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Pyroptosis, as a novel identified programmed cell death, is closely correlated with tumor immunity and shows potential roles in
cancer treatment. Discerning a pyroptosis-related gene signature and its correlations with tumor immune microenvironment is
critical in head and neck squamous cell carcinoma (HNSCC). Transcriptome data and corresponding clinical data were
downloaded from TCGA and GEO databases. Tumor mutation burden (TMB) data were obtained from TCGA database. Firstly,
univariate and least absolute shrinkage and selection operator (LASSO) regression analyses were used to construct a six
pyroptosis-related gene signature. Kaplan–Meier analysis, receiver operating characteristic (ROC) curves, and principal com-
ponent analysis (PCA) results verified that the risk model has good performance in predicting the survival. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the pyroptosis-related gene signature was immune
related. Finally, the immune landscape and immunotherapy sensitivity prediction capabilities of the risk model were further
explored.1ere were close correlations between the overall survival (OS) and various immune cells and immune functions. Single-
sample gene set enrichment analysis (ssGSEA) showed that high risk group had decreased expression of various immune cells and
lower activities of immune functions. Meanwhile, tumormutation burden (TMB) data combining risk score could well predict the
OS of HNSCC patients. However, tumor immune dysfunction and exclusion (TIDE) analysis revealed that there was no significant
difference in the sensitivity to immunotherapies between high and low risk groups. Finally, a nomogram based on risk score and
clinicopathological parameters was constructed. And, the risk model demonstrated better sensitivity and specificity than TIDE
scores and T-cell-inflamed signature (TIS). In conclusion, although the risk model could not well predict the immune escape and
response to immunotherapies, the signature established by pyroptosis-related genes, with better sensitivity and specificity than
TIDE scores and TIS signature, could be used for predicting prognosis and immune status of HNSCC patients.

1. Introduction

Head and neck cancer, including tumors originated from
oral cavity, nasopharynx, oropharynx, hypopharynx, larynx,
and tongue, accounts for more than 830,000 newly di-
agnosed cases worldwide [1]. Approximately 90% of head
and neck cancers are head and neck squamous cell carci-
noma (HNSCC). 1e primary treatment strategies for
HNSCC include surgery, radiotherapy, and chemotherapy.
1e 5-year survival rate is approximately 50–60% due to the

high heterogeneity of HNSCC [2, 3]. Recently, immune
checkpoint inhibitors (ICIs), such as anti-PD1/PD-L1 and
anticytotoxic T lymphocyte antigen 4 (CTLA-4), have been
applied in tumor treatment [4]. However, only a small
population of patients could respond to PD-1/PD-L1 an-
tibodies [5, 6]. 1us, identifying biomarkers that could be
used as prognostic factors and treatment targets is an urgent
need in HNSCC.

Pyroptosis, also known as caspase 1-dependent pro-
grammed cell death, has gained a lot of attentions
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recently. Pyroptosis could be triggered by microbial in-
fection and noninfectious stimuli, such as cancers [7].
Pyroptosis is morphologically and mechanistically dis-
tinct from other forms of cell death, which is characterized
by cell swelling, rapid plasma membrane rupture, and
release of proinflammatory cytokines [8, 9]. 1e biological
functions of pyroptosis in the tumor process are still
controversial. On the one hand, as a lytic form of pro-
grammed cell death, pyroptosis could mediate tumor cell
killing [10, 11]. On the other hand, as a form of proin-
flammatory death, pyroptosis could promote tumor
growth by forming a suitable tumor growth microenvi-
ronment [12]. Multiple pyroptosis-related genes have
been identified in various malignancies, including head
and neck cancer. GSDME-mediated pyroptosis promoted
the cytotoxicity of triptolide against head and neck cancer
cells [13]. NLRP3 inflammasome was involved in
pyroptosis activation of HNSCC cells [14]. However, the
roles of pyroptosis related genes in predicting the survival
of HNSCC patients are still largely unknown.

Chemotherapy and targeted therapy could eliminate
tumor cells by inducing the pyroptosis of tumor cells
[15, 16]. And induction of pyroptosis has been viewed as
a potential cancer treatment strategy [13]. Moreover,
pyroptosis could mediate tumor regression by initiating
antitumor immunity [17]. However, the therapeutic roles of
pyroptosis in HSCC still need to be elucidated.

In this study, we firstly establish a pyroptosis gene
signature for the prediction of OS in HSNCC. Secondly, the
performance and biological functions of the risk model were
further investigated. Moreover, the associations with im-
mune microenvironment and immunotherapy responses
were explored. Finally, a nomogram was established to
predict the OS of patients with HNSCC.

2. Materials and Methods

2.1. Data Download and Processing. RNA-sequencing data
and corresponding clinical data were downloaded from the
TCGA database (https://tcga-data.nci.nih.gov/tcga/) and the
NCBI Gene Expression Omnibus (GEO) database. 1e
accession number of GEO data was GSE65858, and the data
platform number was GPL10558. TCGA-HNSCC cohort
included 44 normal tissues and 502 HNSCC tumor tissues.
GSE65858 contained RNA-sequencing data and complete
clinical information of 270 HNSCC patients. All data were
obtained from online public sources. 1us, ethical approval
was not required.

2.2. Identification of Pyroptosis-Related Genes. A list of 52
pyroptosis genes was prepared by screening published lit-
eratures [17–20]. 1e expression of pyroptosis genes was
retrieved using “limma” package in R software. Differentially
expressed pyroptosis-related genes with significant differ-
ences were compared between normal tissues and HNSCC
tumor tissues with P< 0.05. Differentially expressed
pyroptosis genes were visualized using a heatmap by uti-
lizing “pheatmap” package in R software.

Protein-protein interaction (PPI) network of these dif-
ferentially expressed pyroptosis-related genes was con-
structed using Search Tool for Recurring Instances of
Neighbouring Genes (STRING) database (https://string-
preview.org/). 1e correlations between these differentially
expressed pyroptosis genes were visualized using “igraph”
and “reshape2” packages in R software.

2.3. Consensus Clustering Analysis. Patients were classified
into different groups based on the best k-means clustering by
using the ConsensusClusterPlus R package. Cluster con-
sistency clustering analysis was based on the expression of 6
pyroptosis-associated genes by setting the cluster variables
(k) set from 2 to 10.

Kaplan–Meier survival analysis between different clus-
ters was performed by using “survival” and “survminer”
packages in R software. 1e correlations of different clusters
with clinical parameters (Age, Gender, Grade, Stage, and T,
N, and M stages) were assessed and demonstrated by
a heatmap using “pheatmap” package.

2.4. Univariate Cox Regression Analysis. Pyroptosis genes
with prognostic values were identified using univariate cox
regression analysis with P< 0.05. Least absolute shrinkage
and selection operator (LASSO) regression analysis was used
to construct a risk model by using “glmnet” and “survival”
packages.

2.5. Performance of the Risk Model. Firstly, risk score was
calculated by the following formula: expression value of
gene1∗coefficient of gene1+. . .+Expression of gen-
eN∗coefficient of geneN. Coefficient of each gene was
generated from multivariate Cox regression. HNSCC pa-
tients were divided into high risk and low risk group by using
the median risk score as a cutoff.1e performance of the risk
model was evaluated using Kaplan–Meier survival analysis
and the area under curve (AUC) of the receiver operating
characteristic (ROC) curves. Kaplan–Meier survival analysis
was used to compare the survival rate between high risk and
low risk groups by using “survival” and “survminer”
packages in R software. And the ROC curves were drawn by
using “survival,” “survminer” and “timeROC” packages.
Moreover, the distributions of risk scores and survival
statuses were plotted by “pheatmap” package.

2.6. Principal Component Analysis (PCA). PCA with non-
linear methods was used to detect sample-to-sample het-
erogeneity by using “Rtsne” and “ggplot2” packages. 1e
performances of the risk model were verified in both TCGA
and GEO databases.

2.7. Independent Prognostic Value of the Risk Model.
Univariate and multivariate Cox regression analyses were
performed to determine the independent prognostic values
of risk score and clinical factors (Age, Gender, Grade, Stage,
and T, N, and M stages) using “survival” package. Clinical
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data were retrieved from both TCGA and GEO databases.
Moreover, a heatmap was used to evaluate the differences if
prognostic pyroptosis genes and risk scores in clinico-
pathological parameters by using “pheatmap” R package.

2.8. Gene Enrichment and Functional Annotation Analysis.
Firstly, differentially expressed genes between high risk and
low risk groups were identified by using “limma” package.
Gene functional enrichment analyses were explored using
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis. GO enrichment
analysis was carried out using “clusterProfiler”, “org.H-
s.eg.db,” “enrichplot,” and “ggplot2” R packages. KEGG
analysis was developed using “clusterProfiler”, “org.H-
s.eg.db,” “enrichplot,” and “ggplot2” R packages.

2.9. Immune Cells’ Infiltration and Immune Function.
CIBERSORTalgorithm was used to estimate the abundances
of various immune cell subsets in each sample. ESTIMATE
method was used to calculate the immune scores, stromal
scores, and estimate scores in TCGA-HNSCC cohort.
Kaplan–Meier survival analysis was used to predict the
prognostic values of various immune cells and immune
functions. Immune cells’ infiltration in different risk groups
was explored using the single-sample Gene Set Enrichment
Analysis (ssGSEA) based on the gene expression in TCGA-
HNSCC cohort and GEO database. 1ere were 16 types of
immune cells and 13 types of immune functions being
compared between high risk and low risk groups using
“reshape” and “ggpubr” packages.

2.10.Calculationof theTumorMutationBurden. 1e somatic
mutation data of HNSCC patients was downloaded and
retrieved from the TCGA database. HNSCC patients were
divided into high TMB and low TMB groups based on the
median counts of TMB. Kaplan–Meier survival analysis was
used to compare the survival rate between different groups
by using “survival” and “survminer” packages in R software.

2.11. Tumor Immune Dysfunction and Exclusion (TIDE)
Analysis. Data of tumor immune dysfunction and exclusion
(TIDE) was downloaded from http://tide.dfci.harvard.edu/.
TIDE could be used to validate the performance on pre-
dicting anti-PD1 and anti-CTLA4 responses. 1e correla-
tions of the risk model with the dysfunction of tumor
infiltrating cytotoxic T cells, exclusion of cytotoxic T cells by
immunosuppressive factors, microsatellite instability (MSI),
and TIDE prediction scores were assessed using “limma”
and “ggpubr” packages in R.

2.12. Construction and Validation of a Nomogram Model.
A nomogram model was constructed to comprehensively
assess the survival probability of HNSCC patients, in-
corporating clinical factors (Age, Gender, Grade, Stage, and
T, N, and M stages) and risk score. 1e predictive proba-
bilities for 1-, 3-, and 5-year clinical outcomes were depicted

by calibration curves. 1e sensitivity and specificity of the
nomogram model in predicting 1-, 3-, and 5-year survival
were determined using ROC curves. Moreover, the per-
formance of the risk model in predicting OS was compared
with TIDE scores and TIS signature using ROC curves.

Here, TIS signature is an 18-gene signature (CD3D,
IDO1, CIITA, CD3E, CCL5, GZMK, CD2, HLA-DRA,
CXCL13, IL2RG, NKG7, HLA-E, CXCR6, LAG3, TAGAP,
CXCL10, STAT1, and GZMB) that correlated with the re-
sponse to ICIs in malignancies [21, 22].

2.13. Statistical Analysis. All the data procession and sta-
tistical analyses were performed by using Perl software and R
programming language (version 4.1.0). In all data analyses,
a two-tailed P< 0.05 was considered statistically significant.

3. Results

3.1. Identification of Pyroptosis-Related Genes. Firstly, the
expression of 52 pyroptosis-related genes were retrieved
from the TCGA-HNSCC cohort. 1e expressions of these 52
pyroptosis-related genes were compared between 44 normal
tissues and 502 HNSCC tumor tissues. As shown in
Figure 1(a), there were 38 pyroptosis-related genes with
significant differences between normal tissues and tumor
tissues (P< 0.05). Seven pyroptosis-related genes (ELANE,
IL18, CHMP2B, CHMP4C, CASP9, CHMP6, and
CHMP2A) were downregulated in tumor tissues, while 31
pyroptosis-related genes were upregulated in tumor tissues
(Figure 1(a)). 1e interactions of these pyroptosis-related
genes were analyzed by protein-protein interaction (PPI)
network according to STRING database (Figure 1(b)).
Moreover, the coexpressed network of these pyroptosis
genes are visualized in Figure 1(c).

3.2. Patients Classification and Correlations with Clinical
Parameters. HNSCC patients were classified using the
consensus clustering analysis based on the differentially
expressed pyroptosis-related genes. As shown in Supple-
mentary Figure 1(a), when the k-value was 3, the HNSCC
patients could be well classified. Kaplan–Meier survival
analysis revealed that there were significant differences in the
overall survival of HNSCC patients (P � 0.002, Supple-
mentary Figure 1(b)). Cluster 1 demonstrated better OS than
cluster 2 and cluster 3, while cluster 3 exhibited poorer OS
than cluster 1 and cluster 2. Moreover, the correlations
between the gene expression profiles and variable clinical
parameters (Age, Gender, Grade, Stage, and T, N, and M
stages) were further studied. 1e results were depicted in
a heatmap, where there were significant differences in Grade
(P< 0.05) and Gender (P< 0.05) between different clusters
(Supplementary Figure 1(c)).

3.3. Construction and Validation of a Pyroptosis-Related
Prognostic Signature. We next constructed a prognostic
signature by using univariate Cox regression analysis and
LASSO analysis. As shown in Figure 2(a), there were 6 genes
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Figure 1: Identification of pyroptosis-related genes in HNSCC. Data were retrieved from the TCGA-HNSC database. (a) A heatmap of
differentially expressed pyroptosis-related genes between normal tissues and HNSCC tumor tissues. (b) PPI network shows the interactions
of the differentially expressed pyroptosis-related genes. (c)1e correlation network of the differentially expressed pyroptosis genes. Red line
represents positive correlation, while blue line represents negative correlation.
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that demonstrated prognostic values according to univariate
Cox regression analysis (P< 0.05). Here, BAK1 (P � 0.035,
HR: 1.278 (1.017–1.605)), GSDME (P � 0.022, HR: 1.213
(1.028–1.430)), and IL1A (P � 0.022, HR: 1.111
(1.015–1.217)) were poor prognostic pyroptosis-related
genes, while CHMP7 (P � 0.039, HR: 0.690 (0.485–0.982)),
GZMB (P � 0.006, HR: 0.848 (0.754–0.955)), and NLRP1
(P � 0.005, HR: 0.692 (0.537–0.892)) were good prognostic
pyroptosis-related genes.

LASSO regression analysis was performed to verify the
risk model. 1e corresponding LASSO coefficient profiles
and a partial likelihood deviation plot are shown in Fig-
ures 2(b) and 2(c), respectively.

3.4. Validation of the Pyroptosis-Related Gene Prognostic
Signature. HNSCC patients were divided into high risk and
low risk groups based on the median value of the risk scores.
Survival data were retrieved from both TCGA and GEO
databases. TCGA-HNSCC data showed that patients in high
risk group demonstrated poorer overall survival than low
risk group (Figure 3(a), P< 0.001). 1e sensitivity and
specificity of the prognostic model were evaluated by time-
dependent receiver operating characteristic (ROC) analysis
and principal component analysis (PCA). As shown in
Figure 3(b), the area under curve (AUC) values were 0.636
for 1-year, 0.631 for 3-year, and 0.600 for 5-year survival,
respectively. 1e risk scores distribution and survival status
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Figure 2: Construction of a pyroptosis-related risk model. (a) A forest map depicting 6 differentially expressed pyroptosis genes identified
by univariate Cox regression analysis. (b and c) LASSO regressing analysis of hub pyroptosis-related genes. (b) LASSO coefficient profiles of
the 6 prognostic pyroptosis genes. (c) Cross-validation for tuning the parameter in the LASSO regression.
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Figure 3: Continued.

6 Journal of Oncology



distribution between high risk and low risk groups are
shown in Figures 3(c) and 3(d). 1e principal component
analysis (PCA) results also demonstrated that the patients
could be well classified by the risk scores (Figures 3(e) and
3(f)).

GEO data also confirmed the prognostic significance
of the signature. As shown in Figure 3(g), there was
significant difference in the overall survival time between
the high risk and low risk groups (Figure 3(g), P< 0.001).
Moreover, the AUC of time-dependent ROC curves at 1,
3, and 5 years were 0.610, 0.594, and 0.580, respectively
(Figure 3(h)). And the distributions of risk scores, survival
status, and PCA results of the risk model are shown in
Figures 3(i)–3(l).

3.5. Prognostic Significance of the RiskModel. Moreover, the
prognostic significance of the risk score was assessed
using univariate and multivariate Cox regression ana-
lyses. Data retrieved from the TCGA database showed
that Age (P � 0.007), T (P � 0.010), N (P � 0.001), and
risk score (P< 0.001) were independent prognostic fac-
tors for HNSCC patients (Figures 4(a) and 4(b)). Data
retrieved from GEO database also verified that Age
(P � 0.012), T (P � 0.022), N (P � 0.034), and risk score
(P � 0.015) were independent prognostic factors
(Figures 4(c) and 4(d)).

Moreover, a heatmap depicted the correlations
between the pyroptosis-related genes and risk scores. As
shown in Figure 4(e), BAK1, GSDME, and IL1A were
high-risk genes, while CHMP7, GZMB, and NLRP1
were low-risk genes. Moreover, there were significant
differences in Grade between high risk and low risk
groups.

3.6. Functional Enrichment Analysis of the Pyroptosis Gene
Signature. We next explored the biological functions
and signaling pathways underlying the risk model by
using Gene Ontology (GO) enrichment analysis and
Kyoto.

Encyclopedia of Genes and Genomes (KEGG) Pathway
Analyses. To begin with these studies, we firstly extracted 20
differentially expressed genes between high risk and low risk
groups based on the TCGA database. GO enrichment
analysis consisted of biological processes (BPs), molecular
functions (MFs), and cellular components (CCs). GO results
revealed that the functions of risk model were immune
related (Figure 5(a)). KEGG results showed that the un-
derlying signaling pathways included cytokine-cytokine
receptor interaction and chemokine signaling pathway, and
so on (Figure 5(b)).

3.7. ImmuneLandscape ofHNSCC. 1e immune landscape
of HNSCC was analyzed using CIBERSORT algorithm.
As shown in Figure 6(a), a barplot showed the in-
filtration of various immune cells. Next, the correla-
tions between infiltrating immune cells and overall
survival of HNSCC patients were analyzed by
Kaplan–Meier survival curve. 1e high infiltration of
aDC (Figure 6(b)), B cells (Figure 6(c)), DCs
(Figure 6(d)), iDCs (Figure 6(e)), Mast cells
(Figure 6(f )), neutrophils (Figure 6(g)), NK cells
(Figure 6(h)), pDCs (Figure 6(i)), T helper cells
(Figure 6(j)), Tfh cells (Figure 6(k)), 11 cells
(Figure 6(l)), 12 cells (Figure 6(m)), TIL (Figure 6(n)),
and Treg (Figure 6(o)) was positively correlated with
better OS, whereas the high infiltration of macrophages
could predict poor OS (Figure 6(p)).
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Figure 3: Performance of the risk model based on TCGA database. RNA-sequencing data and corresponding clinical data were downloaded
from the TCGA database (a–f) and GEO database (g–l). (a) Kaplan–Meier survival analysis showed that the overall survival time of high risk
group was shorter than that of low risk group. (b) 1e ROC curve of measuring the predictive value of the risk model. (c) Risk score
distributions of each patient. (d) Survival status distribution of each patient. (e) PCA could separate pyroptosis-related genes in TCGA
database. (F) tSNE results of the risk scores. (g) 1e overall survival time of high risk group was shorter than the low risk group based on
Kaplan–Meier survival analysis. (h) Time-dependent ROC curves for 1-year, 3-year, and 5-year survival. (i) Distribution of risk score of
HNSCC. (j) Survival status of each patient. (k) PCA plot for risk scores. (l) tSNE results of the risk scores.
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We next studied the prognostic significances of immune
functions in HNSCC. As shown in Figure 7, high activities of
CCR (Figure 7(a), P � 0.004), checkpoint (Figure 7(b),
P � 0.003), cytolytic activity (Figure 7(c), P< 0.001), HLA
(Figure 7(d), P � 0.031), inflammation-promoting
(Figure 7(e), P � 0.003), MHC class I (Figure 7(f),
P � 0.050), T cells’ coinhibition (Figure 7(g), P � 0.004),
T cells’ costimulation (Figure 7(h), P< 0.001), and type II
IFN response (Figure 7(i), P � 0.031) were significantly
correlated with better OS of cancer patients.

3.8. Immune Significance of the Pyroptosis Gene Signature.
Single-sample gene set enrichment analysis (ssGSEA) was
employed to assess tumor immune-cells’ infiltration and im-
mune functions between high risk and low risk groups in both
TCGA andGEOdatabases. In the TCGA-HNSCC cohort, high
risk group demonstrated generally lower levels of 16 types of
immune cells (Figure 8(a)). Meanwhile, high risk group also
demonstrated lower activity of 10 kinds of immune functions,
such as APC coinhibition, APC costimulation, CCR (che-
mokine and chemokine receptor), checkpoint, and so on
(Figure 8(b)). Similar results were generated from the GEO

database. 1e infiltration of 16 types of immune cells and 11
kinds of immune functions was lower in high risk group than
that in low risk group (Figures 8(c) and 8(d)).

Moreover, the correlations between the prognostic
pyroptosis-related genes and various immune cells are
summarized in Figure 8(e). Here, red color represents positive
correlation, while blue color represents negative correlation.

3.9. Significance of Pyroptosis-Related Gene Signature in
Immunotherapy. We next studied whether pyroptosis-related
gene signature could contribute to clinical benefit of immune
checkpoint inhibitor treatment. TIDE analysis showed that
there were no significant differences in dysfunction of tumor-
infiltrating cytotoxic Tcells (A), exclusion of cytotoxic Tcells by
immunosuppressive factors (B), microsatellite instability (MSI)
(C), and TIDE prediction scores (D) between high and low risk
groups (Supplementary Figure 2).

3.10. Prognostic Values of the Risk Model Combined with the
TMB. After calculating the TMB values, the HNSCC patients
were classified into high-TMB and low-TMB groups based on
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Figure 6: Immune cells infiltrating of HNSCC tumor immune microenvironment. Data were downloaded from the TCGA database. (a) A
barplot shows the abundances of various immune cells in each sample. Kaplan–Meier curves of prognostic immune cells. OS curves for aDC
(b), B cells (c), DCs (d), iDCs (e), Mast cells (f ), neutrophils (g), NK cells (h), pDCs (I), T-helper cells (j), Tfh cells (k), 11 cells (l), 12 cells
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Journal of Oncology 11



the median value of TMB. Kaplan–Meier (K-M) survival
analysis with log-rank tests indicated that the low-TMB group
demonstrated better OS than high-TMB group (Figure 9(a),
P � 0.004).

We next combined the risk score and TMB to predict the
survival of HNSCC patients. As shown in Figure 9(b), high
TMB and high risk predicted the worst OS, while low-TMB
and low risk group demonstrated the best prognosis. 1ese

results indicated that risk score and TMB could be utilized
simultaneously for predicting patient prognoses.

3.11. Construction of a Prediction Nomogram. Moreover,
a nomogram was constructed for predicting the prognosis of
HNSCC patients by combining the 6 pyroptosis-related gene
signature and conventional clinical parameters, including
Age, Gender, Grade, Stage, and T, N, and M stages
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Figure 7: Immune functions of HNSCC tumor immunemicroenvironment. Data were downloaded from the TCGA database. High activity
of CR (a), checkpoint (b), cytolytic activity (c), HLA (d), inflammation-promoting (e), MHC class I (f ), T cells’ coinhibition (g), T cells’
costimulation (h), and type II IFN response (i) were positively correlated with OS of HNSCC patients.
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Figure 8: Continued.
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(Figure 10(a)). 1e performance of the nomogram was
assessed using AUC index of ROC analysis and calibration
curve. 1e AUCs of nomogram model for predicting 1-, 3-,
and 5-year overall survival rates were 0.677, 0.738, and 0.744,
respectively (Figure 10(b)). Calibration curve for the prob-
ability of 1-, 3-, and 5-year OS demonstrated good consistency
between the actual observed survival and the nomogram-
based prediction (Figure 10(c)). What is more, the predictive
capabilities of risk score, TIDE, and TIS were 0.719, 0.509, and

0.481, respectively, indicating that the pyroptosis-related gene
signature has better sensitivity and specificity in predicting the
OS of HNSCC patients (Figure 10(d)).

4. Discussion

Pyroptosis was reported to be involved in the tumor pro-
gression and demonstrated great potential in cancer treat-
ment [23]. As a form of programmed necrotic cell death,
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Figure 9: 1e prognostic significance of TMB combined risk score in HNSCC patients. (a) Kaplan–Meier survival analysis of the TMB in
predicting the survival of HNSCC patients. (b) Kaplan–Meier survival analysis showed the prognostic values of TMB combined risk score.
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pyroptosis was like a double-edged sword in malignancies
[10–12]. On the one hand, pyroptosis could kill the tumor
cells and mediate tumor regression [10, 11]. On the other
hand, pyroptosis could modify the tumor microenviron-
ment to promote tumor growth [12]. 1e effects of
pyroptosis on the biological functions of tumor cells
depended on various pyroptosis-related genes. Moreover,
the expression of pyroptosis-related genes were correlated
with the survival of some cancer patients, including ovarian
cancer [24], lung adenocarcinoma [25], skin cutaneous
melanoma [20], gastric cancer [26], and laryngeal squamous
cell carcinoma [27]. However, the expression and prognostic
values of pyroptosis-related genes in HNSCC still need to be
comprehensively elucidated.

Here, a list of pyroptosis-related genes was retrieved by
literature searching, which includes 52 pyroptosis-related
genes. And thirty-eight out of 52 pyroptosis-related genes were
differentially expressed between normal tissues and HNSCC
tumor tissues. 1ree clusters, divided by consensus clustering
analysis, demonstrated significant differences in the OS of
HNSCC patients, as well as other clinical factors including
gender and grade. What is more, univariate Cox regression
analysis and LASSO Cox analysis were performed to construct
a pyroptosis-related gene prognostic signature.1e risk model
was consisted of 6 pyroptosis-related genes, including BAK1,
GSDME, IL1A, CHMP7, GZMB, and NLRP1. Most of these
six prognostic pyroptosis-related genes were once reported to
be correlated with the progression and prognosis of cancer
patients. BAX1, also known as autophagy-related gene and
apoptosis signaling molecule, could predict the survival of
head and neck cancer [28–30]. Pan-cancer analysis revealed
that GSDME was highly expressed in most malignancies and
significantly correlated with patients’ survival [31]. Ibrahim
et al. identified GSDME as a promising biomarker in the
detection of colorectal cancer [32]. IL1A, as a proinflammatory

cytokine, was upregulated in many types of cancers, such as
breast cancer and lung cancer [33, 34]. Induction of IL1A
could promote proliferation, angiogenesis, and metastasis of
tumor cells [33]. You et al. found that abnormal IL1A ex-
pression was correlated with poor prognosis of triple negative
breast cancer [35]. CHMP7, as a ESCRT-III-related protein,
was related to nuclear envelope reformation [36]. CHMP7 was
identified as a prognostic biomarker in gastric cancer [37].
Granzyme B (GZMB), as an inflammatory gene and cytotoxic
gene, participated in immune response and tumor cell killing.
GZMB was identified as a progression biomarker in basal-like
breast cancer [38]. NLR family, pyrin domain containing 1
(NLRPL) could form inflammasome and was involved in
immune responses and cell death [39]. Low expression of
NLRP1 was correlated with poor overall survival in lung
adenocarcinoma [25, 40]. 1e expression and prognostic
significance of most of these prognostic pyroptosis-related
genes have never been reported in HNSCC. In this study, all
these genes were significantly correlated with the OS of
HNSCCpatients.Multiple genes riskmodel usually performed
better sensitivity and specificity than single gene in predicting
OS, as single gene usually showed lower sensitivity and
specificity based on ROC analysis. Here, our risk model
demonstrated good performance according to data generated
from TCGA and GEO database. High risk group had a sig-
nificantly poorer overall survival than the low risk group.
Univariate and multivariate Cox regression analyses further
verified that the risk score could be used as an independent
prognostic factor for HNSCC patients.

We next explored the potential functional enrichment of
the pyroptosis-related gene signature. GO and KEGG an-
alyses indicated that the risk model was mainly involved in
immune responses, cytokine activity, and chemokine and
chemokine receptor activity.1ese results strongly indicated
that pyroptosis exhibited a significant correlation with
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Figure 10: Construction of a nomogram. (a) Nomogram predicting the OS of HNSCC patients. (b) Time-dependent ROC curves for the
nomogram in predicting the OS. (c) 1e calibration curves for predicting patients’ OS at 1, 3, and 5 years. (d) Time-dependent ROC curves
for risk model. TIDE scores and TIS signature in predicting the OS of HNSCC patients.
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immune microenvironment. CIBERSORT estimation
results showed the abundance of immune cells in-
filtration and immune functions in the tumor micro-
environment of HNSCC. Indeed, previous studies have
indicated that there were close correlations between
pyroptosis and immune response and immune cells in-
filtration. Pyroptosis could stimulate effective immune
responses. Wang et al. found that nanoparticle-conjugated
gasdermin could sensitize 4T1 tumor cells to anti-PD-1
therapy strategy [16]. 1e expression of Gasdermin E
(GSDME) was linked with the cancer-associated fibroblast
infiltration in multiple malignancies [31]. Increased ex-
pression of GZMB was connected with high numbers of
mutations in non-small-cell lung cancer [41]. Diminished
expression of GZMB was associated with higher PD-1, PD-
L1, LAG-3, and TIM-3 expression in invasive bladder
cancer [42]. 1e expression of NLRP1 was positively
correlated with the degree of tumor-infiltrating immune
cells in lung adenocarcinoma. Accordingly, both TCGA
and GEO data revealed that there were significant differ-
ences in the immune cells infiltration and immune func-
tions between the high risk and low risk groups. High risk
group demonstrated decreased expression of immune cells
and repressed activities of immune functions. All the
prognostic pyroptosis-related genes were significantly
correlated with the infiltration of both positive and negative
immune cells, such as Tregs, macrophage M0, macrophage
M1, macrophageM2, CD8+Tcells, and so on. All these data
strongly indicated that our pyroptosis related risk model
was associated with the tumor immune microenvironment.
However, there were no significant differences in tumor
immune dysfunction and exclusion between high and low
risk groups. Even ICIs targeting PD-1, such as Nivolumab
and Pembrolizumab, have been approved in the treatment
of HNSCC [4, 43]. About 70% of HNSCC patients failed to
benefit from ICIs [43]. Our data partially explained the low
response rate to ICI in HNSCC. What is more, the im-
mune-related mechanisms underlying pyroptosis might
not be PD-1/PD-L1 or CTLA-4 related. 1ere must be
other immune-related mechanisms that needed to be
further elucidated. Finally, a novel HNSCC nomogram was
constructed according to the risk score and clinical pa-
rameters. AUC values and calibration curves demonstrated
good predictive ability. Meanwhile, the sensitivity and
specificity of the risk model were much better than TIDE
score and TIS signature.

Intensive studies have shown that HNSCC exhibited
enormous tumor heterogeneity, leading to different
clinicopathological characters and therapeutic responses
based on different tumor regions, distinct mutational
profiles, and variable molecular characters [44]. 1e main
limitation of this study was that we constructed the
pyroptosis gene signature to predict OS and immune
response incorporated all HNSCC patients without
considering tumor heterogeneity. It is worthwhile to
further explore the relationships between pyroptosis
genes and various phenotypes of HNSCC, exploring their
potential clinical applications to target different types of
HNSCC patients.

5. Conclusion

In conclusion, our study provided a novel model for pre-
dicting the survival of HNSCC. 1is model showed good
correlations with tumor immune microenvironment.
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