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INTRODUCTION
Vascular access failure is a critical factor impeding main­

tenance hemodialysis. Access failure critically affects the morbi­
dity and mortality of end­stage renal disease patients receiving 
hemodialysis [1,2]. The leading cause of access dysfunction 
is a progressive venous stenosis at the juxta­anastomosis 
site formed as a result of neointimal hyperplasia (NH) [1,3,4]. 
Despite remarkable developments in vascular medicine over 

the past few decades, no strategy has effectively prevented 
NH; therefore, it is still considered as a leading pathological 
sign of vascular occlusive events [5]. NH is a complex process 
of proliferative/synthetic changes involving vascular smooth 
muscle cells (VSMCs) in the area of vascular injury, including 
the migration of VSMCs from the medial to the intimal layer, 
upregulation of vascular proinflammatory molecules, and 
progressive vascular luminal narrowing [1,6,7]. Although the 
chronic inflammatory condition formed in a uremic milieu 
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can accelerate NH, the definitive molecular mechanisms that 
initiate NH formation, especially in uremic conditions, are 
poorly understood [7].

TGF­β is one of the most important pleotropic factors 
in tissue homeostasis, and its dysregulation leads to the 
pathogenesis of multiple human diseases, including cancer, 
autoimmune diseases, chronic renal diseases, and cardiovas­
cular diseases [8,9]. Additionally, TGF­β participates in various 
fibrotic cardiovascular diseases through the induction of 
proliferation, hypertrophy, apoptosis, de­differentiation, and the 
migration of VSMCs [8,10,11]. TGF­β expression is upregulated at 
the restenosis site, and increased TGF­β in vessel wall is closely 
associated with neointimal formation [12,13]. Although TGF­β 
is regarded as a critical contributor to NH development and 
a therapeutic target in the prevention of vascular restenosis, 
the precise mechanism of the TGF­β stimulatory pathway is 
unclear.

Endothelial microparticles (EMPs) are small (0.1–1.0 mm) 
vesicles shed from endothelial cell membranes as a response 
to endothelial injury or apoptotic signals [14,15]. Previous 
works have revealed that increased EMPs are closely associated 
with various inflammatory and vascular diseases, such as 
diabetes mellitus, atherosclerosis, stroke, and systemic lupus 
erythematosus [14­16]. Furthermore, EMPs are highly induced 
by uremia and are closely associated with vascular dysfunction 
and early vascular access failure in hemodialysis patients [17,18]. 
In order to trigger NH formation in the vicinity of a fistula, 
proliferative TGF­β signals must be activated by endothelial­
mediated VSMC stimulation. 

The aim of this study was to investigate whether EMPs 
induced by uremic toxin lead to NH and activation of the multi­
ple pathways downstream of TGF­β in an ex vivo model. 

METHODS

Materials
TGF­β was purchased from R&D Systems (Minneapolis, MN, 

USA). For the immunohistochemistry (IHC) assay, antibodies 
for phospho­Akt, phospho­ERK1/2, and phospho­p38 mitogen­
activated protein kinase (MAPK) were purchased from Cell 
Signaling Technology (Danvers, MA, USA), and antibodies 
for phospho­Smad3 and TGF­β were obtained from Novus 
Biologicals (Littleton, CO, USA).

EMP collection
To generate microparticles from endothelial cells, we used 

human umbilical vein endothelial cells (HUVECs), purchased 
from Lonza (Walkersville, MD, USA). HUVECs were cultured 
in EGM­2 Singlequots endothelial cell culture media (Lonza) 
and were incubated with indoxyl sulfate (IS, 250 mg/mL) for 
24 hours to induce the generation of EMPs. The supernatants 

were harvested and assayed immediately. Supernatants from 
the culture in each well were centrifuged for 10 minutes at 
5,000 g at 4°C, followed by ultracentrifugation for 1.5 hours at 
100,000 g at 4°C. The pellets were resuspended in phosphate 
buffered saline (PBS), and the absolute EMP count per tube was 
measured using a Trucount tube (BD Biosciences, San Jose, CA, 
USA). The protocol for EMP identification using fluorescent 
antibodies is described in Supplementary method.

Ex vivo model of NH development
Internal jugular veins were extracted from 5 female 

Yorkshire pigs weighing approximately 30 kg each. The 
details of the procedure are as follows: Experimental animals 
were anesthetized using xylazine, telazol, and atropine and 
maintained using 1%–3% isoflurane. A skillful operator marked 
an extraction region of the internal jugular vein, performed a 
skin incision, demarcated the subcutaneous tissue and muscle 
layers, and ligated the proximal end of the internal jugular vein 
with thread. Finally, cuts were made at and below the ligation 
site, and a 10­ to 12­cm segment of vessel was extracted. The 
vein segment was promptly washed with culture media. The 
organ culture model is shown in Fig. 1. Each extracted vessel 
was cut into 2­cm­long pieces with the aid of sterile scissors and 
forceps. Then, while maintaining their unfolded morphology, 
each segment was fixed onto a nylon mesh (Fisherbrand, 
Pittsburgh, PA, USA) with sterile pins, placed in a 100­mm 
culture dish, covered with 30­mL culture media, and cultured 
for 12 days. The vessel segments were incubated in 3 different 
culture conditions: 30% Dulbecco’s modified eagle medium 
(DMEM) media alone, EMPs (2 × 106/mL) + DMEM media, and 
TGF­β (10 ng/mL) + DMEM media. After 12 days, the vessels 
were preserved in 10% buffered formaldehyde solution until 
analysis and were subsequently compared to uncultured vessel 
segments. 

Morphometric analysis to assess NH
In order to complete the morphological analysis and identi­

fication of collagen deposition in the vessel walls, each para­
ffin­embedded section was cut to a thickness of 5 mm and 
stained with hematoxylin­eosin and Masson’s trichrome. Ten 
different sections from each vessel segment were selected 
for measurement of the NH area using InnerView software 
(InnerView Co., Seongnam, Korea). A digitalized image of each 
sec tion was captured, and the neointimal and medial areas 
were circumscribed manually. The mean ratios of the digitally 
mea sured neointimal and medial areas were calculated in each 
group. 

IHC analysis
In preparation for IHC analysis, the tissue sections were 

deparaffinized and rehydrated. Briefly, each paraffin­embedded 
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tissue slide was set on a dry hot plate overnight (40°C) to melt 
the paraffin. The tissue on each slide was dewaxed in xylene, 
rehydrated in a graded series of ethanol and double­distilled 
water, and the antigen was retrieved by high pressure. Then, 
the sections were washed with PBS and incubated within 
3% hydrogen peroxide and 10% goat serum for 15 minutes. 
Next, the slides were incubated overnight at 4°C with anti­α­
smooth muscle actin (SMA), TGF­β, Akt, ERK1/2, p38 MAPK, 
Smad3, phospho­Akt, phospho­ERK1/2, phopho­p38 MAPK, 
and phospho­Smad3 antibodies. This was followed by the 
application of a secondary goat anti­rabbit biotinylated antibody 
and incubation in a hydrogen peroxidase­labeled detection 
system for 2 minutes. Isotype IgG was used as a negative 
control.

Statistical analysis
All data are expressed as mean ± standard error. One­way 

analysis of variance analysis was performed for comparison 
of multiple groups. Values of P < 0.05 were considered to be 
statistically significant. All experiments were repeated at least 
three times. All statistical analyses were performed using 
SPSS ver. 13.0 (SPSS Inc., Chicago, IL, USA) and Excel software 
packages.

RESULTS

Development of NH due to IS-induced EMPs
After 12 days of treatment with either IS­induced EMPs 

(2 × 106/mL) or TGF­β (10 ng/mL), each cultured vein tissue 
displayed a markedly increased neointimal mass (Fig. 2A). A 

representative image of a Masson’s trichrome­stained vessel 
shows increased collagen deposition in the intimal area in both 
EMP­ and TGF­β­treated vessels after 12 days. In the same areas, 
the differentiated fibroblasts expressing α­SMA were massively 
increased in the EMP­treatment group. In a quantitative 
analysis, a 12­day treatment with EMPs or TGF­β resulted 
in remarkable expansion of the intimal area rather than the 
medial area (Fig. 2B). The neointima/media area ratio of the 
vessels treated with EMPs was more than 10 times higher than 
in those that were untreated (Fig. 2C). These changes were 
comparable to the results obtained with TGF­β stimulation. 

Activation of the TGF-β signaling pathway in areas 
of NH in EMP-treated vessels
We next investigated whether the IS­induced EMPs could 

activate the TGF­β signaling pathway and promote NH. IHC 
assays demonstrated that IS­induced EMPs significantly 
increased TGF­β expression in the neointima (Fig. 3A, B). Anti­
TGF­β antibodies usually stain the cytoplasm. Increased EMPs­
induced TGF­β expression was comparable to that induced by 
TGF­β stimulation. Furthermore, EMPs increased the expression 
of phosphorylated Akt, ERK1/2, Smad3 and p38 MAPK in 
neointimal areas (Fig. 3C–F). These molecules exhibited a 
nuclear staining pattern comparable to that of TGF­β stimulated 
vessels. 

DISCUSSION
Our study showed that IS­induced EMPs highly influenced 

NH and smooth muscle cell proliferation though phos pho­
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Fig. 1. Ex vivo vein model of endothelial microparticles (EMPs) or TGF-β induction of neointimal hyperplasia. Each vessel 
seg ment cut into 2-cm pieces was fixed onto a nylon mesh with sterile pins with care to maintain their unfolded morphology, 
placed in a 100-mm culture dish, covered with 30-mL culture media, and cultured for 12 days. Vessel segments were incu-
bated in 3 different culture conditions: 30% Dulbecco’s modified eagle medium (DMEM) media only, EMPs (2 × 106/mL) + 
DMEM media, and TGF-β (10 ng/mL) + DMEM media. After 12 days, the vessels were preserved in 10% buffered formal-
dehyde solution until analysis and subsequently compared to uncultured vessel segments. H&E, hematoxylin-eosin; α-SMA,  
α-smooth muscle actin.
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rylation of TGF­β downstream molecules in VSMCs. TGF­β 
is a well­established factor in the pathophysiology of intimal 
hyper plasia. Animal models of artificial vascular injury have 
demonstrated that TGF­β administration or overexpression 
markedly enhanced NH at the site of vascular injury [7,10,11]. 
Other studies have shown that upregulated TGF­β secretion 
plays a critical role in neointima formation via fibroblast 
recruitment, the regulation of inflammatory macrophage 
survival, and enhancement of matrix deposition [5,19­21]. 

Both TGF­β mRNA and protein levels have been shown to be 
upregulated immediately after vascular injury and sustained 
over 3 months [5]. Thus, the enhanced profibrotic function of 
TGF­β in the early phase of vascular injury may contribute to 
progressive matrix accumulation and eventually fibrosis during 
NH development [5,22]. Our study also demonstrated massive 
TGF­β­induced NH within just 12 days after vascular injury. 
TGF­β is a critical activator of NH, and the upregulation of TGF­β 
signaling cascade molecules promotes the proliferation and 

A
re

a
(m

m
)

2

B C

TGF- 12�
0

Intima
Media

1,400

1,200

1,000

800

600

400

200

In
ti
m

a
/m

e
d
ia

ra
ti
o

0

***
0.35

0.30

0.25

0.20

0.15

0.10

0.05

EMP12D12D0

**

TGF- 12�EMP12D12D0

***

A
TGF- 12� dayEMP day 12Day 12Day 0

Fig. 2. Morphological analysis of ex vivo endothelial microparticle (EMP)- and TGF-β-stimulated vein. (A) Representative im-
ages of H&E (top row), Masson’s trichrome (middle row), and α-smooth muscle actin (SMA) stained (bottom row) ex vivo vein 
(original magnifi cation, ×100). Evaluation with one-way analysis of variance showed a significantly increased intimal area in 
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recruitment of VSMCs in vascular pathology models. However, 
the crosstalk mechanism that appears to exist between injured 

endothelial cells and VSMCs needs to be clarified. Our study 
showed that EMPs have a critical role in not only stimulating 
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the TGF­β signaling pathway in VSMCs, but also in neointimal 
formation. It is not certain how EMPs activate the TGF­β 
signaling pathway in VSMCs. Microparticles are known to carry 
information both interiorly and exteriorly to communicate 
with almost all cell types. The mechanisms and properties of 
microparticles are usually determined by the surface antigens 
originating from their parental cells (e.g. platelets, endothelial 
cells, leukocytes, macrophages, and smooth muscle cells) 
[15]. They can activate surface receptors on target cells and 
regulate multiple signal processes like thrombosis, coagulation, 
inflammation, the immune system, and general cellular 
homeostasis [14,23,24]. However, shedding microparticles can 
also transport specific molecular information, such as mRNA 
and microRNA. They can transfer this information from one cell 
to another cell via binding specific receptors and fusion with a 
target cell [14,25,26]. In recent murine experiments, fibroblast­
derived microparticles carrying TGF­β siRNA delivered siRNA to 
murine tumor cells, resulting in the suppression of tumor cell 
growth and signaling downstream of TGF­β [27]. These findings 
offer a possible explanation for how EMPs stimulate the TGF­β 
signaling pathway in VSMCs. 

Subcellular TGF­β signal transduction pathways are known 
to be very complicated. Although the TGF­β response in all cell 
types is mediated primarily via a Smad­dependent pathway, it 
has been recently demonstrated that several Smad­independent 
pathways are simultaneously co­activated [28­30]. The present 
study also showed that a 12­day EMP treatment greatly induced 
the overexpression of phosphorylated Smad3, ERK1/2, and Akt. 
This suggests that EMPs can stimulate both Smad­ and non­
Smad pathways. 

There are some limitations in our study. First, vascular access 
failure occur in vessels exposed to a chronic uremic environ­
ment. An in vivo environment that induces NH differs from 
our ex vivo model because numerous upregulated inflam­
matory cytokines or oxidative stresses other than TGF­β­
stimulated molecules can affect NH formation. In addition, 
our ex vivo models comprised healthy vessels. However, we 
showed that uremia­induced EMPs promoted significant NH 
in healthy vein wall tissue. This is an important finding given 
that only 12 days of EMP treatment induced remarkable NH, 
and uremia itself can produce a lot of circulating EMPs prior 
to access formation. Second, neointimal formation is affected 
not only by TGF­β receptor stimulation, but also by vessel 
wall stress generated by flow changes. We did not, however, 

consider flow­mediated vessel changes in the design of our 
study. A study examining the effects of physical wall stress 
along with the uremic condition should be performed. Third, 
how EMPs contact, trigger proliferation, and interact with the 
medial layer of VSMCs has not been defined. Because various 
other complicating factors influence NH formation in vivo, the 
specific effect of EMPs on NH development may be difficult to 
define. A proper model demonstrating how cellular membrane­
shed microparticles contact VSMCs could conceivably be 
developed. 

Despite these limitations, this study highlighted a critical role 
for EMPs in TGF­β signal activation and neointimal formation. 
Although the inhibition of multiple TGF­β downstream 
molecules could be effective therapeutic targets in treating 
vascular inflammation, the development of treatments aimed 
at reducing EMPs generation could be more feasible. This study 
suggests that microparticles could be used as therapeutic tools 
to deliver molecules to suppress NH formation. Alternatively, 
the measurement of EMPs could be employed as an early 
indicator of impending vascular failure. 

In conclusion, IS­induced EMPs provoked massive NH 
though activation of the TGF­β signaling pathway in VSMCs. 
Future study is needed to investigate how EMPs regulate VSMC 
proliferation and the TGF­β signaling pathway in vivo.
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SUPPLEMENTARY METHOD

Quantification of EMPs by flow cytometry
Human umbilical vein endothelial cells were incubated with indoxyl sulfate (250 μg/mL) for 24 hours. The supernatants were 

harvested from each well and assayed immediately. Culture supernatants were centrifuged for 10 minutes at 5,000 g at 4°C and 
then ultracentrifuged for 1.5 hours at 100,000 g at 4°C. In order to define the endothelial microparticle (EMP) phenotypes prior to 
flow cytometry analysis, the pellets were resuspended with phosphate buffered saline (PBS) and stained with following antibodies: 
phycoerythrin (PE)-conjugated anti-human CD31 antibody (clone WM59, mouse IgG1, BD Biosciences, San Jose, CA, USA) and 
FITC-conjugated anti-human CD42b antibody (clone HIP1, mouse IgG1, BD Biosciences). PE- and FITC-conjugated, isotype-matched 
monoclonal antibodies (clone MOPC-21, mouse IgG1, BD Biosciences) were used to exclude irrelevant specificity. Each 50 μL sample 
was incubated with 5 μL PE-conjugated anti-human CD31 plus 5 μL FITC-conjugated anti-human CD42 for 30 minutes with gentle 
regular shaking at room temperature. Then, 500 μL of PBS was added, and the EMPs were analyzed by flow cytometry. The light 
scatter and fluorescence channels were set at a logarithmic gain. The region of particles smaller than 1 μm was defined and gated 
by comparison with calibration beads (Sigma, St. Louis, MO, USA). Fluorescence-positive particles were further separated on another 
histogram based on this size range. EMPs were defined as the particles that appeared in the CD31 + CD42– region. Sample analysis 
concluded after 10,000 events. The level of nonspecific staining was determined using PE- and FITC isotype controls. Samples were 
acquired on a FACSCalibur system (BD Biosciences) and were analyzed using CellQuest software (BD Biosciences). The absolute EMP 
count per tube was measured via a Trucount tube (BD Biosciences).
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