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Abstract: Long-term stable secondary batteries are highly required. Here, we report a unique
microcapsule encapsulated with metal organic frameworks (MOFs)-derived Co3O4 nanocages for a
Li-S battery, which displays good lithium-storage properties. ZIF-67 dodecahedra are prepared at
room temperature then converted to porous Co3O4 nanocages, which are infilled into microcapsules
through a microfluidic technique. After loading sulfur, the Co3O4/S-infilled microcapsules are
obtained, which display a specific capacity of 935 mAh g−1 after 200 cycles at 0.5C in Li-S batteries.
A Coulombic efficiency of about 100% is achieved. The constructed Li-S battery possesses a high
rate-performance during three rounds of cycling. Moreover, stable performance is verified under
both high and low temperatures of 50 ◦C and −10 ◦C. Density functional theory calculations show
that the Co3O4 dodecahedra display large binding energies with polysulfides, which are able to
suppress shuttle effect of polysulfides and enable a stable electrochemical performance.

Keywords: secondary battery; nanocomposite; microcapsule; capacity; stability

1. Introduction

Recently, the demands for electric vehicles and portable electronics have been rapidly
increasing. Considering this, investigations on secondary batteries are considered to be a
significant direction. People are expecting higher capacity, longer cycling life, and faster
charging of secondary batteries. As a promising next-generation secondary battery, the
Li-S battery possesses a high theoretical energy density (2600 Wh kg−1) and low cost of
sulfur [1–4]. Recently, the research on Li-S batteries has been considered to be a significant
field [5,6]. There are many problems for currently available Li-S batteries, such as the
volumetric change of sulfur and shuttle effect reducing the electrochemical performance,
which represent obstacles to commercialization [7].

In order to address those issues, many studies have been reported, in which the
synthesis of yolk-shell structure hosts is considered to be a potential strategy [8–10]. Zhang
et al. reported a yolk-shell ZnO by using a hydrothermal method, which provided a specific
capacity of 1406 mAh g−1 at 0.1C [11]. Jiang et al. synthesized a yolk-shell nanomaterial
consisting of SiO2 core and carbon shell [12]. The cathode based on the yolk-shell SiO2-
carbon delivered 1200 mAh g−1 at a rate of 0.2C. Those achievements indicate that several
yolk-shell structures exhibit enhanced adsorption towards polysulfides [13,14]. Reasonable
engineering yolk-shell structure as sulfur host could promisingly improve the energy-
storage properties [15,16]. However, general and simple preparation approaches for large-
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scale yolk-shell materials are still highly required. In addition, several reports indicated that
typical semiconductor Co3O4 is a promising sulfur host because of its strong interaction
with sulfur and polysulfides [17–20]. With this in mind, developing creative Co3O4-based
composite for Li-S batteries is attractive and would be of great significance [21–23].

Here, we present a microcapsule infilling by a metal–organic framework (MOF)-
derived cobalt oxide nanocage as the sulfur host, which displays a high electrochemical
performance. By using ZIF-67 as a precursor which was prepared through a hydrothermal
approach, a porous dodecahedral Co3O4 nanocage was obtained (Figure 1). The experimen-
tal procedures are presented in the Supplementary Material. Then, Co3O4 nanocages were
encapsulated into microcapsules through a microfluidic strategy. The real-time process of
the cone and the formation of drops are displayed by Movie S1 and S2, respectively. The
prepared microcapsules were carbonized for use as a sulfur host, which showed a long life
of 200 cycles, along with a stable specific capacity of 935 mAh g−1 and a 100% Coulombic ef-
ficiency. After repeated tests, it displays a stable rate-performance, and the battery remains
stable at −10 ◦C and 50 ◦C. Furthermore, density functional theory (DFT) calculations show
that Co3O4 possesses large binding energies towards polysulfides, which are important for
reducing the shuttle effect and enabling a stable electrochemical performance.
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Figure 1. Microfluidic preparation of Co3O4/S-infilled microcapsules.

2. Results and Discussion
2.1. Structural and Microstructural Characterization

SEM image (Figure 2a) of ZIF-67 precursor shows a dodecahedron morphology with a
size of 500 nm. Figure 2b shows the SEM image of porous dodecahedral Co3O4 obtained
after annealing the precursor. The TEM image (Figure 2c) displays the porous Co3O4
nanocage clearly. The dodecahedral Co3O4 was encapsulated in microcapsule by using
a coaxial focusing method. Figure 2d shows the SEM image of microcapsules with a
size of about 50 µm. The microcapsule was observed by using an optical microscope
(Figure 2e), and it is verified the Co3O4 uniformly distributes in the microcapsule. An
SEM image of Co3O4-infilled microcapsules after annealing is shown in Figure 2f. A TEM
image (Figure 2g) presents the edge of the microcapsule. It is observed that the shell
of the microcapsule is very thin after calcination. After the microcapsules were broken
manually, dodecahedral Co3O4 nanocages inside the microcapsule were observed clearly
in Figure 2h,i. Figure 2j displays the microcapsules after loading sulfur, forming a Co3O4/S-
infilled microcapsule structure. The surface become rough, which indicates that some of
the sulfur was coated on microcapsules.
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photographs of Co3O4-infilled microcapsule after breaking manually. (j) SEM image of microcapsules
after loading sulfur.

The XRD pattern (Figure 3) is assigned to Co3O4 in terms of JCPDS card No. 42-1467,
while the other peaks are attributed to sulfur (JCPDS card No. 99-0066). The signal of Co3O4
becomes unobvious after loading sulfur, which would be ascribed to the cover of sulfur
signals. Figure S1 displays the HRTEM image of the porous Co3O4. The Co3O4 obtained
after annealing ZIF-67 precursor exhibits a good crystallinity. The 0.28 nm lattice spacing
matches the (220) crystalline plane, while the SAED pattern displays several diffraction
rings, indicating a polycrystalline structure [24].
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The composition and chemical states of the microcapsules are presented in the XPS
spectra (Figure 4). The peak at 285 eV is from C1s, and the ones at 530 and 790 eV are
ascribed to the O1s and Co2p, respectively, as shown in Figure 4a. The C 1s spectrum
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(Figure 4b) shows two peaks, where the one at 284.6 eV is indexed to graphite carbon.
Moreover, peak at 285.9 eV represents C=O [17]. O 1s spectrum (Figure 4c) exhibits
three peaks at 530 eV, 532.2, and 533.5 eV, corresponding to lattice oxygen, -OH and H2O
molecules, respectively [25–27]. The Co 2P spectrum (Figure 4d) shows 781.0 and 799 eV of
Co2+ [28], and 778.7 and 796.6 eV peaks are from Co3+ [29,30].
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and (d) Co 2p.

The elemental distribution of Co3O4-infilled microcapsules is shown in Figure 5. The
elements C, Co, and O evenly distribute. In Figure 5e, the EDS spectrum shows that the
composition of Co3O4 includes C, Co, and O [31], which has a high purity. Figure 6a
presents the TGA curves of Co3O4-infilled microcapsules measured in air. The mass loss
from 350 ◦C to 480 ◦C is caused by the decomposition of the carbon shell. The drop from
250 to 350 ◦C is attributed to sulfur evaporation [32,33]. The sulfur in the microcapsules is
about 85 wt%, which is significant for a high-sulfur loading. Moreover, pure Co3O4-infilled
microcapsules show that the content of Co3O4 nanocages is about 35 wt%. Figure 6b shows
the Raman spectra of the Co3O4-infilled microcapsules with and without loading sulfur.
The D- and G-bands of carbon locate at 1370 and 1670 cm−1, respectively. In sulfur-loaded
microcapsules, the peaks ranging from 150 to 475 cm−1 are assigned to sulfur.
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2.2. Electrochemical Characterization

Figure 7a displays the CV curves. During the discharge, two reduction peaks at
2.25 and 1.95 V are attributed to the conversion of high-order polysulfide to Li2S4 and
reduction of Li2S4 to Li2S2/Li2S [34,35]. In the charging process, the oxidation at 2.4 V is
ascribed to the conversion of Li2S2/Li2S to Li2Sn [36]. In Figure 7b, two discharge plateaus
at 2.2 and 1.9 V are verified. The platform at 2.4 V in charge corresponds to oxidation
peak [37]. It is noted that the overpotentials are observed, which may be attributed to the
non-completed carbonization and the resulting limited conductivity. Figure 7c shows that
the specific capacity remains 935 mAh g−1 after cycling 200 times at 0.5C (1C equates to
fully charging or discharging the theoretical capacity in 1 h). The Coulombic efficiency
is close to 100%. Compared to the performance of the Co3O4/S-infilled microcapsules,
the capacity of pure sulfur powders is very low. In particular, the capacity decays rapidly
after 150 cycles. In addition, the electrochemical performance of the microcapsules is also
competitive compared to some other composites, as displayed in Table 1. Figure 7d shows
the rate performance after repeated tests. In the second round, specific capacities are 1250,
1150, 860, and 500 mAh g−1 at rates of 0.1C, 0.2C, 0.5C, and 1C, respectively. It recovers to
1190 mAh g−1 once the rate is returned to 0.1C. Microcapsules exhibit a better reversibility
and higher capacities than sulfur powders. It is attributed to the improved conductivity
by the carbon shell and the reduced polysulfide loss by Co3O4 adsorption, which will be
demonstrated by DFT calculations.

The Co3O4/S-infilled microcapsules-based Li-S battery also displays good cycling
stability under different temperatures. Figure 8a shows that the capacity remains at
647 mAh g−1 after cycling 200 times under −10 ◦C. Besides cycling at a low tempera-
ture, the electrochemical performance at 50 ◦C is presented in Figure 8b, showing a specific
capacity of 713 mAh g−1 after 200 cycles. Stable performance indicates that microcapsules
can be used in different conditions, which are significant for practical applications.

Figure 9a displays CV curves of Co3O4/S-infilled microcapsules at 0.6 to 1 mV s−1;
Figure 9b displays a logarithmic relationship according to i = avb, where i and v stand for the
peak current and rate, respectively [49]. The b value of 0.5 represents a diffusive-controlled
process, and b = 1 indicates a capacitive behavior. In this investigation, b values suggest
mainly diffusion-controlled processes. Figure 9c shows the diffusion contribution ratios
calculated on the basis of i(v) = k1v + k2v1/2, where k1v and k2v1/2 stand for capacitive and
diffusion-controlled contributions, respectively. The results were fitted (Figure 9d) based
on IP = 2.69 × 105 × n3/2AD1/2Cv1/2 [50], where Ip is the peak current; n is the number
of electrons transferred during the reaction, which is 2 for Li-S batteries; A is the active
electrode area (1.13 cm2); D is the diffusion coefficient of lithium ion in unit of cm2 s−1;
C is the concentration of Li ions in electrolyte in unit of mol mL−1 [51,52]; and n is the
scanning rate in the unit of V s−1. On the basis of the obtained slopes, the Li ion diffusion
coefficients are calculated to be 3.8 × 10−9 and 1.8 × 10−9 cm2 s−1, which are close to
some reports [53,54]. The good diffusion property is ascribed to the specific microcapsule
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structure, which enables a good environment for contact with electrolytes; the porous
scaffold of Co3O4 nanocages assembled by nanoparticles shortens the transfer pathway
of ions.
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Table 1. Comparison on the electrochemical performance of some composite-based cathodes.

Composite Preparation Method Cycling Rate Cycle Number Specific Capacity
(mAh g-1) Ref.

TiO2@Co3O4/S
nanospheres Water bath 0.1C 100 817 [38]

Co3O4 powders/S Hydrothermal method 0.1C 100 706 [39]
Co3O4 -CoN/CC Hydrothermal method 3C 500 627 [40]

Co3O4/CoO/GNS/h-
BN/S Ball-milling 1C 250 356 [41]

S@Co3O4/C Hydrothermal method 1C 500 520 [42]
Nano S/rGO High pressure steam 5C 100 639 [43]
NiCo2S4@S Hydrotherma method 0.5C 500 836 [44]

Yttria hollow
spheres@C/S Hydrothermal method 0.5C 200 842 [45]

Mo@N-G/S Hydrothermal method 1C 500 615 [46]
S@N-Ta2O5/rGO Co-precipitation 2C 600 825 [47]
S@MnO2@SnO2 Hydrothermal method 0.5C 500 566 [48]
Co3O4/S-infilled

microcapsules Microfluidic approach 0.5C 200 935 This work
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Figure 8. Specific capacities of Co3O4/S-infilled microcapsules when cycling at different temperatures
of (a) −10 ◦C and (b) 50 ◦C at 0.5C.
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2.3. DFT Calculations

The binding of the Co3O4 with polysulfides was investigated by using DFT calcula-
tion on the adsorption energies. All calculations were conducted by using a Vienna Ab
initio Simulation Package. In Figure 10, a series of surface adsorptions of Co3O4 towards
the polysulfides (Li2S, Li2S2, Li2S4, Li2S6, Li2S8) are presented. According to previous
research [55–57], the (110) lattice plane in the Co3O4 is more prone to exposure due to the
presence of Co3+ on the surface. Therefore, we focused on the adsorption energy of the poly-
sulfides on the Co3O4 (110) surface. The side and top views of the geometric configurations
of Co3O4 (110) surface are shown in Figure 10a. Then, the adsorption models were built up
for the calculation of adsorption energy, which is shown in Figure 11. Figure 10b shows the
surface adsorption energies toward the polysulfides, where the surface adsorption energies
of the Co3O4 toward Li2S, Li2S2, Li2S4, Li2S6, Li2S8 are 3.8, 4.0, 1.7, 3.1, and 3.5 eV, respec-
tively, indicating a good adsorption capability of Co3O4 towards polysulfides. Figure 10c
displays the charge density difference of the adsorption models. The distribution of the
charge density connects polysulfides and Co3O4, indicating an electron transfer between



Nanomaterials 2022, 12, 236 8 of 11

Co3O4 (110) surface and polysulfides. The charge density between polysulfides and Co3O4
illustrates the formation of bonds and further verifies the adsorption stability.
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3. Conclusions

In summary, a novel microcapsule system encapsulated with MOFs-derived Co3O4/S
nanocages is developed, which displays a good electrochemical performance as a Li-S
battery cathode. Dodecahedral ZIF-67 was synthesized, then it was converted to a porous
Co3O4 nanocage which was infilled into a microcapsule through a microfluidic strategy.
After 200 cycles at 0.5C, the specific capacity of Co3O4/S-infilled microcapsules remains
935 mAh g−1. The Coulombic efficiency is about 100%. The constructed battery also
shows a stable rate-performance, while good capacities are also achieved under both high
and low temperatures of 50 ◦C and −10 ◦C. In addition, DFT calculations verify that
the Co3O4 displays large binding energies towards all polysulfides including Li2S, Li2S2,
Li2S4, Li2S6, and Li2S8, reducing the loss of polysulfides. It is expected that the developed
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microcapsule system and the high performance will be applicable for engineering other
emerging Li-storage nanomaterials.
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area electron diffraction (SAED) pattern of the porous Co3O4. Movie S1: Real-time process of the
cone. Movie S2: Formation of drops.
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