
Citation: Qian, Y.; Itzel, T.; Ebert, M.;

Teufel, A. Deep View of HCC Gene

Expression Signatures and Their

Comparison with Other Cancers.

Cancers 2022, 14, 4322. https://

doi.org/10.3390/cancers14174322

Academic Editor: David A. Geller

Received: 15 July 2022

Accepted: 1 September 2022

Published: 3 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Deep View of HCC Gene Expression Signatures and Their
Comparison with Other Cancers
Yuquan Qian 1 , Timo Itzel 1, Matthias Ebert 2,3 and Andreas Teufel 1,3,*

1 Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim,
Heidelberg University, 68167 Mannheim, Germany

2 Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
3 Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health

Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
* Correspondence: andreas.teufel@medma.uni-heidelberg.de; Tel.: +49-(0)621-383-4983; Fax: +49-(0)621-383-1467

Simple Summary: There is a huge gap between the numerous HCC gene signatures and the fact
that no one HCC signature has successfully entered clinical practice. The purpose of this study is to
explore the specificity of public signatures to HCC as this may be critical for clinical application. For
this, we evaluated public HCC signatures using a comparative transcriptomics profiling approach
and showed that specificity of current HCC signatures remains challenging, demonstrating the need
of standards in gene signature generation and tissue/RNA preparation.

Abstract: Background: Gene expression signatures correlate genetic alterations with specific clinical
features, providing the potential for clinical usage. A plethora of HCC-dependent gene signatures
have been developed in the last two decades. However, none of them has made its way into clinical
practice. Thus, we investigated the specificity of public gene signatures to HCC by establishing a
comparative transcriptomic analysis, as this may be essential for clinical applications. Methods: We
collected 10 public HCC gene signatures and evaluated them by utilizing four different (commercial
and non-commercial) gene expression profile comparison tools: Oncomine Premium, SigCom LINCS,
ProfileChaser (modified version), and GENEVA, which can assign similar pre-analyzed profiles of
patients with tumors or cancer cell lines to our gene signatures of interests. Among the query results of
each tool, different cancer entities were screened. In addition, seven breast and colorectal cancer gene
signatures were included in order to further challenge tumor specificity of gene expression signatures.
Results: Although the specificity of the evaluated HCC gene signatures varied considerably, none
of the gene signatures showed strict specificity to HCC. All gene signatures exhibited potential
significant specificity to other cancers, particularly for colorectal and breast cancer. Since signature
specificity proved challenging, we furthermore investigated common core genes and overlapping
enriched pathways among all gene signatures, which, however, showed no or only very little overlap,
respectively. Conclusion: Our study demonstrates that specificity, independent validation, and clinical
use of HCC genetic signatures solely relying on gene expression remains challenging. Furthermore,
our work made clear that standards in signature generation and statistical methods but potentially
also in tissue preparation are urgently needed.

Keywords: prognostic; gene expression signatures; hepatocellular carcinoma; specificity; signature
generation

1. Introduction

Liver cancer is one of the most frequent, and the fourth most lethal, cancer around the
globe [1]. Hepatocellular carcinoma (HCC) is the most common primary hepatic malignant
tumor and accounts for more than 80% of all liver cancers worldwide. Despite the ad-
vances in therapy, patients with HCC still have poor outcome, especially those at advanced
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stages [2]. Therefore, early diagnosis and risk stratification of prognosis are of great signifi-
cance for patients with liver cancer, and initiating effective treatment expeditiously may
efficiently improve their prognosis [3]. Unfortunately, real-world utilization of biomarkers
to predict clinical outcome of HCC patients by precise classification and specific clinical
decision-making remains urgent but still lacking.

In the past two decades, the relevant research communities have made great strides
in microarray, high-throughput, and multi-omics technologies. One of the most widely
adopted applications of these technologies is to generate a large number of cancer gene
expression-associated signatures, including HCC gene signatures [4,5]. Plenty of HCC prog-
nostic gene expression signatures have been described. As one of the pioneering examples,
Lee et al. analyzed gene expression profiling data of 91 HCC patients and identified two dis-
tinctive subclasses that are highly associated with the survival of patients [6]. Subsequently
multiple signatures were reported to be associated with survival [7,8], recurrence [9,10],
metastasis [11], and other clinical parameters.

However, even though HCC gene signatures have been studied extensively, none of the
published HCC-dependent genetic signatures have entered clinical practice. This is an issue
that also remains challenging in other cancer entities, e.g., breast cancer (BC) and colorectal
cancer (CRC) [5]. Although many authors addressed the robustness and sensitivity of their
molecular-based HCC biomarkers when identifying these gene signatures, they mostly
did not widely evaluate the specificity of HCC gene signatures, which is also a crucial
aspect of applying HCC gene signatures into clinical routines. In this study, mainly by
using four public and commercial gene expression comparison tools, we aimed to explore
the specificity of HCC gene signatures, compared it with gene signatures of other cancer
entities, and aimed to investigate the difficulties associated with these approaches.

2. Material and Methods
2.1. Selection of HCC Gene Expression Signatures

To select and evaluate the available HCC gene signatures, we first performed litera-
ture searches via NCBI PubMed and Google Scholar with the following terms of “gene
expression signature” AND “liver cancer” OR “HCC”. Subsequently, we reviewed and
evaluated the retrieved articles and considered those gene signatures derived from mRNA
expression profiling studies. In this manuscript, we used primarily gene signatures for
which fold-change values of differential expression analysis were available in the published
articles according to the requirements of ProfileChaser. As a result, 10 HCC gene signatures
were selected for our follow-up study and they are all related to prognosis. The workflow
of this study is presented in Figure 1.

2.2. ProfileChaser Analysis

The publicly available webtool ProfileChaser allows for mining pre-analyzed Gene
Expression Omnibus (GEO) profiles for similar differentially regulated transcriptional pro-
grams [12]. As the default setting for querying is to use an existing GEO Dataset or upload
a dataset, we modified ProfileChaser in order to be able to upload gene sets/signatures
directly and have ProfileChaser assign similar pre-analyzed profiles to our signatures of
interests. Those results with a q-value < 0.05 were screened for different cancer categories.

2.3. Oncomine Concept Association Analysis

In addition, we used the commercialized platform Oncomine, which provides several
standardized bioinformatics analysis functions including differential expression analysis,
co-expression analysis, and outlier analysis [13]. Gene signatures can be handled as con-
cepts, which are defined as sets of genes representing some biological characteristics in
the Oncomine Research Premium Edition. We uploaded our selected HCC, BC, and CRC
gene signatures to Oncomine as different concepts, and performed association analysis by
comparing them to all other pre-extracted concepts in Oncomine. The threshold odds ratio
and p-value were set to 3 and 0.0001, respectively, defining even more stringent searches
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compared to standard parameters. The gene expression comparison was derived from
cancer tissue and normal tissue. Like in ProfileChaser, different cancer categories and the
number of matched datasets were counted from the results.

Figure 1. Workflow of this study. FC: fold change.

2.4. GENEVA Gene Signature Query

GENEVA (https://genevatool.org/ (accessed on 24 June 2021)) is short for Gene
Expression Variance Analysis, which enables users to query relevant RNA-seq datasets of a
gene or a gene signature by identifying the variance of gene expression [14]. The GENEVA
score compares the variance of a gene in combination of the regression coefficient based
on the experimental setting. To take the global variance of the data set into account, the
score is divided by the average variance of all genes. Therefore, we focused on the datasets
matched with a GENEVA score > 1 for each HCC gene signature. Same as before, we screen
different cancer entities in the results.

2.5. Sigcom LINCS Gene Signature Search

The signature-searchable platform Sigcom LINCS (https://maayanlab.cloud/sigcom-
lincs/#/SignatureSearch/UpDown (accessed on 18 June 2021)) contains 1,536,533 gene
expression signatures integrated from the Library of Integrated Network-Based Cellular
Signatures (LINCS), the Genotype-Tissue Expression (GTEx), and GEO [15]. Up-down
enrichment mode was adopted for signature enrichment analysis, and then different cancer
entities were screened in the automatic human GEO RNA-seq signature mimickers, namely
matching signatures with a positive z-score (enrichment score).

2.6. Core Genes and Pathways Identification

To explore whether HCC gene signatures have common core genes, we first con-
structed a protein-protein interaction (PPI) network of each HCC gene signature using the
STRING database, and then identified hub genes via the plug-in cytohubba of Cytoscape
software (version 3.8.2, Cytoscape Team). Finally, we checked if there are any overlapping
genes between those core genes of each HCC gene signature.

https://genevatool.org/
https://maayanlab.cloud/sigcom-lincs/#/SignatureSearch/UpDown
https://maayanlab.cloud/sigcom-lincs/#/SignatureSearch/UpDown
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Kyoto Encyclopaedia of Gene and Genomes (KEGG) and Reactome pathway enrich-
ment analyses were performed together by using WebGestalt (http://www.webgestalt.org
(accessed on 1 August 2021)). We adopted Over-Representation Analysis as the method
of interest, and selected protein-coding genome as the reference set when running We-
bgestalt. For each gene signature, we selected significant pathways with a false discovery
rate (FDR) <0.05 and the top 10 most significant pathways based on enrichment ratios, re-
spectively. Then, like core gene results, we compared the pathway results of gene signatures
with each other to figure out the common pathways.

2.7. Signature Generation Methods

Considering that HCC gene signatures were identified from different study groups
using varying platforms and applying different screening algorithms, we compared three
important and distinct aspects to analyze the methods of HCC gene signature derivation:
gene expression platform, algorithm to screen signature genes, and source of the samples.

3. Results
3.1. Selected HCC Signatures Based on ProfileChaser

After screening HCC gene signatures according to the requirement of applying Pro-
fileChaser, 10 HCC gene signatures including 2008 Coulouarn [16], 2009 Kaposi-Novak [17],
2010 Roessler [10], 2010 Woo [18], 2010 Andersen [19], 2012 Roessler [20], 2016 Villa [21],
2017 Chen [11], 2019 Guan [22], and 2020 Yi [23] were finally included in the study (Table 1).
These gene signatures were published between 2008 and 2020, and the number of genes
ranged from 5 to 625. The types of signatures are all prognostic gene signatures, including
survival, metastasis, recurrence, growth, and malignant transformation. The differential
analyses for the generation of these signatures are diverse, such as a comparison between
good survival group and poor survival group, HCC tumor tissue versus non-tumor tissue,
early-stage versus late-stage, and metastasis versus metastasis-free.

Table 1. Ten selected HCC gene signatures for validation.

Signature Clinical Outcome No. Genes Comparison

2008, Coulouarn [16] Survival 249 early vs. late
2009, Kaposi-Novak [17] Malignant Transformation 85 Dysplastic nodules vs. cirrhotic (regenerative) nodules
2010, Roessler [10] Metastasis, Recurrence 161 metastasis vs. metastasis-free
2010, Woo [18] Survival 625 cholangiocarcinoma-like HCC vs. other HCCs
2010, Andersen [19] Survival 110 poor prognosis vs. better prognosis
2012, Roessler [20] Survival 10 good survival vs. poor survival
2016, Villa [21] Growth, Survival 5 fast vs. slow growing tumors
2017, Chen [11] Metastasis 6 HCC tumor tissue vs. non-tumor tissues
2019, Guan [22] Survival 55 good prognostic group vs. poor prognostic group
2020, Yi [23] Survival 14 with vs. without vascular invasion

3.2. ProfileChaser and Oncomine Query Results of HCC Signatures

As for the query results of HCC gene signatures run in ProfileChaser, a web server was
used that allows for content-based gene expression search with a user-supplied experiment.
Half of these 10 gene signatures matched liver cancer profiles. In addition to liver cancer,
these five HCC signatures also matched other cancers, such as lung cancer, breast cancer,
and renal cancer. The remaining five signatures, 2009 Kaposi-Novak, 2010 Roessler, 2012
Roessler, 2016 Villa, and 2020 Yi, did not match any cancer profiles using ProfileChaser, no
matter liver cancer or other types of cancer. Among the matched cancer types, liver cancer,
renal cancer, colorectal cancer, and breast cancer were the most frequent (Table 2).

http://www.webgestalt.org
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Table 2. ProfileChaser and Oncomine results of HCC gene signatures.

2008, Coulouarn [16] 2009, Kaposi-Novak [17] 2010, Roessler [10] 2010, Woo [18] 2010, Andersen [19] 2012, Roessler [20] 2016, Villa [21] 2017, Chen [11] 2019, Guan [22] 2020, Yi [23]

On Pro On Pro On Pro On Pro On Pro On Pro On Pro On Pro On Pro On Pro

Liver 2 1 5 3 4 3 4 3 1 5 2
Lung 1 8 2
Colorectal 1 1 4 1 3 3 1
Breast 1 1 4 1 2 10 7
Kidney 1 3 1 4 1 2 4 4 1
Lymphoma 2 3 1
Leukemia 1 1 1
Sarcoma 1 2 1 4 4 1
Glioma 1
Esophageal 2 1 3
Cervical 1 1
Gastric 2 1 3
Head
and
Neck

1 1 1

Ovarian 1 1 1
Melanoma 1 1
Prostate 1 1 2
Pancreatic 1 1
Bladder 1 1 3
Other
Cancer 1 2 1 1 2

On: Oncomine, Pro: ProfileChaser.



Cancers 2022, 14, 4322 6 of 15

In Oncomine, HCC gene signatures matched more diverse cancer types and more
data sets. At least 18 cancer types including liver cancer were matched by these 10 HCC
gene signatures. Specifically, the 2009 Kaposi-Novak, 2010 Roessler, 2016 Villa, and 2020 Yi
signatures only matched only one cancer type or nothing. The other 6 HCC gene signatures
all matched 3–12 cancer types including liver cancer, colorectal cancer, renal cancer, breast
cancer, and sarcoma. Besides, we noted that not only cancer types but also more datasets
were fetched in Oncomine than in ProfileChaser. For example, 2019 Guan matched 5 liver
cancer profiles, 8 lung cancer profiles, 3 colorectal cancer profiles, 10 breast cancer profiles,
and 4 sarcomas profiles (Table 2).

3.3. GENEVA and Sigcom LINCS Query Results of HCC Signatures

The query results of yet two additional, publically available profiling tools GENEVA
and Sigcom LINCS are presented in Table 3. Overall, the vast majority of HCC gene
signatures were found to exhibit rather universal significance across various cancer types
in either GENEVA or SigCom LINCS. Among them, six HCC gene signatures namely 2008
Coulouarn, 2010 Woo, 2010 Andersen, 2012 Roessler, 2019 Guan, and 2020 Yi retrieved liver
cancer and other cancers in both GENEVA and Sigcom LINCS. In addition, signatures 2009
Kaposi-Novak and 2010 Roessler only retrieved definite matches for human cancer entities
in SigCom LINCS, while 2016 Villa only obtained matches from GENEVA. Signature 2017
Chen did not see any matching cancer types in both GENEVA and SigCom LINCS.

3.4. Similarities and Differences of Query Results between the Four Bio-Tools

After integrating the results from the four profiling tools (Figure 2), we demonstrated
that all of the HCC gene signatures matched different cancer profiles in at least two
comparison tools, indicating that these HCC gene signatures are not specific enough for
HCC, especially the signatures distinguishing between good survival and poor survival
samples. From Tables 2 and 3, we observed that the most common types of cancers matched
are similar, including liver cancer, colorectal cancer, and breast cancer. We also found that
the tools that match liver cancer can basically match other cancers, and the similarity search
results for ProfileChaser and Oncomine are relatively similar, as are those for GENEVA
and Sigcom LINCS. Furthermore, we also found that four of five HCC gene signatures that
did not have any match in ProfileChaser, 2009 Kaposi-Novak, 2010 Roessler, 2016 Villa,
and 2020 Yi, also matched only one type of cancer or did not match any cancer entity in
Oncomine. In addition, HCC signatures in GENEVA and SigCom LINCS almost always
match a wide range of tumor types, if they can retrieve a match at all.

Certainly, the striking differences in the matching results of the four tools must be
highlighted. Not only the proportion of the 10 HCC gene signatures that successfully
screened for tumor expression profile matches varied across the four tools, but the tumor
types and datasets matches also differed drastically. In comparison with ProfileChaser,
Oncomine presented better mining of HCC gene signatures in terms of a matching rate of
90% (9/10) vs. 50% (5/10), as well as matching to more diverse cancer types and a wider
range of expression profiles. Moreover, at least five HCC gene signatures showed large
differences between GENEVA and SigCom LINCS runs in terms of whether they could
match to tumor entities and the numbers of matched tumor types.
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Table 3. GENEVA and Sigcom LINCS results of HCC gene signatures.

2008, Coulouarn [16] 2009, Kaposi-Novak [17] 2010, Roessler [10] 2010, Woo [18] 2010, Andersen [19] 2012, Roessler [20] 2016, Villa [21] 2017, Chen [11] 2019, Guan [22] 2020, Yi [23]

GE Sig GE Sig GE Sig GE Sig GE Sig GE Sig GE Sig GE Sig GE Sig GE Sig

Liver 7 6 2 2 20 9 9 9 3 4 4 18 8 9 5
Lung 2 1 1 2 3 7 3 7 2 3 6 2 3 2
Colorectal 5 2 1 3 4 3 6 3 3 5 3 2 4
Breast 4 7 7 1 5 8 9 17 11 10 18 8 5 4
Kidney 2 1 3 1 2 5 4 1 3 1 2
Lymphoma 1 1 4 6 1 1 1 1
Leukemia 2 5 1 8 1 21 3 6 9 4 2 2
Sarcoma 1 1 2 2 4 16 3 4 5 1 2
Glioma 1 1 2 2 7 4 4 2 3
Esophageal 1 1 2 1 1 1
Cervical 1 2 2 1 1 1 1 3
Gastric 2 1 1 2 1 2 1 3 1 1
Head
and
Neck

3 4 5 4 1 2 10 3 3 5 4

Ovarian 1 1 1 1 1 1 1 2 1 1
Melanoma 1 2 3 2 1 5 3 8 7 1
Prostate 2 5 1 3 6 1 7 2 7 19 1
Pancreatic 3 1 1 1 4 7 3 1 1
Bladder 2 2 1
Other
Cancer 8 13 3 5 8 9 6 30 9 27 15 12 4 7

GE: GENEVA, Sig: Sigcom LINCS.
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Figure 2. HCC gene signature search results of four bio-tools. LC: Liver Cancer, OC: Other Can-
cers. The color represents the number of datasets matched in each tool; grey mean no datasets
matched [10,11,16–23].

3.5. Oncomine Results of Breast Cancer and Colorectal Cancer Gene Signatures

In order to compare their performance and challenge tissue/entity specificity, we
selected available BC and CRC gene signatures and evaluated them in comparison to
HCC gene signatures. We included five BC gene signatures: Oncotype DX Breast [24],
MammaPrint [25], Endopredict [26], Prosigna/PAM50 [27], and Breast Cancer Index [28,29],
and two CRC gene signatures: Oncotype DX Colon [30] and ColoPrint [31].

Five of these seven gene signatures retrieved associated cancer types in Oncomine
(Table 4). Among the five gene signatures, except for Oncotype DX Colon that matched
4 types of cancer, other gene signatures matched 12, 13, 16, and 19 types of cancers respec-
tively. Endopredict and ColoPrint did not match any profiles in Oncomine. BC, gastric cancer,
sarcoma, CRC, bladder cancer, leukemia, etc. are the most frequent matched tumor types.

Table 4. Oncomine results of breast cancer and colorectal cancer.

Oncotype DX
Breast MammaPrint Endopredict Prosigna/PAM50

Breast
Cancer
Index

Oncotype
DX Colon ColoPrint

Bladder 2 2 3 3
Brain and CNS 4 4
Breast 6 12 20 6 4
Cervical 2 3 3 1
Colorectal 9 15 6 4
Esophageal 2 3 2 1
Gastric 2 5 6 3 1
Head and Neck 4 8 12
Kidney 2
Leukemia 1 2 3 2
Liver 3 4 3
Lung 7 8 17 9
Lymphoma 2 4 1
Melanoma 2
Other cancer 1 4 7 3
Ovarian 2 3 6 1
Pancreatic 1 2 2
Prostate 2
Sarcoma 3 9 11 6
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3.6. Common Core Genes and Common Pathways between HCC Gene Signatures

We confirmed the core genes of each gene signature by using PPI and Cytoscape and
checked if there are any overlapping genes between these HCC gene signatures. For most
signatures, 3–13 genes were identified as core genes. In contrast, for the 2020 Yi signature,
no core genes could be identified. However, the core genes of these signatures did not have
any overlap (Table 5).

Table 5. Common core genes of HCC gene signatures.

2008,
Coulouarn
[16]

2009,
Kaposi-Novak
[17]

2010,
Roessler
[10]

2010, Woo
[18]

2010,
Andersen
[19]

2012,
Roessler
[20]

2016, Villa
[21]

2017, Chen
[11]

2019, Guan
[22]

2020, Yi
[23]

SQLE NUBPL RAD50 FGA RPS3A SH2D4A ESM1 AGXT STIL
HMGCS1 CIAO1 FEN1 C8A RPS18 CCDC25 DLL4 DAO RAD51AP1
SREBF2 ISCA2 RPA2 CPB2 RPL27A SORBS3 ANGPT2 EHHADH CDC20
MSMO1 RFC5 F11 RPL3 PROSC ABAT CEP55
CYP51A1 GTF2H1 SERPINA10 RPS25 ALDH6A1 POLE2
IDI1 CHEK1 FETUB RPS12 SPC24
FDPS GTF2H4 HRG RPS17 CCNB1
DHCR24 F13B RPS14 KIF20A
LDLR FTCD RPL13A CDCA3
DHCR7 SPP2 RPL9 CDT1

RPL35A
CCT2
RPL10A

Meanwhile, based on the enrichment ratios, we selected the top 10 significant path-
ways for follow-up analysis. Similarly, we just found two significant overlapping path-
ways between three HCC gene signatures, namely the metabolism of lipids between 2008
Coulouarn and 2010 Woo, and the metabolic pathways between 2008 Coulouarn, 2010 Woo,
and 2017 Chen. In addition, we also used FDR < 0.05 as the cutoff criterion for significant
pathway screening. After comparing the significant pathways enriched in each HCC gene
signature, we found 16 pathways that were enriched in at least two HCC gene signatures.
However, 15 of these 16 pathways were enriched in only two gene signatures, mainly
between 2010 Woo and 2010 Andersen or 2010 Woo and 2017 Chen (Figure 3).

3.7. Signature Generation Differences

After observing the above phenomenon, we tried to figure out whether there are
differences in the methods of producing these HCC gene signatures. From the platform
of gene expression profiling, the algorithm involved in the signature gene selection, and
the sample source of these HCC gene signatures, we found that the methods of generating
HCC gene signatures varied massively (Table 6).

As for the algorithms for signature generation, there are mainly five methods involved:
Differential gene expression, Cox regression, External signature, Unsupervised hierarchical
clustering, and gene co-expression network analysis. The platforms are mainly involv-
ing Affymetrix, Illumina, Agilent, and Custom NCI array, while the origin of samples
involved in the generation of these gene signatures differs from Asia, Europe, and North
America. If we combine these three factors, each gene signature is identical to other sig-
natures. Even if they are the same in the source of samples, i.e., 2008 Coulouarn, 2010
Roessler, 2010 Andersen, and 2017 Chen, they use different platforms and applied four
different approaches.



Cancers 2022, 14, 4322 10 of 15

Figure 3. Common pathways of HCC gene signatures. Above: Of the top 10 pathways in each HCC
gene signature based on the enrichment ratios, only two pathways overlap between three HCC gene
signatures. Down: There are 16 overlapping pathways among the significant pathways screened by
each HCC gene signature based on FDR < 0.05, but almost all of them overlapped between only two
HCC gene signatures [10,11,16–23].

Table 6. Algorithms involved in the generation of HCC gene signatures.

Signature Algorithm for Signature
Generation Platform Origin of Samples

2008, Coulouarn [16] Differential gene expression Custom NCI array America, Asia, Europe
2009, Kaposi-Novak
[17] Differential gene expression Custom NCI array Europe

2010, Roessler [10] Cox regression Affymetrix HG-U133A, Custom NCI array America, Asia, Europe
2010, Woo [18] Differential gene expression Affymetrix HG-U133A Asia
2010, Andersen [19] External signature Illumina humanRef-8 America, Asia, Europe

2012, Roessler [20] Unsupervised hierarchical
clustering

Affymetrix HG-U133A, Agilent-014698
Human Genome CGH Microarray 105A America, Asia

.2015, Villa [21] Cox regression Agilent-014850 Whole Human Genome
Microarray 4 × 44K G4112F Europe

2017, Chen [10] gene co-expression network
analysis

Affymetrix HG-U133A, Affymetrix
HG-U133_Plus_2, IlluminiaHiseq America, Asia, Europe

2019, Guan [22] Cox regression Illumina HumanHT-12 V4.0 Asia
2020, Yi [23] Cox regression Illumina Hiseq NA

NA: not available, NCI: National Cancer Institute.
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4. Discussion

The profound heterogeneity of HCC is becoming increasingly clear. The intra-tumor
heterogeneity of HCC leads to the lack of robustness and reproducibility of molecular
biomarkers [32], and meanwhile random gene sets show prognostic power for patients
with HCC [33]. This may also be one of the major obstacles in establishing valid gene
expression signatures for the diagnosis, prognosis, and response to treatment in patients
with HCC.

Gene expression profiling creates a panoramic view of cellular function by measuring
the expression of thousands of genes at once, which makes it feasible to detect and classify
genetic changes in cells in the form of gene expression signatures [5]. Although the
advancements have been made, successful translation of gene expression profiling into
clinical applications remains challenging. The limitations include not only the need for
further optimization of tissue preparation and storage procedures, but also the need
for sufficient bioinformatics strategies and standardized independent validation of gene
expression signatures [4].

However, up to now no global comparison of the available gene expression signatures
has been attempted. Therefore, by means of implementing four comparison bio-tools, we
successfully validated in this study that current HCC gene signatures are unspecific for
HCC, which may have several underlying reasons.

In this study, the results of similar expression profiles search vary among the four
profiling tools. On one hand, how the four tools perform gene signature query is quite
different: ProfileChaser compares gene expression profiles by weighted correlation coeffi-
cient, Oncomine performs association analysis, GENEVA identifies the variance of gene
expression, and Sigcom LINCS does signature enrichment analysis. On the other hand, the
composition of databases on which the four tools are based is also different: while datasets
in ProfileChaser and Oncomine are composed of microarray data, GENEVA and Sigcom
LINCS perform signature search based on RNA-seq data.

Unlike HCC gene signatures, some BC and CRC gene signatures are already commer-
cially or clinically available. Our study shows that not only HCC gene signatures, but the
majority of these available BC and CRC gene signatures (5/7) also got many different cancer
matches after running in Oncomine. This suggests that even though these gene signatures
have been commercialized or entered the clinic, they are still not specific enough. In fact,
currently available gene signatures for early and intermediate stages of CRC should only
be used in specific clinical settings due to the lack of a plausible biological interpretability
and have no predictive value of treatment benefit [5,34]. Although the promising CRC
classifier based on gene expression, the consensus molecular subtypes (CMS) classification
system, shows prognostic value in intermediate and advanced-stage CRC, there is still a
lack of standardization and a requirement for bioinformatics resources [5]. BC has a leading
edge in the clinical application of gene signatures, but there is still debate about their use
in BC, especially in early BC with positive lymph nodes [5]. In addition, Manjang and
co-workers also demonstrated that the prognostic BC gene signatures lack a clear biological
meaning [35], suggesting us to notice the divergences at the level of gene patterns and gene
expression profiles.

In order to overcome those obstacles, recent studies revealed that long noncoding
RNAs (lncRNAs), due to abnormalities in chromatin modification and alternative splicing,
play an important role in tumor development and progression and are more likely cancer-
type specific compared with protein-coding genes [36–38]. The gene signatures included
in our study were all protein-coding genes, as these were commonly utilized in gene
expression profiling in the past and available in respective databases and evaluation tools.
However, further exploration of lncRNA signatures may provide additional insights into
molecular mechanism, ultimately leading to progress in the management of HCC.

Core genes or hub genes are at the core of the regulatory network and play an im-
portant role in the biological classification of samples by gene signatures. In this study,
all core genes were unique to each HCC gene signature and only a few signal pathways
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overlapped between few HCC gene signatures, which indicates that they may produce
very different biological classifications. This accounts for the differences between those
HCC gene signatures.

Benefiting from the bioinformatic technology advances, the scientific community has
developed a vast number of methods to generate gene signatures. Different platforms,
algorithms, and sources of samples play an important role in the generation of cancer gene
signatures. In our study, taking the above three factors into consideration, all the selected
HCC gene signatures have different generation methods. Meanwhile, these technical differ-
ences and variance in samples have led to biological limitations of HCC gene signatures.
A standardized method and procedure are needed to construct more interpretable and
comparable gene signatures.

Our study demonstrates that current HCC genetic signatures are not good enough
for prognosis and independent validation of HCC gene signatures remains challenging,
which may be critical for HCC gene signatures to enter clinical application. Overall, due
to the heterogeneity of HCC, our data suggest the necessity of standards, not only in
data format and tissue storage, but also in signature generation, statistical methods, and
independent validation.

Due to enabling reproducible re-analysis of functional genomics data, the scientific
community has long been aware of the need to standardize the data format when describing
a microarray or sequencing study. The Functional Genomics Data (FGED) Society proposed
two recording and reporting standards successively: the Minimum Information About
a Microarray Experiment (MIAME) [39] and the Minimum Information about a high-
throughput SEQuencing Experiment (MINSEQE) [40]. The two guidelines both emphasized
the importance of providing the following information to make the data understandable
and reusable: (1) raw data and final processed data; (2) general information about the
experiment; (3) sample annotation, the experimental factors, and their values; (4) laboratory
and data processing protocols; and (5) sample data relationships [40,41]. Data repositories
such as GEO and ArrayExpress both employed MIAME and MINSEQE as standards for
data depositing, facilitating data submission/sharing and usage.

Sample storage is another critical factor for gene expression profiling as extraction of
high-quality RNA from the samples is a prerequisite for reliable measurement results [42,43].
While cryopreserved cancer tissue had no adverse effect on RNA quality, RNA degradation
depended on the time the samples were not frozen [44]. Uniform standards for sample
storage are not well established, which may also account for the inconsistent findings among
different studies, but a few basic guidelines are recommended. First, patient samples need
to be frozen and stored at −80 ◦C as soon as possible, preferably with cold ischemia less than
1 h [44]. Second, RNA stabilization reagents, i.e., RNAlater, are recommended to preserve
RNA integrity during frozen storage [45]. Third, samples should be transported on ice or
in liquid nitrogen to avoid significant degradation of RNA quality before freezing them.
Fourth, samples can be frozen in many small sections and stored in separate partitions to
reduce the effects of repeated freezing and thawing and temperature fluctuations.

A variety of gene signature generation methods exist in different studies and they
are evolving more and more sophisticated, contributing to the limited reproducibility
and comparability of HCC gene signatures. No standards for gene signature generation
algorithm have been established, yet we would like to propose that the algorithms should
meet two criteria: (1) the algorithms need to select genes that are not only statistically
significant but also biologically meaningful, and (2) the algorithms should maintain their
effectiveness on different sequencing platforms and samples from different sources to
rule out that they are platform-specific or sample-specific. In addition, the importance of
independent validation is always in need of emphasizing.

5. Conclusions

So far, HCC gene signatures are not so specific and show algorithmic dependency
in validation. Even though some gene signatures for BC and CRC are commercially or
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clinically available, most of them also lack specificity. There are a few common pathways
between these gene signatures and no common core genes, and the different generation
methods of these HCC gene signatures may be the main reasons for this phenomenon.
We therefore strongly advocate for implementing standards in gene expression signature
generation and tissue/RNA preparation.
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