were therefore autologous. At all ratios, MSCs demonstrated 
a significant reduction in responder cell proli feration (p < 0.05), 
while there was no significant difference between the different 
MSC groups with equal doses. Subcutaneous ASCs demonstrated 
a trend toward more potent suppression compared with other 
cell types that did not reach significance (p = 0.09). Results were 
confirmed by a CFSE assay with flowcytrometric gating on CD3+ 
and CD4+ Tcell proliferation (Figure  3B). This demonstrates 
an efficient inhibition [51% proliferation (SD ± 18) with addition 
of ASC and 56% (SD ±  19%) with BMSC] proliferation of the 
responding Tcells, with a ratio of 1:4 between the added MSCs 
and the stained responder cells.
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FigUre 3 | Ratios ranging from 4:1 to 16:1 between responder cells [peripheral blood mononuclear cells (PBMCs)] and mesenchymal stem cell (MSC) were  
added to proliferation assays (n = 3 from three different human donors) stimulated with phytohemagglutinin (PHA) (a). All three types of MSC show a dose 
depended reduction responder cell proliferation detected by H3 thymidine assay, with the most effective inhibition by adipose-derived mesenchymal stem cell  
(ASC). Panel (B) shows representative results of a co-culture stimulated with PHA, gated on CD3+ and CD4+ cells confirming potent inhibition by ASC. Addition  
of stromal vascular fraction (SVF) cells at the same ratio resulted in a far weaker inhibition compared with cultured cells (P3).
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stromal Vascular Fraction (sVF) shows 
lower suppressive Potency compared 
With cultured ascs
To compare the different immunomodulating potential of SVF 
and cultured ASC, performances of both cell preparations derived 
from the same donor were compared. Cryopreserved SVF and 
passaged MSCs were thawed, washed, and cultured overnight. 
Using a CFSE MLR assay, we confirmed a lower suppressive 
potency of SVF compared with cultured ASCs or BMSCs, if added 
at the same ratio between responder cells and MSC, respectively 
(Figure  3B). This experiment was performed as an internal  
control to test the improved immunomodulating function of 
cultured MSC compared with SVF.

asc and BMsc Perform Their suppressive 
Potential across a Full Mismatched Mhc 
Barrier (6/6) in a Dose-Dependent Manner
To understand the impact of HLA mismatch on the immu
nomodulating potential of MSCs, cultured and cryopreserved 
cells were divided in groups according to the haplotype of the 
individual tissue donor. Mismatch criteria were defined accord
ing to common solid organ matching criteria including HLA 
A, HLA B, and HLA DR for both alleles (Table 1) resulting in  
six mismatch parameters. This setting would simulate an acti
vation of the recipient immune system by a full mismatched 
donor and the impact of donorderived MSCs on this specific 
response. For specific stimulation in a setting of responding 
PBMC and irradiated stimulating PBMCs/splenocytes, the fol
lowing four donor combinations have been analyzed: responder 

9  >  stimulator 7; responder 1  >  stimulator 5; responder 
10  >  stimulator 7; responder 5  >  stimulator 6 (Figure  4A).  
In MLRs (n  =  4), allogenic ASCs isolated from s.c.ASCs and 
o.ASCs and BMSCs demonstrated a dosedependent suppres
sion of allogenic stimulated responder cells (Figure  4A). At 
all tested doses ranging from 1:4 up to 1:16 between MSC and 
responder cells, the applied stem cells led to a significant sup
pression of responder cell proliferation relative to stimulated 
PBMCs alone (p  <  0.05). Data were confirmed using a CFSE 
assay, demonstrating a significant suppression of CD3+, CD4+ 
cells by the presence of MSC at a constant ratio of 1:4 between the 
responding PBMC and the added MSCs (Figure 4B). Analysis 
of CD3+, CD8+ showed a suppression by all three types of  
MSC that did not reach significance (data not shown).

There Was no significant Difference in 
suppression Potential Between Donor-
Derived and recipient-Derived asc
To investigate the differences in immunomodulating potency 
of MSC deriving from the same individual as the stimulated 
PBMCs and those from a fully mismatched donor, we compared 
both scenarios in MLRs (n = 3). In this setting, we compared the 
immunomodulating effects of “donorderived” (allogenic) and 
“recipientderived” (autologous) MSCs, were the latter were 
isolated from the same individual as the responding PBMCs 
(n = 3 for each group). In this assay, the allogeneic ASCs of a 
full HLA mismatched donor relative to the responder cells were 
used. We confirmed a significant (p  <  0.05) dosedependent 
inhibition of PBMC proliferation for all tested ratios without 
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FigUre 5 | The comparison of immunomodulating potency between autologous and allogenic s.c.ASC (a) revealed no statistical significance. Three biological 
replicates (n = 3) with three different donor/recipient combinations were analyzed. All cells demonstrated a dose-dependent suppression in a tritiated thymidine 
assay. Panel (B) shows a representative carboxyfluorescein succinimidyl ester mixed lymphocyte reaction stimulated by allogenic splenocytes: allogeneic (ASCsyn) 
ASC showed similar suppressive potential if compared with allogeneic ASC (ASCallo) or bone marrow-derived mesenchymal stem cells on CD3+, CD4+ cells (B).

FigUre 4 | Specific stimulation of responder peripheral blood mononuclear cells (PBMCs) using irradiated splenocytes from a 6/6 mismatched donor resulted in a 
robust stimulation in controls (n = 4, from different donors). The addition of s.c.ASCs, o.ASCs, and bone marrow-derived mesenchymal stem cells (BMSCs) resulted in 
a dose-dependent inhibition of responder cell proliferation (a). At all ratios tested ranging from 1:4 to 1:16 between mesenchymal stem cell (MSC) and PBMC, there 
was a significant inhibition compared with stimulated responders alone (p < 0.05), while there was no significant different between the different ratio steps. Analysis via 
carboxyfluorescein succinimidyl ester mixed lymphocyte reaction (n = 4, from different donors) demonstrated a significant inhibition of CD3+, CD4+ cells (B).
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significant difference between autologous and allogenicderived 
ASCs (Figure  5A) after unspecific stimulation with PHA. 
Comparison between autologous and allogenic (mismatch 6/6) 
ASCs in MLRs stimulated by mismatched (6/6) splenocytes, 
demonstrated a similar suppression of CD3+, CD4+ Tcell pro
liferation without a significant difference between the groups 
(Figure 5B).

supernatants of Mlrs reveal Different 
concentrations of Pro- and anti-
inflammatory cytokines
To further describe the individual mechanisms of immunomod
ulation, supernatants of PHA stimulated MLRs (n  =  3) were 
analyzed for cytokine concentration after 5 days of coculture. 
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FigUre 6 | Multiplex analysis of mixed lymphocyte reaction (MLR) supernatants (n = 4 from four biological replicates) using allogenic human mesenchymal  
stem cells (MSCs) (ratio 4:1) on day 5. While there was no significant difference in levels of IL-10, TNFα, or IFNγ (a) between MLR with added MSC compared with 
phytohemagglutinin stimulated peripheral blood mononuclear cells alone, statistical analysis revealed a significant increase in levels of IL-6 and VEGF (B) for all  
three tested MSC. s.c.ASC and bone marrow-derived mesenchymal stem cell (BMSC) demonstrated a significant increase of IL-7 while o.ASC increased levels  
of G-CSF significantly.
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Therefore, supernatants from MLR triples were collected, frozen 
at −20°C and analyzed later using a multiplex assay. While BMSC 
and s.c.ASCs demonstrated a significant increase of IL7 (each 
p  <  0.001), no statistical significance in levels IL10, TNFα, 
or IFNγ could be detected (Figure  5A). s.c.ASC, o.ASC, and 
BMSCs at a ratio of 4:1 between responder cells (PBMC) and 
MSCs, respectively, showed a significant increase of IL6 (each 
p  <  0.001) and VEGF (each p  <  0.001) in the MLR superna
tant compared with PBMCs alone (Figure  5B). o.ASC based 
MLRs had an increased the concentration of GCSF. HGF was 
increased in all experimental groups but did not reach statistical 
significance.

asc and BMsc have comparable 
suppressive Functions on cD3+ cD4+  
T cells in a Trans-Well experiment
Recent studies (30) have shown that intravenously applied 
MSC get trapped in the microvasculature of the lungs and may 
therefore have a noncell contactdependent effect when used 
in vivo. To reveal whether the suppressive effects of the tested 
MSCs are cell contact dependent, we performed a transwell 
coculture experiment and compared results head to head with a 
regular coculture. In a CFSE assay with gating on CD3+–CD4+ 
cells, allogenic MSCs demonstrated comparable dosedependent 
suppression of responder cells without cell contact following 
PHA stimulation. The results were consistent for all three types 
of MSCs, showing almost no alterations in performance by 
disabling cell contact (Figures 6A,B).

a combination of asc and BMsc Deriving 
From the same individual results in a 
strong inhibition of PBMc Proliferation
Each experiment demonstrated suppressive effect with all three 
types of MSC. Since suppression in all assays was dose depend
ent, we evaluated if the combination of bone marrowderived 

MSCs and ASCs isolated from the same individual would result 
in a synergistic effect or not. Therefore, we combined s.c.ASC 
and BMSC from one individual (n = 3) and cocultured them 
with mitogen stimulated PBMCs from fully mismatched (6/6) 
donors. Demonstrated is a synergistic effect with significant 
responder cell suppression (p < 0.05) after combination of both 
cell types (Figure 7C). The composition of the mix of ASC and 
BMSC (i.e., more ASCs or BMSCs) did not alter the suppressive 
potency in this assay.

DiscUssiOn

This study investigates, for the firsttime, properties of MSCs 
isolated from bone marrow and adipose tissue obtained from 
the same human individual. This allowed us to perform a head
tohead comparison between the isolated cell types, eliminating 
interindividual variations. The availability of HLA typing for 
each of the 10 tissue donors provided the unique possibility for 
a clear definition of mismatch constellations in immunological 
assays.

Flow cytometric cell analysis of cell surface markers and 
definitions of cellular subsets is subject of continuous debate  
(31, 32). This is the first study comparing human s.c.ASC, o.ASC, 
and BMSC isolated from the same individual. In our study, we 
confirmed findings from the literature for most common surface 
markers (CD105+, CD73+, CD90+, CD235a low, CD34−, CD 
45−, CD31−, CD145−, CD114−) for ASCs and BMSCs. We 
also confirmed decrease in CD34 expression with ongoing cell 
culture in ASC, while CD34 expression in BMSCs from the same 
donor was clearly lower (33, 34). Recent studies analyzing ASCs 
revealed further details of their cell surface proteome aiming to 
refine cytometric cell characterization and subgroup categori
zation (35). The importance of these findings is that human 
MSCs expressing the discussed surface markers are capable to 
modify the immune response no matter if they were isolated from 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 7 | Head to head comparison between trans-well and standard well proliferation assay stimulated with phytohemagglutinin (PHA). Allogenic mesenchymal 
stem cell (MSC) deriving from the same donor were added in different ratios to carboxyfluorescein succinimidyl ester stained responder cells, resulting in a 
dose-dependent suppression of CD3+, CD4+ cells. Absence of cell contact (a) did not result in a loss of suppression performance compared with standard 
co-culture (B). When adipose-derived mesenchymal stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (BMSCs) were mixed and added to 
co-cultures (c) at a constant ratio of 4:1 between responder peripheral blood mononuclear cells and the MSCs added, a synergistic effect of s.c.ASC and BMSC is 
demonstrated resulting in a significant suppression (p < 0.01), independent on the composition of the mixed MSC (more ASC vs. more BMSC). Results for mixed 
MSCs showed no significant difference if compared with single-cell types.
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adipose tissue or bone marrow nor if they are donor derived or 
recipient derived.

Ability of MSCs to differentiate into cell lines of the meso
dermal lineage is an important proof of stemness and purity 

of the isolated cells. In our study, we compared MSCs isolated 
from different tissues but from the same donor and revealed 
specific differentiation potentials. Adipogenic differentiated 
ASCs from subcutaneous adipose tissue and omentum showed 
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an increased deposition of lipid droplets and adipogenic markers 
analyzed by RTqPCR compared with BMSCs (Figures 2A,B,E). 
These findings confirm data from other comparative studies of 
adipogenic differentiation potential (23), while others described 
a nonsignificant increase of adipogenic markers only (36, 37). 
Chondrogenic differentiation potential was increased in BMSCs 
when compared with ASC and BMSC as it has been shown in 
previous studies (38, 39) (Figures 2C,D). Osteogenic differenti
ated BMSCs and o.ASC showed comparable upregulation of the 
osteogenic markers Col1α1 and Osteocalcin, while extracellular 
calcium deposition seemed slightly higher in BMSCs. These 
results support data from multiple groups (22), while others 
demonstrated nonsignificant differences (40). Interestingly, the 
osteogenic differentiation potential of o.ASCs was significantly 
higher than in s.c.ASC.

The ability to adhere to plastic in combination with multiline
age differentiation and flow cytometric analysis are important 
baseline experiments to confirm ASC and BMSC characteristics 
(31). Conflicting data in the literature about differentiation 
potentials can be explained by heterogeneous cell isolation tech
niques (41), culture conditions, and interindividual differences 
(25). The results presented add a valuable piece of information 
to the current expertise, eliminating interindividual differences 
caused by different donors for each tissue type.

Due to sparsity of tissue donors and additional matching 
criteria such as age, sex, or skin color, HLA mismatch is not 
an exclusion donor criterion in VCA. One way to modulate 
the immunologic response to allografts is the application of 
donor or recipientderived MSC. In this study, we show slightly 
superior immunomodulatory capacities of ASCs if compared 
with BMSCs that were isolated from the same individual 
after unspecific stimulation, using a mitogen. This trend was 
consistent using a specific full HLA mismatched allogeneic 
stimulation for both donor and recipientderived MSCs. 
Across defined HLA mismatches BMSC and ASC showed 
powerful suppressive function after specific stimulation with 
splenocytes or PBMCs deriving from the same donor as the 
MSCs. Regarding the immunogenicity of MSCs, we were able to 
confirm low immunogenic effects in our negative controls (42) 
of paired MSCs deriving from s.c.ASCs, o.ASCs, and BMSCs 
across a full HLA mismatch, with only minimal stimulation 
of responder cells. In a scenario of VCA, donorderived MSC 
could be isolated from s.c. fat tissue, omental fat, and bone mar
row and be processed in a Good Clinical Practice facility. This 
variety of MSC could be applied systemically and, if necessary 
in a repetitive fashion.

The feasibility of obtaining and using adipose stromal cells 
and/or a combination of adipose and bone marrow cells is justi
fied by established minimally invasive methods of harvesting 
fat tissue and marrow from living donors, as well as the already 
available rapid bulk isolation techniques that can be used in 
cadaveric donors. For living donors, adipose tissue can be easily 
obtained via suction assisted liposuction (43) and similar tech
niques (44), while bone marrow aspirate can be isolated via iliac 
crest puncture (45). In cadaveric donors, bone marrow MSCs 
can be isolated from retrieved vertebral bodies and by long 

bone flushing (46), resulting in a high cell yield. Five human 
hand transplant patients have been treated using a cellbased 
protocol for immunomodulation, using stem cells isolated from 
vertebral bodies and long bones (14). For adipose tissue from 
cadaveric donors, rapid excision of subcutaneous or omental 
fat tissue with bulk isolation by automated machine or by 
manual techniques are available. Within one human cadaveric 
donor 500 g–1 kg of adipose tissue can be easily and rapidly col
lected. A number of enzymatic and nonenzymatic automated 
devices are on the market (47) allowing processing under GMP 
conditions.

Stromal vascular fraction (48) represents an attractive source 
of ASC that can be obtained within the operating room with
out the necessity to be further cultured in the laboratory. The 
heterogeneity of SVF (49) containing cell debris, endothelial 
cells, and bloodderived cells next to ASCs, results in a higher 
immunogenicity (42) and lower suppressive function if compared 
with cultured ASC of BMSC. Analysis of cytokine production 
(Figure 6) revealed a significant upregulation of IL7 by s.c.ASC 
and BMSC which plays an important role in T  cell inhibition, 
as reported earlier (50). Co cultures with o.ASC did not reach 
significantly higher levels of IL7. IL6 is a well described to be 
upregulated in cocultures of MSC and PBMC and to play an 
immunoregulatory role (51); our findings confirm an upregula
tion with all three types of MSC tested. The primary finding 
was that there were slight differences in the cytokine profile of 
MLR between the three cell types, but markers IL6, IL10, IFN γ, 
TNF α, HGF, and VEGF were at comparable levels, pointing out 
similar mechanisms.

We were able to show no significant difference in transwell 
cocultures, avoiding cell contact between responder cells and 
modulating MSCs. This was an important concept to prove, as 
recent studies demonstrated that MSCs after intravenous injec
tion may become trapped in the microvasculature of the lung and 
were not present anymore after 24 h. The same group postulated 
that the immunomodulating effect might be triggered through 
phagocytosis by monocytes (52). However, the complex in vivo 
mechanisms can only be partially mimicked by a transwell 
culture.

Limitations of this study were the in vitro design of the experi
ments and therefore the relative translatability of the results. 
Further in vivo studies will be necessary to confirm the described 
results in a VCA transplant setting.

We demonstrated a synergistic effect of MSCs (Figure 7) from 
different compartments if added combined coculture systems. 
In VCA, donor bone marrow MSCs have been used in a clinical 
scenario for immunomodulation and showed promising results 
(14). Our findings are of great importance given the fact that 
suppression in all in  vitro assays was dose dependent and the 
possibility to combine ASC and BMSC for immunomodulation 
would be a new approach to increase cell yields for cytotherapy. 
This was only possible since we combined MSC from different 
compartments, but from the same individual. In addition, 
recipientderived ASCs retrieved by liposuction, may be used 
for repetitive cytotherapy to expand the therapeutic effect, as our 
group proposed recently (26).
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