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plasmonic Manipulation of DnA 
using a combination of optical and 
thermophoretic forces: Separation 
of Different-Sized DNA from 
Mixture Solution
tatsuya Shoji1,2, Kenta itoh1, Junki Saitoh3, Noboru Kitamura3, Takahiro Yoshii3, 
Kei Murakoshi3, Yuto Yamada4, Tomohiro Yokoyama4, Hajime ishihara4,5 & Yasuyuki tsuboi1,2*

We demonstrate the size-dependent separation and permanent immobilization of DNA on plasmonic 
substrates by means of plasmonic optical tweezers. We found that a gold nanopyramidal dimer array 
enhanced the optical force exerted on the DNA, leading to permanent immobilization of the DNA on 
the plasmonic substrate. The immobilization was realized by a combination of the plasmon-enhanced 
optical force and the thermophoretic force induced by a photothermal effect of the plasmons. In 
this study, we applied this phenomenon to the separation and fixation of size-different DNA. During 
plasmon excitation, DNA strands of different sizes became permanently immobilized on the plasmonic 
substrate forming micro-rings of DNA. The diameter of the ring was larger for longer DNA (in base 
pairs). When we used plasmonic optical tweezers to trap DNA of two different lengths dissolved in 
solution (ϕx DNA (5.4 kbp) and λ-DNA (48.5 kbp), or ϕx DNA and T4 DNA (166 kbp)), the DNA were 
immobilized, creating a double micro-ring pattern. The DNA were optically separated and immobilized 
in the double ring, with the shorter sized DNA and the larger one forming the smaller and larger rings, 
respectively. This phenomenon can be quantitatively explained as being due to a combination of the 
plasmon-enhanced optical force and the thermophoretic force. Our plasmonic optical tweezers open up 
a new avenue for the separation and immobilization of DNA, foreshadowing the emergence of optical 
separation and fixation of biomolecules such as proteins and other ncuelic acids.

DNA has been the main target for optical trapping and manipulation. This is very important in medical science 
and biological physics, and numerous studies have been carried out so far. With conventional optical tweezers 
simply using a focused laser beam (developed by Arthur Ashkin1–4), it is rather difficult to optically trap DNA 
in aqueous solutions containing hydrated random coil structures because of their small polarizability5. In many 
cases, small dielectric microspheres are connected to the head and end groups of the DNA, and a focused laser 
beam optically manipulates these microspheres6–9. This technique for DNA manipulation has stimulated exten-
sive development in DNA biophysics.

Recently, a breakthrough was achieved in the research field of optical tweezers10–15. This is based on surface 
plasmons localized around metallic nanostructures. The surface plasmons lead to an electric field (E) enhance-
ment effect of the incident light which amplifies the optical force (Fg, gradient force) and hence the optical trap-
ping potential (U):
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where α is the polarizability of the micro/nano-particle to be trapped. In the vicinity of the metallic nanos-
tructure (in many cases it is a nanogap), E is highly localized around the nanogap, resulting in a huge enhance-
ment in ∇E2. Therefore, the “grip” exerted on nanomaterials by plasmonic optical tweezers or plasmonic optical 
trapping (POT) should be very strong16–18. Following early demonstrations, POT has undergone rapid growth, 
and has been used to trap various nanomaterials such as polymer beads10,19–27, metallic nanoparticles12,18, quan-
tum dots13,28,29, dye aggregates30,31, and so on. In addition to these hard nanospheres, we have demonstrated that 
POT is also applicable to soft materials such as flexible polymer chains homogeneously dissolved in water32,33. 
In particular, we succeeded in POT of lambda DNA (48.5 kbp, abbreviated as λ-DNA) without microbeads, as 
described below34. Gordon also succeeded in POT of a single protein molecule using a double-hole nanostructure 
in a thin gold film35.

In the early stages of these studies, POT has been used simply to trap and release these small objects. 
Researchers have observed trapping of particles upon plasmon excitation under an optical microscope. Following 
these studies, some researchers demonstrated arranging or patterning particles using self-organization effects or 
physical external perturbation. In 2013, we demonstrated that POT of λ-DNA using a continuous-wave (CW) 
laser beam (λ = 808 nm) could be used to permanently fix DNA onto a plasmonic substrate34. On the other 
hand, when we replaced the CW laser by a femtosecond pulsed laser, we were able to drive the POT in a simple 
trap-and-release mode. Beyond such static POT, Tsai et al. demonstrated rotation of a microparticle by irradiating 
a chiral spiral structure on a metallic film with circularly polarized light36.

These studies strongly indicate that POT can be extended to the manipulation of a variety of nano-materials. 
On the other hand, it has frequently been pointed out that POT is accompanied by a local rise in temperature, 
because POT involves excitation of the free electrons in a metal, leading to heat generated by electron-lattice 
energy relaxation. Such local rises in temperature frequently create huge temperature gradients, possibly affecting 
the POT behavior via thermophoresis37–41. In most cases thermophoresis takes a particle from a hotter region 
(central area of an illumination spot) to a colder region (outer area of the spot). This means that thermophoresis 
acts as a dispersive force, hindering the stability of POT. POT is susceptible to thermophoresis and significant 
efforts have been made to understand and suppress such rises in local temperature42–44. To clarify and get a good 
understanding of POT, we have quantitatively evaluated the local rise in temperature (ΔT) and the thermo-
phoretic force (ft) in POT for a gold nano-pyramidal dimer array by means of fluorescence correlation spec-
troscopy, and revealed that the thermophoretic force is never negligible and can significantly compete with the 
plasmon-enhanced optical force32. Such thermal forces presumably limit the future development of POT.

In our previous work on POT of λ-DNA, the DNA molecules immobilized on the plasmonic substrate cre-
ated a ring shaped DNA assembly34. We consider that the DNA ring originates from a balance between the 
plasmon-enhanced optical force and the thermophoretic force. This suggests that coupling POT with thermal 
effects can open up a new area involving the novel manipulation of small objects. In this study, we apply this phe-
nomenon to the separation and trapping of DNA. POT was performed on solutions containing a mixture of large 
and small DNA with different color fluorescence. Based on the fact that the optical and thermophoretic forces are 
sensitive to particle size, we examined the possibility of optical separation and fixation of two different-sized DNA 
from mixture solution (5.4 kbp DNA and λ-DNA, or 5.4 kbp DNA and 166 kbp DNA).

Results
Irradiating a sample solution in contact with the plasmonic nanostructure (polarized extinction spectra and SEM 
images are shown in Fig. S1) with the 808 nm laser beam (Optical setup is shown in Fig. S2) resulted in trapping 
of the DNA. We used three different-sized DNA with a swollen random coil configurations in buffer solution 
(see in Methods section): ϕx174 DNA (5.4 kbp, abbreviated as ϕx DNA), lambda DNA (48.5 kbp, abbreviated 
as λ-DNA), and T4 GT7 DNA (165.6 kbp, abbreviated as T4 DNA). For the solution, we carried out dynamic 
light scattering measurements to determine hydrodynamic diameter of these DNA: 240 nm (ϕx DNA), 330 nm 
(λ-DNA), and 760 nm (T4 DNA). As an example, the POT behavior of λ-DNA (48.5 kbp) stained with YOYO-1 
is described in detail here. Note here that POT of λ-DNA has been reported in elsewhere by us34. Figure 1(a) dis-
plays a series of micrographs for POT of DNA with an excitation intensity I = 15 kW/cm2.

As can clearly be seen in these micrographs, a micro-ring was formed in the irradiated area (circle of white 
dots). Figure 1(b) shows spatially-resolved fluorescence spectra for the ring. At the center of the irradiated area 
and outside the ring, we slightly observed background fluorescence from DNA dispersed in solution (2.0 × 10−6 
mol/L). On the other hand, from the ring, fluorescence from YOYO-1 is clearly evident. This indicates that the 
ring is formed of λ-DNA. Thus, a ring-shaped assembly of λ-DNA has been formed by POT. Assuming that the 
fluorescence intensity was proportional to the amount of DNA, the concentration of DNA was 2.5 times higher 
than that of the solution. It should be noted that it is rough estimation because fluorescence quenching and 
enhancement by plasmon possibly take place competing each other. In the micro-ring, DNA would take random 
coil configurations and be entangled with each other because coil-to-globule transition of DNA hardly occurred 
in our experimental condition without cationic surfactants45,46. This result also indicates an important fact: a 
large part of the double-stranded (ds) DNA coils have been optically trapped without denaturation. It is noted 
that the elevated local temperature T = 61 °C of the irradiation area during plasmon excitation (see Discussion 
part) was lower than melting point of λ-DNA (99 °C)47. A photothermal effect by plasmon hardly induces thermal 
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denaturation of the fixed DNA. In the present study, it is rather difficult to deny the possibility of the denaturation 
in the rings completely. However, based on the experimental results of the bright fluorescence from the rings and 
precise temperature determination, we consider that a large part of DNAs in the rings is not denatured.

As previously reported, the λ-DNA was not released even after stopping the irradiation, and we have observed 
the permanent fixation of the ring over 60 minutes34. These strands of DNA were permanently fixed on the 
surface of the plasmonic substrate. This is presumably due to adsorption based on the Coulombic interaction 
between the DNA and the surface of the glass substrate. The mechanism creating these micro-rings is thermo-
phoresis (Soret effect), which is due to the huge temperature gradient resulting from plasmonic excitation. This 
effect is quantitatively discussed in a later section. We found that the sizes of the micro-rings could be controlled 
by changing the intensity of the irradiation for plasmonic excitation. Micro-rings were formed at intensities in 
the range of 10–20 kW/cm2. The threshold intensity for ring formation was I = 10 kW/cm2. When I > 20 kW/cm2, 
instead of POT, a micro-bubble appeared in the irradiated area due to a local rise in temperature as a result of the 
photothermal effect (electron-lattice relaxation in gold). In the range of 10 < I < 20 kW/cm2, the diameter of the 
micro-ring increased from 7 to 10 μm with increasing I. The ring size could also be controlled by changing the 
size of the irradiated area (see Figs. S3 and S4 in the supporting information).

The formation of such micro-rings was also observed for the other types of DNA. What is important here is 
that the size of the rings in equilibrium (after 10 min. irradiation at 15 kW/cm2) clearly depends on the size of the 
DNA, as shown in Fig. 2. In the micrographs, it can clearly be seen that the size of the ring increases as the number 
of base pairs of DNA increases. In the figure, the diameters of the rings (Dring) are given for each number of base 
pairs of DNA; Dring was evaluated to be 5.3 μm for 5.4 kbp DNA (ϕx DNA), 6.9 μm for 48.5 kbp DNA (λ-DNA) 
and 7.4 μm for 166 kbp (T4 DNA). This behavior is due to the thermophoretic force, which is sensitive to the size 
of microparticles and is discussed in a later section. It should be noted that we measured the fluorescence spectra 
of the rings in the same way as in Fig. 1, and identified each ring to consist of the corresponding DNA (see Fig. S4 
in the supporting information).

POT was carried out on solutions of mixed DNA, bearing in mind the possibility of applying this technique 
for separation and fixation of biomolecules such as proteins and other nucleic acids. Figure 3 shows the result of 
POT on a solution containing a mixture of ϕx DNA (5.4 kbp, 1.0 × 10−6 mol/l) labelled with YOYO-1and and 
T4 DNA(166 kbp, 1.0 × 10−6 mol/l) labelled with EtBr. The irradiation intensity was adjusted to be moderate 
(I = 10 kW/cm2). With irradiation, there was clear evidence of DNA trapping. Careful inspection of the micro-
graphs (at 5.0 min. and after stopping the irradiation) revealed that concentric double rings (a large and a small 
ring) were produced and permanently immobilized in the irradiated area. Fluorescence images and fluorescence 
spectra are also shown in Fig. 3. By changing the optical filter in the microscope, we can clearly distinguish these 
two DNA rings via the color of the fluorescence (Fig. 3(b)). The observation of fluorescence emission supported 
that a large part of DNA was fixed without thermal denaturation, because the fluorescence dyes isolated from 

Figure 1. (a) Bright-field micrographs of plasmonic optical trapping (POT) of λ-DNA (2.0 × 10−6 mol/l) 
stained with YOYO-1. The area irradiated by the laser (λ = 808 nm, I = 15 kW/cm2) is shown as a circle of 
white dots. (b) Spatially-resolved fluorescence spectra for the DNA micro-ring: (black, 1) at the center of the 
irradiated area, (green, 2) just at the ring, (blue, 3) outside the ring.
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DNA hardly emitted in the solution. The large ring emits red fluorescence, while the small ring emits green flu-
orescence. This was also verified by spatially-resolved fluorescence microspectroscopy (Fig. 3(c)). Fluorescence 
from the large ring is identified as being from EtBr, while the fluorescence from the small ring is assigned to 
YOYO-1. Thus, these two kinds of DNA were clearly separated and immobilized by POT.

A similar experiment with the fluorescent dyes exchanged was carried out on these DNA molecules. POT was 
examined for a solution containing a mixture of ϕx DNA labelled with EtBr and T4 DNA labelled with YOYO-1. 
Also in this case, as shown in Fig. 4, concentric double rings were produced and permanently immobilized in 
the irradiated area (Fig. 4(a)). The small ring emits the red EtBr fluorescence (Fig. 4(b), while the large ring emits 
green YOYO-1 fluorescence (Fig. 4(c). The fluorescence spectra for these two rings verify this. Again the result 
(Fig. 4) clearly indicates that these two kinds of DNA were optically trapped and immobilized on the plasmonic 
structure, and separated in accordance with their size.

We also performed such trapping experiments on a solution containing a mixture of ϕx DNA (5.4 kbp, 1.0 × 
10−6 mol/l) labelled with YOYO-1 and λ-DNA (48.5 kbp, 1.0 × 10−6 mol/l) labelled with EtBr. Figure 5(a) shows 
optical micrographs of such DNA trapping. A micro-ring appeared during plasmonic excitation for several min-
utes, eventually becoming a concentric double ring after irradiation for 10 minutes. Although the small inner ring 
is not very clear, the large outer ring can clearly be observed. Figure 5(b) shows a spatial profile (cross section) of 
the brightness of the micro-graph crossing the double ring. Both at the center (position 1) and outside the rings 
(position 4), the brightness is low. On the other hand, two peaks in the brightness were detected. Obviously, 
the high peak (position 3) and the low peak (position 2) correspond to the large and small rings, respectively. 
Since the small ring was not very clear, we measured the fluorescence spectrum at each position to identify the 
micro-rings. The results are shown in Fig. 5(c). Both at the center (position 1) and outside the rings (position 4), 
we only detected weak fluorescence signals, originating from the DNA dissolved in the sample solution (back-
ground fluorescence). These spectra are composed of a superposition of YOYO-1 and EtBr fluorescence.

In contrast, we clearly observed fluorescence from the micro-rings. As seen in the spectra, the large ring emits 
EtBr fluorescence (detected at position 3), while the small ring emits YOYO-1 fluorescence (detected at position 2).  
This means that the large ring consists of λ-DNA, while the small ring consists of ϕx DNA. In this way we succeeded 
in separating two kinds of DNA and patterning them into micro-rings by means of plasmonic optical tweezers.

Figure 2. Bright-field micrographs of (a) ϕx DNA (5.4 kbp), (b) λ-DNA (48.5 kbp) (Fig. 1(a,c) T4 DNA (166 
kbp). The DNA concentrations are 2.0 × 10−7 mol/l. The scale bars are 5 μm. The areas irradiated by the laser 
(λ = 808 nm, 15 kW/cm2) are shown by circles of white dots. Spatially-resolved fluorescence spectra of (a,c) are 
shown in the Supporting Information.
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Figure 3. POT for a solution containing a mixture of ϕx DNA (5.4 kbp, 1.0 × 10−6 mol/l) labelled with YOYO-1 
and T4 DNA(166 kbp, 1.0 × 10−6 mol/l) labelled with EtBr. (a) Bright-field micrographs. The area irradiated 
by the laser (λ = 808 nm, I = 10 kW/cm2) is shown by a circle of white dots. (b,c) Fluorescence micrographs 
obtained with different optical filters: (b) for green fluorescence from YOYO-1 and (c) for red fluorescence from 
EtBr. (d) Spatially-resolved fluorescence spectra: (black, 1) at the center of the irradiated area, (green, 2) just at 
the small inner micro-ring, (red, 3) just at the large micro-ring, and (blue, 4) outside of the double ring.

Figure 4. POT in a solution containing a mixture of ϕx DNA (5.4 kbp, 1.0 × 10−6 mol/L) labelled with EtBr and 
T4 DNA(166 kbp, 1.0 × 10−6 mol/L) labelled with YOYO-1. (a) Bright-field micrographs. The area irradiated 
with the laser (λ = 808 nm, I = 10 kW/cm2) is shown by a circle of white dots. (b,c) Fluorescence micrographs 
obtained with different optical filters: (b) for red fluorescence from EtBr and (c) for green fluorescence from 
YOYO-1. (d) Spatially-resolved fluorescence spectra: (black, 1) at the center of the irradiated area, (red, 2) just at 
the small inner micro-ring, (green, 3) just at the large micro-ring, and (blue, 4) outside the double ring.
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Discussion
In order to calculate the trapping force (gradient force) Fg, we have to know the value of α (the polarizability of 
the DNA) in Eq. (1). However, it is very difficult to precisely evaluate α for flexible DNA chains taking random 
coil structures in water. Umazano and Bertolotto theoretically calculated values of α (polarizability) for DNA at 
visible light frequencies48. They adopted the broken-rod macroion (BRM) model and applied the discrete dipole 
approximation (DDA), according to which each molecule is described as a finite array of electronic coupled oscil-
lators. They estimated the value of α for model DNA in aqueous solution to be 2 × 10−38 F m2. We adopted this 
value in calculating Fg. Although it is an approximation, the α values of DNA do not change much even when the 
size of the hydrated DNA changes.

The enhanced electromagnetic field (EMF) of the incident light around a gold nanopyramidal dimer was cal-
culated using the discrete integral form of the Maxwell equations, which can be solved applying a discrete dipole 
approximation (DDA). Figure 6(a,b) show models of gold nanopyramids used for the calculations. The electro-
magnetic field of the incident light whose vector is parallel to the x-axis (Ein//x) is considerably enhanced in the 
nanogaps between the nanopyramids with an enhancement factor (E2/E0

2) reaching around 104. The gradient of 
the electric field around the nanogaps (∇E2) can be obtained from such a calculation. In this way we can calculate 
the gradient force Fg exerted on the DNA as a function of position along the z-axis. The results of the simulation 
are shown in Fig. 6(c), where Fg when I = 15 kW/cm2 is plotted as a function of the distance between the DNA 
and the plasmonic nanostructure. When the hydrated DNA approaches the plasmonic structure (nano-pyramidal 
dimer), the value of |Fg| increases from 0 (DNA just in contact with the top of the nanopyramids) to 50 fN (DNA 
covering the nanopyramids).

On the other hand, as we have demonstrated in a series of previous works, resonant light irradiation to 
the AR-NSL nanostructure results in plasmonic excitation, accompanied, simultaneously, by local heat gen-
eration32,34. This leads to a huge rise in temperature that drives the thermophoresis. Generally, and for DNA, 
thermophoresis causes transport from a hot region to a colder region37,38. Therefore, since the temperature in the 
plasmonic excitation area is higher than the surrounding areas, thermophoresis should act as a repulsive force, 
dispersing the DNA and hindering stable DNA trapping.

In addition to Fg, here we quantitatively evaluate the thermophoresis. The driving force for thermophoresis, 
also known as the Soret effect, is the thermophoretic force ft, which is expressed as

= − ∇f S k T T (3)t t B

where St is the Soret coefficient, T is temperature, and ∇T is the temperature gradient40. The temperature T is

Δ= +T T T (4)room

Figure 5. POT in a solution containing a mixture of ϕx DNA (5.4 kbp, 1.0 × 10−6 mol/l) labelled with YOYO-1 
and λ-DNA(48.5 kbp, 1.0 × 10−6 mol/l) labelled with EtBr. (a) Bright-field micrographs. The area irradiated with 
the laser (λ = 808 nm, I = 15 kW/cm2) is shown by a circle of white dots. (b) Spatial profile (cross section) of 
brightness for the micrograph with the double micro-ring. (c) Spatially-resolved fluorescence spectra: (black, 1) 
at the center of the irradiated area, (green, 2) just at the small inner micro-ring, (red, 3) just at the large micro-
ring, and (blue, 4) outside the double ring.
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where Troom is room temperature (293 K) and ΔT is the rise in temperature by plasmonic excitation. Values of 
St for various types of DNA have been determined by Braun et al.38,49. In order to evaluate ft, we measured the 
spatial temperature distribution around an area irradiated at I = 15 kW/cm2 (corresponding to the trapping 
experiments). In our previous studies, we evaluated the temperature by means of fluorescence correlation spec-
troscopy (FCS), which provided us with the diffusion coefficients (D) for a fluorescence probe in solvents32,34. 
The temperature was determined from the viscosity (η) of the solvent (η is a function of T). In the present study, 
we adopted a simpler method. We precisely evaluated T using a fluorescence probe whose fluorescence intensity 
is very sensitive to temperature in aqueous solutions. Both methods gave us similar values of T. Details of the T 
measurements are described in the Supporting Information (Fig. S6). At I = 15 kW/cm2, ΔT at the center of the 
irradiated area was evaluated to be ΔT = 41 K and hence T = 334 K. The irradiated area had a spatial T gradient 
with ∇T = −3.4 K/μm.

Considering these parameters, we evaluated the thermophoretic force ft exerted on the DNA. As shown in 
Table 1, ft increases as the size of the DNA increases. As previously described, ft (>0) should act as a dispersing 
force, which transports DNA from the hotter (center of the irradiated area) to the colder area (outside the irra-
diated area)34. It is this thermophoretic force combined with the enhanced optical force due to plasmonic optical 
trapping that led to the formation of the DNA rings. Also, the origin of the dependence of the size of the ring 
on the size of the DNA can be ascribed to the DNA-size-dependent ft. Since ft increases as the size of the DNA 
increases, larger DNA should be transported further from the center, resulting in the formation of a larger ring.

The value of ft for these DNA strands lies in the order of 10−15 ~10−14 N (several fN or several tens of fN). 
Obviously, these values are close to those of the trapping force Ft (0 ~ −50 fN, depending of the distance between 
the DNA and the nanostructure). This means that these opposite forces, attractive Fg and repulsive ft for the plas-
monic structure, compete with each other. When Fg and ft are in balance, the DNA is trapped and immobilized 
forming separate rings. Thus this technique can be used as the basis of chromatographic separation.

Finally, we compare our technique with important research by Maeda et al.50,51. They prepared an aqueous 
solution containing a mixture of T4 DNA or RNA (0. 1 and 3 kbp) and polyethylene glycol (PEG, 1~5% in vol-
ume fraction). In the solution, PEG plays two important roles. First, it induces coil-globule phase transition of 
the T4 DNA. In the presence of PEG, random coil DNA with loose structures is converted to globule DNA with 
compact structures. This assists optical trapping, since it is very difficult to optically trap random coil DNA. 
Second, PEG can invert the direction of the thermophoresis for small objects involving DNA and RNA. Into 
the mixture solution, they focused a high power (200 mW maximum) near-infrared laser beam (λ = 1480 nm) 
corresponding to the order of MW/cm2 at the focal point. This induced a local temperature rise via vibrational 
excitation of the water, and created a huge temperature gradient (∇T = −0. 25 K/μm) around the focal point. Due 

Figure 6. Theoretical calculation of the optical force exerted on the DNA around a plasmonic nano-pyramidal 
dimer. (a) Side and (b) top views of the dimer. (c) Calculated optical force exerted on the DNA in the z-
direction: Fg(Ein//y) is the electric field vector of the incident light (I = 15 kW/cm2) in the y-direction, while 
Fg(Ein//x) is the vector in the x-direction.

DNA (bp) St [K−1] ft (fN)

ϕx DNA (5.4 kbp) 0.14a 2.2

λ-DNA (48.5 kbp) 2.1b 33

T4 DNA (165.6 kbp) 3.9b 61

Table 1. Soret coefficient and thermophoretic force exerted on the DNA. aSt of ϕx DNA (5.4 kbp) was assumed 
to be equal to that of plasmid DNA (5.6 kbp)49. bSt values were evaluated depending on the number of base 
pairs38.
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to the presence of PEG, the T4 DNA and RNA were collected (trapped) and concentrated at the focal point by the 
inverted thermophoresis. For the solution with long RNA (3 kbp) and short RNA (0.1 kbp), both types of RNA 
were trapped with a separation between them. They observed a transient double-ring-pattern at the focal point by 
fluorescence microscopy. The origin of the separation was not the optical force (Fg) but the RNA-size-dependent 
thermophoretic force. The effect of Fg would have been negligible in their case.

They successfully interpreted the phenomenon by constructing a novel theoretical model. Comparing that 
method with the plasmonic method presented here demonstrates several characteristics for the manipulation of 
DNA. First, our method does not require intense irradiation because the plasmons enhance Fg and electron-lattice 
relaxation efficiently generates ∇T. Second, our method does not require any chemical additives (such as PEG) 
because we get stable trapping of the DNA by the optical force. Third, we can immobilize the DNA on a solid sub-
strate with a separate double-ring pattern. This is very favorable for the micro-analysis of DNA analytes. On the 
other hand, our method requires precisely-fabricated plasmonic nanostructures. These need to be fabricated by 
complicated chemical procedures taking a long time. Both our method and Maeda’s method are effective for DNA 
manipulation, and should be used complementarily according to the requirements of the DNA manipulation.

In conclusion, we demonstrated that three types of DNA with different sizes were optically trapped using 
plasmonic optical tweezers. DNA strands were permanently immobilized on the substrates creating micro-ring 
patterns. As the length of the DNA strand increased, the ring became larger. When we carried out trapping 
in solutions of mixed DNA, the DNA strands were immobilized creating double-ring patterns. In the dou-
ble ring, the strands of DNA were separated; the shorter and longer strands forming the smaller and larger 
rings, respectively. We quantitatively interpreted this phenomenon in terms of the force balance between the 
plasmon-enhanced gradient force and the thermophoretic force. The results open future perspectives for separa-
tion and fixation of other biomolecules such as proteins by using this technique.

Methods
As trapping targets, we used three kinds of DNA. ϕx174 DNA (5.4 kbp, abbreviated as ϕx DNA), lambda DNA 
(48.5 kbp, abbreviated as λ-DNA), and T4 GT7 DNA (165.6 kbp, abbreviated as T4 DNA). The DNA molecules 
were supplied by Nippon Gene. As fluorescent probes, YOYO-1 (λem = 510 nm), ethidium bromide (EtBr), and 
4’,6-diamidino-2-phenylindole (DAPI, λem = 470 nm) were obtained from Invitrogen, Tokyo Kasei, and Wako, 
respectively, and used as received. A buffer solution (HEPES buffer solution, Wako, pH = 7.6) was used for the 
solvent. To suppress photobleaching of the fluorescent dyes, glucose (30 mmol/l), glucose oxidase (1 mg/ml) and 
catalase (1 mg/ml) were added to the buffer solution in the usual manner. The DNA molecules were stained with 
the fluorescent dyes by intercalation in the buffer solutions. The concentrations of the DNA and intercalating 
fluorescence dyes were adjusted to be 1.0 ~ 2.0 × 10−6 mol/L and 2.0 × 10−6 mol/L, respectively.

For the plasmonic substrate, we fabricated a gold nanopyramidal dimer array on a glass substrate by means 
of angular-resolved nanosphere lithography (AR-NSL)52–54. The plasmonic substrate has a broad extinction band 
around 800 nm (see Fig. S1), which is ascribed to a gap-mode plasmonic resonance. Resonant light irradiation 
around the wavelength results in an enhancement of the electromagnetic field (E) around the nanogaps by a factor 
of more than 5 × 103 for (E/E0)2. The plasmonic nanostructure was brought into contact with the sample solution 
in a sample cell.

Details of our plasmonic optical trapping system combined with fluorescence microspectroscopy have been 
described elsewhere and in the Supporting Information (Fig. S1)33,34,55, and are briefly introduced here. We used a 
cw near-infrared (NIR) laser (λ = 808 nm) for LSP excitation and cw near-ultraviolet and visible lasers (λ = 375, 
473 nm) for fluorescence excitation. These laser beams were co-axially introduced into a confocal optical micro-
scope, and focused onto the sample cell. The trapping behavior was analyzed by monitoring the fluorescence of 
the samples.

Received: 19 August 2019; Accepted: 10 January 2020;
Published: xx xx xxxx

References
 1. Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24, 156–159 (1970).
 2. Ashkin, A. & Dziedzic, J. M. Optical Levitation by Radiation Pressure. Appl. Phys. Lett. 19, 283–285 (1971).
 3. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric 

particles. Opt. Lett. 11, 288 (1986).
 4. Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992).
 5. Chiu, D. T. & Zare, R. N. Biased Diffusion, Optical Trapping, and Manipulation of Single Molecules in Solution. J. Am. Chem. Soc. 

118, 6512–6513 (1996).
 6. Yin, H. et al. Transcription Against an Applied Force. Science 270, 1653–1657 (1995).
 7. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-

Stranded DNA Molecules. Science 271, 795–799 (1996).
 8. Quake, S. R., Babcock, H. & Chu, S. The dynamics of partially extended single molecules of DNA. Nature 388, 151–154 (1997).
 9. Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).
 10. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. 

Nat. Photonics 2, 365–370 (2008).
 11. Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. 

Nat. Phys. 5, 915–919 (2009).
 12. Zhang, W., Huang, L., Santschi, C. & Martin, O. J. F. Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole 

Antennas. Nano Lett. 10, 1006–1011 (2010).
 13. Tsuboi, Y. et al. Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon. J. Phys. Chem. 

Lett. 1, 2327–2333 (2010).
 14. Quidant, R. Plasmonic tweezers—The strength of surface plasmons. MRS Bull. 37, 739–744 (2012).

https://doi.org/10.1038/s41598-020-60165-5


9Scientific RepoRtS |         (2020) 10:3349  | https://doi.org/10.1038/s41598-020-60165-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

 15. Yan, H. et al. Biodegradable PLGA nanoparticles loaded with hydrophobic drugs: confocal Raman microspectroscopic 
characterization. J. Mater. Chem. B 3, 3677–3680 (2015).

 16. Hoshina, M., Yokoshi, N., Okamoto, H. & Ishihara, H. Super-Resolution Trapping: A Nanoparticle Manipulation Using Nonlinear 
Optical Response. ACS Photonics 5, 318–323 (2018).

 17. Zhao, Y., Saleh, A. A. E. & Dionne, J. A. Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers. ACS 
Photonics 3, 304–309 (2016).

 18. Lu, Y. et al. Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures. Sci. Rep. 6, 32675 (2016).
 19. Tanaka, Y. & Sasaki, K. Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs. Opt. 

Express 19, 17462 (2011).
 20. Cuche, A., Mahboub, O., Devaux, E., Genet, C. & Ebbesen, T. W. Plasmonic Coherent Drive of an Optical Trap. Phys. Rev. Lett. 108, 

026801 (2012).
 21. Shoji, T. et al. Reversible Photoinduced Formation and Manipulation of a Two-Dimensional Closely Packed Assembly of Polystyrene 

Nanospheres on a Metallic Nanostructure. J. Phys. Chem. C 117, 2500–2506 (2013).
 22. Tanaka, Y., Kaneda, S. & Sasaki, K. Nanostructured potential of optical trapping using a plasmonic nanoblock pair. Nano Lett. 13, 

2146–50 (2013).
 23. Kotsifaki, D. G., Kandyla, M. & Lagoudakis, P. G. Plasmon enhanced optical tweezers with gold-coated black silicon. Sci. Rep. 6, 

26275 (2016).
 24. Ghorbanzadeh, M., Jones, S., Moravvej-Farshi, M. K. & Gordon, R. Improvement of Sensing and Trapping Efficiency of Double 

Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps. ACS Photonics 4, 1108–1113 (2017).
 25. Huft, P. R., Kolbow, J. D., Thweatt, J. T. & Lindquist, N. C. Holographic Plasmonic Nanotweezers for Dynamic Trapping and 

Manipulation. Nano Lett. 17, 7920–7925 (2017).
 26. Jones, S., Andrén, D., Karpinski, P. & Käll, M. Photothermal Heating of Plasmonic Nanoantennas: Influence on Trapped Particle 

Dynamics and Colloid Distribution. ACS Photonics 5, 2878–2887 (2018).
 27. Yoo, D. et al. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. 

Nano Lett. 18, 3637–3642 (2018).
 28. Jensen, R. A. et al. Optical Trapping and Two-Photon Excitation of Colloidal Quantum Dots Using Bowtie Apertures. ACS Photonics 

3, 423–427 (2016).
 29. Miyauchi, K., Tawa, K., Kudoh, S. N., Taguchi, T. & Hosokawa, C. Surface plasmon-enhanced optical trapping of quantum-dot-

conjugated surface molecules on neurons cultured on a plasmonic chip. Jpn. J. Appl. Phys. 55, 06GN04 (2016).
 30. Mototsuji, A. et al. Plasmonic optical trapping of nanometer-sized J- /H- dye aggregates as explored by fluorescence 

microspectroscopy. Opt. Exp. 25, 13617 (2017).
 31. Pin, C. et al. Trapping and Deposition of Dye–Molecule Nanoparticles in the Nanogap of a Plasmonic Antenna. ACS Omega 3, 

4878–4883 (2018).
 32. Toshimitsu, M. et al. Metallic-Nanostructure-Enhanced Optical Trapping of Flexible Polymer Chains in Aqueous Solution As 

Revealed by Confocal Fluorescence Microspectroscopy. J. Phys. Chem. C 116, 14610–14618 (2012).
 33. Shoji, T. et al. Highly Sensitive Detection of Organic Molecules on the Basis of a Poly(N -isopropylacrylamide) Microassembly 

Formed by Plasmonic Optical Trapping. Anal. Chem. 89, 532–537 (2017).
 34. Shoji, T. et al. Permanent Fixing or Reversible Trapping and Release of DNA Micropatterns on a Gold Nanostructure Using 

Continuous-Wave or Femtosecond-Pulsed Near-Infrared Laser Light. J. Am. Chem. Soc. 135, 6643–6648 (2013).
 35. Pang, Y. & Gordon, R. Optical Trapping of a Single Protein. Nano Lett. 12, 402–406 (2012).
 36. Tsai, W., Huang, J.-S. & Huang, C. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a 

plasmonic archimedes spiral. Nano Lett. 14, 547–52 (2014).
 37. Duhr, S., Arduini, S. & Braun, D. Thermophoresis of DNA determined by microfluidic fluorescence. Eur. Phys. J. E 15, 277–286 

(2004).
 38. Duhr, S. & Braun, D. Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. 103, 19678–19682 (2006).
 39. Jiang, H.-R. & Sano, M. Stretching single molecular DNA by temperature gradient. Appl. Phys. Lett. 91, 154104 (2007).
 40. Piazza, R. & Parola, A. Thermophoresis in colloidal suspensions. J. Phys. Condens. Matter 20, 153102 (2008).
 41. Jiang, H.-R., Wada, H., Yoshinaga, N. & Sano, M. Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature 

Gradient. Phys. Rev. Lett. 102, 208301 (2009).
 42. Garcés-Chávez, V. et al. Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B 73, 

085417 (2006).
 43. Wu, J. & Gan, X. Three dimensional nanoparticle trapping enhanced by surface plasmon resonance. Opt. Exp. 18, 27619–27626 

(2010).
 44. Roxworthy, B. J. et al. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett. 12, 

796–801 (2012).
 45. Mel’nikov, S. M., Sergeyev, V. G. & Yoshikawa, K. Discrete Coil—Globule Transition of Large DNA Induced by Cationic Surfactant. 

J. Am. Chem. Soc. 117, 2401–2408 (1995).
 46. Dias, R. S., Innerlohinger, J., Glatter, O., Miguel, M. G. & Lindman, B. Coil-globule transition of DNA molecules induced by cationic 

surfactants: A dynamic light scattering study. J. Phys. Chem. B 109, 10458–10463 (2005).
 47. Williams, M. C., Wenner, J. R., Rouzina, I. & Bloomfield, V. A. Entropy and heat capacity of DNA melting from temperature 

dependence of single molecule stretching. Biophys. J. 80, 1932–1939 (2001).
 48. Umazano, J. P. & Bertolotto, J. A. Optical properties of DNA in aqueous solution. J. Biol. Phys. 34, 163–177 (2008).
 49. Braun, D. & Libchaber, A. Trapping of DNA by thermophoretic depletion and convection. Phys. Rev. Lett. 89, 188103 (2002).
 50. Maeda, Y. T., Buguin, A. & Libchaber, A. Thermal Separation: Interplay between the Soret Effect and Entropic Force Gradient. Phys. 

Rev. Lett. 107, 038301 (2011).
 51. Maeda, Y. T., Tlusty, T. & Libchaber, A. Effects of long DNA folding and small RNA stem-loop in thermophoresis. Proc. Natl. Acad. 

Sci. 109, 17972–17977 (2012).
 52. Haynes, C. L., McFarland, A. D., Smith, M. T., Hulteen, J. C. & Van Duyne, R. P. Angle-resolved nanosphere lithography: 

Manipulation of nanoparticle size, shape, and interparticle spacing. J. Phys. Chem. B 106, 1898–1902 (2002).
 53. Takase, M. et al. Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube. 

Nat. Photonics 7, 550–554 (2013).
 54. Shoji, T. & Tsuboi, Y. Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light 

Source, and Resonant Trapping. J. Phys. Chem. Lett. 5, 2957–2967 (2014).
 55. Shoji, T. et al. Plasmon-Based Optical Trapping of Polymer Nano-Spheres as Explored by Confocal Fluorescence Microspectroscopy: 

A Possible Mechanism of a Resonant Excitation Effect. Jpn. J. Appl. Phys. 51, 092001 (2012).

Acknowledgements
This work was supported by JSPS KAKENHI Grant Numbers JP17K04974, JP18K14254, JP16H06504/
JP16H06506/JP16H06507 in Scientific Research on Innovative Areas “Nano-Material Manipulation and 
Structural Order Control with Optical Forces” and “Molecular Engine” (JP19H05402).

https://doi.org/10.1038/s41598-020-60165-5


1 0Scientific RepoRtS |         (2020) 10:3349  | https://doi.org/10.1038/s41598-020-60165-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author contributions
T.S. designed and carried out experiments and analysis, and wrote the paper. K.I. and J.S. carried out experiments 
and analysis. N.K. contributed to the discussion. T.Y. and K.M. prepared a plamonic substrate and contributed to 
the discussion. Y.Y., T.Y. and H.I. carried out numerical calculation and contributed to the discussion. Y. Tsuboi 
designed the whole research project and wrote the paper.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-60165-5.
Correspondence and requests for materials should be addressed to Y.T.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-60165-5
https://doi.org/10.1038/s41598-020-60165-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Plasmonic Manipulation of DNA using a Combination of Optical and Thermophoretic Forces: Separation of Different-Sized DNA f ...
	Results
	Discussion
	Methods
	Acknowledgements
	Figure 1 (a) Bright-field micrographs of plasmonic optical trapping (POT) of λ-DNA (2.
	Figure 2 Bright-field micrographs of (a) ϕx DNA (5.
	Figure 3 POT for a solution containing a mixture of ϕx DNA (5.
	Figure 4 POT in a solution containing a mixture of ϕx DNA (5.
	Figure 5 POT in a solution containing a mixture of ϕx DNA (5.
	Figure 6 Theoretical calculation of the optical force exerted on the DNA around a plasmonic nano-pyramidal dimer.
	Table 1 Soret coefficient and thermophoretic force exerted on the DNA.




