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Abstract
Hydration thermodynamics play a fundamental role in fields ranging from the pharmaceutical industry to environmental 
research. Numerous methods exist to predict solvation thermodynamics of compounds ranging from small molecules to 
large biomolecules. Arguably the most precise methods are those based on molecular dynamics (MD) simulations in explicit 
solvent. One theory that has seen increased use is inhomogeneous solvation theory (IST). However, while many applications 
require accurate description of salt–water mixtures, no implementation of IST is currently able to estimate solvation proper-
ties involving more than one solvent species. Here, we present an extension to grid inhomogeneous solvation theory (GIST) 
that can take salt contributions into account. At the example of carbazole in 1 M NaCl solution, we compute the solvation 
energy as well as first and second order entropies. While the effect of the first order ion entropy is small, both the water–water 
and water–ion entropies contribute strongly. We show that the water–ion entropies are efficiently approximated using the 
Kirkwood superposition approximation. However, this approach cannot be applied to the water–water entropy. Furthermore, 
we test the quantitative validity of our method by computing salting-out coefficients and comparing them to experimental 
data. We find a good correlation to experimental salting-out constants, while the absolute values are overpredicted due to the 
approximate second order entropy. Since ions are frequently used in MD, either to neutralize the system or as a part of the 
investigated process, our method greatly extends the applicability of GIST. The use-cases range from biopharmaceuticals, 
where many assays require high salt concentrations, to environmental research, where solubility in sea water is important to 
model the fate of organic substances.
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Introduction

“Water, water, every where, ne any drop to drink”, the 
ancient mariner cries out in Samuel Coleridge’s poem [1–5]. 
And, in fact, water is one of the most ubiquitous molecules 
on earth. 71% of earth’s surface are covered by water, and 
most biochemical reactions occur in aqueous solution [6, 
7]. However, most water is not pure, but part of a solution. 
Sea water is undrinkable due to its high salt concentration, 
and the human serum contains a multitude of organic and 

inorganic solutes. Furthermore, salt strongly impacts the 
structure and function of biomolecules, such as proteins [8] 
or DNA [9, 10].

There has been large scientific interest in predicting the 
interactions of water with dissolved substances [9]. In the 
field of environmental research, solubility of organic com-
pounds in sea water determines their evaporation as well 
as their bioaccumulation [11]. In pharmaceutical research, 
hydration properties of large molecules are fundamental to 
the understanding of aggregation [12], solubility [13], vis-
cosity, and protein expression.

Many biochemically relevant processes depend not only 
on the solute-water interaction, but also on the salt concen-
tration. For example, ions influence the melting temperature 
[14] and conformations [15] of DNA, as well as the stabil-
ity of proteins in solution, an effect that is described by the 
Hofmeister series [16]. They also affect many biochemical 
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assays, such as Hydrophobic Interaction Chromatography 
(HIC) [17], which is routinely applied to detect surface 
hydrophobicity of biopharmaceuticals [18], and utilizes 
a salt gradient to control elution. It has been shown that 
results from Affinity-Capture Self-Interaction Nanoparticle 
Spectroscopy (AC-SINS) [19] correlate with HIC experi-
ments only when sufficient salt concentrations are used. 
This is expected since long-range electrostatic interactions 
are shielded, while hydration of hydrophobic side chains as 
well as the protein backbone is disfavored by the salting-out 
effect [20].

To improve the understanding of biomolecular solva-
tion, it is crucial to develop computational methods that 
can describe the effect of salts on hydration properties. For 
in-depth analysis of solvation effects, it is desirable that 
those methods provide separate contributions of energy and 
entropy to the free energy of solvation, as well as a spatial 
resolution of the computed properties [21].

In this work, we extend the well-known GIST [22] 
method, which computes spatially resolved contributions to 
the free energy of solvation based on molecular dynamics 
(MD) simulations, to take salt effects into account. In the 
following, we will give a short introduction to the salting-out 
effect, before reviewing existing computational approaches 
to describe molecular solvation properties.

The salting‑out effect

Setschenow showed a linear correlation between the loga-
rithm of the solubility S of a compound and the salt concen-
tration in the solvent [23], called the Setschenow relation.

here, KS is the salting-out constant and depends on the nature 
of the solute as well as the solvent, and c is the salt concen-
tration. S0 is the solubility in of the compound in pure water.

Some trends have been observed regarding KS. Generally, 
small and highly charged ions tend to reduce the solubility 
of hydrophobic solutes, while larger ions are less strongly 
hydrated and tend to be more favoring to hydration of hydro-
phobic compounds [24, 25]. Charged and polar compounds 
tend to have a weaker salting-out effect, or even a salting-in 
effect (negative KS) [24]. There is also an approximately 
linear dependence between the size of a solute and its KS.

Multiple methods, including scaled-particle theory [26], 
Kirkwood–Buff theory [27], and test particle insertion [28, 
29], have been used to describe the salting-out effect of non-
polar gases.

Here, we use the salting-out effect as a test system for our 
generalized GIST approach, since it can be directly linked to 
the free energy of solvation of a compound in dependence 

(1)log
S

S0
= KS × csalt

of the salt concentration. For more details, we refer to the 
Supporting Information (SI).

Computational approaches to solvation

In the field of large biomolecules, most methods dispense 
with any physical description of the solvent, instead treating 
quantities like solubility or hydrophobicity as intrinsic to 
the solute. These tools have proven useful at highly com-
plex tasks such as reducing the aggregation propensity of 
antibodies [30, 31]. However, they do not provide a physi-
cal description of the solvent and are therefore inadequate 
to describe the effect of the solvent composition and salt 
concentration.

The solubility of organic substances is frequently 
described using implicit solvent models, that treat both the 
water and the dissolved ions as a homogeneous continuum. 
Those methods provide a simple, yet effective approach to 
model different salt concentrations. For example, the sta-
tistical associating fluid theory (SAFT) [32], as well as the 
conductor-like screening model (COSMO) in combination 
with quantum mechanics [33, 34] have been used success-
fully to predict the effect of salt concentration on solubility. 
However, it has been shown that the accuracy of implicit sol-
vent models is limited compared to explicit methods based 
on MDs simulation [35, 36].

Multiple theories have been developed to describe solva-
tion of hydrophobic molecules, many of which are able to 
incorporate salts as part of the solvent. Notable examples 
include scaled particle theory [37], Kirkwood–Buff theory 
[27, 38], as well as approaches based in information theory 
[39] and test particle insertion [27, 40]. Typically, those 
methods focus on hydration of purely hydrophobic com-
pounds, though they might be complemented by additional 
energy terms [41].

Thermodynamic integration (TI) [42–44] is a method 
that calculates free energy differences based on alchemical 
transformations, such as replacement of a chemical group. 
It can accurately compute absolute hydration free energies 
by slowly removing the solute from the simulation box. This 
is a very general method and has been successfully applied 
to solvents containing ions [45]. However, care has to be 
taken when the solute molecule carries a net charge [46–48]. 
Furthermore, the applicability of TI is limited to rather small 
molecules.

Methods that explicitly model the statistical mechanics 
of the solvent can be classified broadly into those based on 
the Ornstein–Zernike (OZ) equation [49] and those based on 
inhomogeneous solvation theory (IST) [50]. Methods based 
on the OZ equation, such as 3D-RISM [51, 52], compute the 
distribution of particle densities from a molecular mechanics 
force field in combination with the pair distribution function, 
and can treat both pure solvents and salt–water mixtures 
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[53]. It has also been shown that 3D-RISM can be used to 
compute salting-out coefficients [54].

In contrast, methods based on IST [50, 55] use an ensem-
ble of solvent conformations, typically obtained from MD 
simulation, to estimate the partition sum of the solvent mol-
ecules in the proximity of the solute. A discretized imple-
mentation of IST, called grid inhomogeneous solvation 
theory (GIST), has been applied to a wide range of biomo-
lecular systems, such as solvation thermodynamics of the 
cucurbit[7]uril receptor [22], unfavorable hydration sites 
on the surface of proteins in the context of protein–drug 
interactions, binding characteristics of serine proteases [56], 
or hydrophobicity of antibodies [57]. Recent developments 
include improved performance due to GPU-acceleration [56] 
or PME-based energy calculation [58], as well as an exten-
sion to solvents other than water [59].

Further methods based on IST include WaterMap [60], 
SSTMap [61] and STOW [62]. However, none of the IST-
based methods has been extended to account for the presence 
of salt in the solvent. This is problematic not only due to the 
large number of biochemical processes that are affected by 
the salt content of the solvent, but also because MDs simu-
lations of charged systems are commonly performed using 
counter ions. Prior GIST studies either did not use counter 
ions [57], or restrained them as part of the solute [63].

Here, we present an extension of the GIST algorithm that 
explicitly treats ions as part of the solvent and test its valid-
ity on the solvation free energy of carbazole in 1 M NaCl 
solution. We compute first and second order entropies and 
test the viability of the Kirkwood superposition approxima-
tion (KSA) for a simplified computation of second order 
entropies. Furthermore, we compute a set of salting-out 
coefficients from previous work by Endo et al. [34]. This 
allows us to estimate the accuracy of our method and to 
show opportunities for prospective improvements of the 
entropy estimation in GIST.

Theory

GIST

Here, we shortly review the theory behind existing GIST 
implementations. The extension to multiple solvents, as 
well as the second order entropy estimate, will be discussed 
below.

GIST is a method devised by Nguyen et al. [22, 64]. It 
uses IST [50] to compute thermodynamic quantities of water 
in the vicinity of a solute, but replaces the spatial integrals 
by discrete sums over voxels in a 3-dimensional grid.

The input of a GIST calculation is the trajectory of an MD 
simulation of the solvent molecules surrounding a restraint 
solute.

The free energy of solvation ΔAsolv is split into separate 
contributions for energy and entropy.

here, Esolv denotes the energy contribution to solvation, 
while Ssolv is the entropy contribution. T is the system tem-
perature, and the Δ denotes that quantities are calculated 
relative to their respective bulk value.

The energy is further split into contributions for the sol-
ute–solvent (Euv) and solvent–solvent (Evv) interactions.

Both energy terms can be readily computed from the 
force field. For Euv, interaction energies are calculated 
between each solvent molecule and the solute, and assigned 
to the grid voxel that currently holds the solvent molecule. 
The same is done in every frame.

Similarly, Evv is calculated from the interaction energies 
between all pairs of solvent molecules. Half of the energy 
contribution is assigned to each of the two molecules, to 
avoid double counting.

The solute–solvent contribution goes to zero with increas-
ing distance from the solute, i.e., Euv is zero in the bulk. In 
contrast, Evv tends to a constant value (Evv

bulk) in the bulk. 
This value must be subtracted to obtain the energy change 
of the solvent upon addition of the solute.

The entropy contribution can be calculated in two differ-
ent ways. First, it can be further separated into contributions 
for the translational (Strans) and the rotational (Sorient) entropy.

Alternatively, a single entropy estimate (Ssix) can be 
computed from all six degrees of freedom of the solvent 
molecule.

In practice, all three entropy quantities (trans, orient, and 
six) are calculated using a nearest-neighbor estimate. For 
each voxel k:

(2)ΔAsolv = ΔEsolv − TΔSsolv

(3)ΔEsolv = ΔEuv
solv

+ ΔEvv
solv

(4)ΔEvv
solv

= Evv
solv

− Evv
bulk

(5)ΔSsolv ≅ ΔStrans
solv

+ ΔSorient
solv

(6)ΔSsolv ≅ ΔSsix
solv

(7)Strans
k

= R

(
� +

1

Nk

Nk∑
i=1

ln
Nf �

04� ⋅ d3
trans

3

)
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here, R denotes the gas constant, γ is the Euler–Mascher-
oni constant, which accounts for an asymptotic bias, Nk is 
the number of solvent molecules that are seen in voxel k 
throughout the simulation, Nf is the number of frames, ρ0 is 
the number density of bulk solvent, dtrans is the translational 
distance of a solvent molecule to its nearest neighbor, and 
Δω is the rotational distance to its nearest neighbor.

Note that the nearest neighbor distances are calculated 
between solvent molecules from all frames. Therefore, they 
tend towards zero in the limit of perfect sampling.

Since this entropy estimate only takes first-order terms—
such as the position and orientation of solvent molecules—
into account, while omitting higher-order terms such as 
correlations between the orientation of neighboring solvent 
molecules, the entropy estimates go to zero in the bulk, at 
least in the case of perfect sampling. Therefore, no refer-
ence values are needed for the entropy in theory. However, 
limited sampling and inaccuracies in the reference density 
might lead to a small entropy contribution that is left in the 
bulk. In previous works, this has sometimes been corrected 
by subtracting a small reference entropy [58].

Extension of GIST to mixtures

The aim of this work is to extend GIST to solvation in 
salt–water mixtures, i.e., solvent mixtures containing a regu-
lar solvent (e.g., water), a positively charged ionic species 
(i.e.,  Na+), and a negatively charged ionic species (i.e.,  Cl−). 
In the following, we denote those compounds as wat (water), 
 M+ (cation) and  X− (anion). We note, however, that the same 
considerations apply to arbitrary mixtures of solvents, and 
that, in combination with the generalization of GIST to 
multiple solvents presented in [59], GIST calculations of 
arbitrary solvent mixtures should indeed become possible.

Throughout this work, we consider the salt to be a part of 
the solvent rather than the solute. Therefore, the reference 
state for bulk solvent properties must also be a salt-water 
mixture.

Energy terms

As in the original GIST implementation, the energy 
terms can be calculated from the employed force field in 
a straight-forward manner. Since the ions are considered 

(8)Sorient
k

= R

(
� +

1

Nk

Nk∑
i=1

ln
Nk

(
Δ�i

)3
6�

)

(9)Ssix
k

= R

⎛
⎜⎜⎜⎝
� +

1

Nk

�Nk

i=1
ln

Nf �
0
�

�
Δ�2

i
+ d2

i,trans

�3

48

⎞
⎟⎟⎟⎠

part of the solvent, all ion–solute interactions are added to 
the solute–solvent energy Euv of the voxel currently hold-
ing the ion. All water–ion and ion–ion interactions are 
split by two and added to the solvent–solvent energy Evv 
of the voxels holding the respective molecules, consistently 
with the solvent–solvent interactions in the original GIST 
implementation.

Subtracting the appropriate reference energy for the sol-
vent–solvent term, however, is less trivial. We consider a 
reference state where all solvent molecules have been trans-
ferred to the bulk. The average energy attributed to such a 
system can be written as:

here, Evv,ref denotes the reference energy, which is equal 
to the energy that the solvent molecules had if they were 
located in the bulk, Ei,bulk denotes the same energy for a sin-
gle molecule, and the angle brackets 〈.〉 denote the ensemble 
average. This method of summation assumes that all ener-
gies have already been divided by two to avoid double count-
ing, as discussed in [65].

In the original GIST algorithm, this term is expressed by 
a constant per-molecule energy term. However, the energy 
contributions of different molecular species must be treated 
separately. This leads to the following expression:

here, Nk,i denotes the number of molecules of type i in voxel 
k. We treat the expectation value of the energy of each com-
pound in bulk as a constant. We determine those constants 
by an ordinary least squares (OLS) fit of the solute–solute 
energy in bulk solution, treating the Nk,i values as independ-
ent variables. This fit must be done separately for each sol-
vent composition since different ion concentrations lead to 
different expectation values of the energy per molecule. To 
ensure that the solvent is sufficiently bulk-like, we can either 
perform separate simulations of the solvent without solute 
or select grid voxels far away from the solute molecule. 
Throughout this work, the second approach was employed, 
with a minimum distance of 16 Å from the solute.

We then calculate the reference energy of each voxel k 
in the vicinity of the solvent by evaluating Eq. 11 using the 
respective molecule counts in voxel k, as well as the previ-
ously determined expectation values of the bulk energy.

Entropy terms

Traditionally, GIST only considers first-order entropy terms, 
omitting all solvent–solvent correlations. This allows us to 

(10)
⟨Evv,ref ⟩ = ⟨�solvent molecules

i
Ei,bulk⟩ =

�solvent molecules

i
⟨Ei,bulk⟩

(11)
⟨Evv,ref⟩k =

�Nk,wat

i
⟨Ewat⟩ +

�Nk,M+

i
⟨EM

+⟩ +�Nk,X−

i
⟨EX

−⟩
= Nk,wat × ⟨Ewat⟩ + Nk,M+ × ⟨EM

+⟩ + Nk,X− × ⟨EX
−⟩
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split the entropy into separate terms for each component of 
the solvent mixture:

This applies to all three types of entropy terms (transla-
tional, orientational, and the six-dimensional entropy). We 
calculate all terms according to Eqs. 7–9 but use the appro-
priate number density for each species.

The ions  (M+ and  X−) do not have any orientational 
entropy contribution since they are monoatomic. Therefore, 
only Strans needs to be evaluated for them.

Second order entropy

Current GIST implementations do not contain the second-
order entropy terms, which describe the change in sol-
vent–solvent structure upon addition of the solute. Recently, 
it has been shown empirically, in the case of organic mol-
ecules in pure water, that a rough estimate of the higher 
order entropy terms may be obtained by scaling the first 
order entropy by a constant factor [66].

Since this has been shown only empirically, we cannot 
assume that this approach can be extended to solvent mix-
tures. Therefore, we need to estimate ginh from MD simula-
tion data. The exact second order entropy in IST is:

here, ν and ν′ denote the solvent species, ρ∞ denotes the 
solvent density distant to the solute, G is the solute–solvent 
pair correlation defined with respect to ρ∞ . g0 is the bulk sol-
vent–solvent pair correlation function, which only depends 
on the relative position and orientation, and ginh is the inho-
mogeneous pair correlation function, which depends on the 
positions and orientations of both solvent molecules relative 
to the solute.

In its full form, ginh is a 12-dimensional function. In a 
previous work, Nguyen et al. [67] estimate the translational 
part of ginh on a grid, which is still a 6-dimensional problem 
and computationally highly challenging. In our case, it is 
even more difficult to obtain sufficient sampling because the 
ion density is much lower than that of water. Therefore, we 
reduce ginh to a 1-dimensional radial distribution function 
(rdf) at each grid voxel, which is still essentially a 4-dimen-
sional function.

(12)Sk = Sk,wat + Sk,M+ + Sk,X−

(13)

ΔS2nd

k
= −

1

2

∑
�

∑
��
�
∞
�
�
∞
�� ∫ local

drdr�Gs�(r)

[
Gs��

(
r
�
)(

ginh
�,��

(
r, r�

)
ln

(
ginh
�,��

(
r, r�

))
− ginh

�,��

(
r, r�

)
+ 1

)

−
(
g0
���

(
r, r

′

)
lng0

���

(
r, r

′

)
− g0

���

(
r, r

′

)
+ 1

)]

Consistently, we also reduce g0 to a 1D representation 
g0(d) . This is exact in the case of spherical solvents.

Denoting the radial distance as d , and substituting 
dr

4d2�
= dd and Gs,�� (r, d) = ∫ |r�−r|=dGs,��

(
r

′
)
dr�∕(4d2�) , we 

rewrite Eq. 13 as

Furthermore, we employ the KSA [42] to obtain an esti-
mate of the second order entropy in the same 4D representa-
tion. This is the same approach that was used by Lazaridis 
in his original work on IST [50]. Lately, the KSA has been 
heavily criticized [68]. Here, we test its validity by compar-
ing between the conditional rdfs and the KSA.

In terms of IST, the KSA assumes that the inhomogene-
ous pair correlation function between solvent molecules in 
the vicinity of the solute ginh is equal to the bulk pair cor-
relation function g0.

The KSA simplifies above equation to:

Since the ions are monoatomic, their pair correlation 
functions are 1-dimensional. Therefore, the 1D representa-
tion is accurate in the case of ion–ion KSA entropies.

We compute the local integral up to a distance of 10 Å, 
since the pair distribution functions are well converged at 
this distance.

Reference densities

It is well known that the pair distribution function g does 
not converge to 1 in the canonical ensemble [69], since the 
central reference particle takes up a certain volume, thereby 
decreasing the volume that is left to the other particles. IST 
uses a modified distribution function G , that is defined with 
respect to the density distant to the solute �∞ , rather than the 
density of an unperturbed bulk solution �0.

Furthermore, IST requires the density of a solvent ref-
erence system without the central solute particle. The IST 
equations contain correction terms that can be applied when 
the system density does not exactly match the reference den-
sity. These terms arise from the enthalpy and entropy of 
the reference system and are represented as a part of the 

(14)

ΔS2nd

k
= −

1

2

∑
�

∑
��
�
∞
�
�
∞
��∫

local

drdd4d2�Gs�(r)

[
Gs�� (r, d)

(
ginh
�,��

(r, d)ln
(
ginh
�,��

(r, d)
)
− ginh

�,��
(r, d) + 1

)

−
(
g0
���
(d)lng0

���
(d) − g0

���
(d) + 1

)]

(15)
ΔS2nd,KSA

k
= −

1

2

∑
�

∑
��
�
∞
�
�
∞
�� ∫

local

drdd4d2�Gs�(r)

[(
Gs�� (r, d) − 1

)(
g0
���
(d)lng0

���
(d) − g0

���
(d) + 1

)]
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liberation terms in the final IST equations. The equations 
may be found in the supporting information or in Lazaridis’ 
original work [50].

In current GIST implementations, the reference density 
is needed only for the entropy calculations and must be sup-
plied as an input parameter. When the solvent is pure water, 
this only needs to be computed once for each combination 
of water model, temperature, and pressure. With mixtures, 
the reference density depends on the exact molar fraction of 
each species, as well as the density of the mixture.

Furthermore, a change in molar composition around the 
solute will be compensated by more distant regions of the 
solvent box. For example, small and strongly hydrated spe-
cies such as  F− are strongly disfavored around apolar com-
pounds, which is compensated by a slightly higher density 
in the “bulk” regions of the solvent box ( �∞ ). The change 
in bulk density depends on the ratio between the excluded 
and total volumes and is generally small as long the size of 
the simulation box is sufficient. Nevertheless, this creates a 
small, but unphysical dependence of the solvation entropy 
on the box volume.

Here, we avoid this problem by re-calculating the refer-
ence densities �∞ in each GIST calculation from the bulk-
like regions of the solvent box, employing a 12 Å distance-
cutoff from the solute. Physically, this implies an infinite 
system at the bulk solvent composition of the respective 
solvent box, containing a single solute molecule. This only 
changes the density by a small amount, because most of the 
solvent box is bulk-like, due to the small and neutral nature 
of the molecules in our test set.

We note that this approach implies that the composition 
of the reference solvent is not known exactly until after the 
simulation. However, this does not limit the applicability of 
our method, since it is also trivial to compute the correction 
terms (the equations are shown in the SI) if the exact solvent 
composition is required.

Implementation details

Typically, the ion concentration is much lower than the 
water concentration. The current GIST implementations 
apply a grid-based approach to find the nearest neighbor 
of each molecule and assume that this neighbor must be in 
the same or in a neighboring voxel. This is only appropri-
ate if each voxel is visited by multiple molecules during 
the simulation. However, this is not the case when concen-
trations much lower than the bulk concentration of water 
(55.5 M) are used. Therefore, the current implementation 
of Strans is inappropriate to calculate ion entropies. To solve 
this problem, we created a more general version of the Strans 
calculation using the KD-Tree implementation in either 
SciPy [70] or pykdtree (https:// github. com/ storp ipfugl/ pykdt 
ree) for the nearest-neighbor search. This algorithm works 

correctly with low concentrations, while yielding identical 
results as the original implementation for the water entropy. 
However, it cannot replace the original algorithm due to its 
lower performance.

For the first order entropy of water, we patched our pre-
viously published GPU-accelerated GIST implementation 
so that the water entropy is calculated correctly in the pres-
ence of other solvent molecules. To do so, no algorithmic 
changes were necessary, but we had to make sure that no  M+ 
or  X− are counted as water in the entropy calculation. Com-
bining this entropy with the ion entropy from our Python 
implementation, we obtain the total first order entropy.

For the second order entropy, we discretize Gs�� (r, d) and 
ginh
�,��

(r, d) on a 3-dimensional grid of voxels k . Furthermore, 
we discretize d by radial bins denoted as l . We write the 
discretized quantities as Gs�′,kl and ginh

��′,kl
 . For every � and �′ , 

we compute the intermolecular distances between all mol-
ecules of type � that are within the grid, and all molecules 
of type �′ in the entire simulation box, using the minimum 
image convention. We then assign a radial bin l based on 
the exact distance and increment the respective counter at 
the respective voxel k holding the first molecule. The result-
ing histograms are divided by N

�kVlGs�′,kl����′ , to obtain a 
radial distribution function (rdf). Here, N

�k is the number 
of molecules � found at voxel k , Vl is the bin volume, and 
Gs�′,kl is the density of molecules �′ in a discretized distance 
l to voxel k.

Gs�′,kl is computed from a grid representation of the den-
sity distribution Gs�� (r

′

) by integrating in spherical shells 
around the center of voxel k . To avoid inaccuracies due to 
the grid spacing, a very fine grid of 0.25 Å spacing is used 
at first, and the final Gs��,k(d) is re-binned to the desired 
resolution.

Given the discrete representations of ginh
��′,kl

 , g0
��′,l

 and 
Gs�′,kl , the second order entropy can be implemented in a 
straight-forward manner using Eq. 14. The KSA is used by 
inserting g0

��′,l
 for ginh

��′,kl
.

Combining the water entropy from the GIST output with 
the ion entropies calculated in our python implementation, 
we obtain the total solvation entropy.

The second order entropy and the first order ion entropy 
are implemented as a series of Python scripts and may be 
obtained from our group’s GitHub account (https:// github. 
com/ liedl lab/ second- disor der). The updated first order 
entropy of water is implemented in the newest version of 
GIGIST.

Salting‑out coefficients

The Salting-Out coefficient KS, also called the Setschenow 
constant [11, 34], describes the dependence of the solubility 
of a compound on the salt concentration. It is defined via the 
Setschenow equation (Eq. 1).

https://github.com/storpipfugl/pykdtree
https://github.com/storpipfugl/pykdtree
https://github.com/liedllab/second-disorder
https://github.com/liedllab/second-disorder
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Since solubility is linked to the free energy of solvation 
ΔGsolv [71, 72], the Setschenow equation may be formulated 
as follows:

here, T refers to the system temperature in K, and R to the 
gas constant. Therefore,  KS can be obtained from the slope 
of the free energy of solvation plotted against the salt con-
centration, divided by RT ln(10). A more detailed derivation 
of Eq. 16 may be found in the SI.

As described above, we re-calculate the bulk density after 
the simulations. For consistency, we compute the salt con-
centration from the GIST reference density. The salt con-
centration is related to the reference density by Avogadro’s 
constant  NA, as well as a conversion factor of  1027 from 
[Å−3] to  [L−1]. Since the concentrations obtained for  Na+ 
and  Cl− are not numerically equal, the average was used to 
compute the salting-out coefficient.

Methods

Starting structures

We chose 16 rigid molecules out of the dataset by Endo et al. 
[34]. We excluded all flexible molecules since they require 
separate GIST calculations for each relevant conformation. 
Those 16 molecules were used for short GIST calculations 
(as described below) to compute salting-out coefficients. 
Furthermore, long simulations of carbazole were run for in-
depth analysis of the entropy contributions.

Initial structures for the 16 molecules were obtained from 
the PubChem database [73]. The structures were optimized 
using Gaussian 16 [74] at HF/6-31G* level, and charges 
were obtained via a RESP fit [75]. All other parameters were 
taken from the Gaff2 force field [76] and assigned using 
the antechamber and parmchk2 programs in AmberTools19 
[77].

All molecules were solvated in cuboid TIP3P [78] water 
boxes with a minimum distance of 20 Å between the mol-
ecule and the walls, using the tleap program from Amber-
Tools. Assuming a constant particle density, solutions at 
different salt concentrations were produced by replacing a 
fraction of 1/55*csalt of all water molecules for  Na+, and the 
same fraction for  Cl−, again using tleap. Since this method 
of setting the salt concentration is not exact, we recompute 
the exact salt concentration for the calculation of KS, as 
described in “Theory” section (“Reference densities” sub-
section). The Joung-Cheatham ion parameters were used 
[79].

During all equilibration steps, the solute heavy atoms 
were restrained using a force constant of 1000 kcal/(mol Å2). 

(16)ΔGsolv

(
csalt

)
= ΔG0

solv
+ RTln(10)KS × csalt

First, only the hydrogen positions were optimized using 500 
steps of steepest descent, followed by 500 conjugate gradi-
ent steps. Then, the same was done on all atoms except the 
solute heavy atoms. The system was then heated from 100 to 
300 K within 100 ps, using a time step of 1 fs and a Langevin 
thermostat [80] with a coupling constant of 2  ps−1. Finally, 
the pressure was equilibrated within 220 ps using a Ber-
endsen barostat [81] with a time constant of 2 ps, at 300 K.

Molecular dynamics (MD) simulations for GIST

After the equilibration, we performed 200 ns classical MD 
simulations in the NpT ensemble. The CUDA-accelerated 
pmemd program in Amber 18 was used. Electrostatic inter-
actions were treated using the PME algorithm [82] with a 
8.0 Å cut-off for the real-space contributions. The tempera-
ture was set to 300 K using a Langevin thermostat [80] with 
a collision frequency of 2  ps−1, and the pressure was set to 
1 bar using the Berendsen barostat [81] with a coupling time 
of 1 ps. All bond lengths involving hydrogen were constraint 
using the SHAKE algorithm, [83] allowing for a timestep 
of 2 fs. Furthermore, all solute heavy atom positions were 
kept at their initial values using a harmonic restraint of 
1000 kcal/(mol Å2). Coordinates were stored to disk every 
10 ps, resulting in 20,000 frames used in the GIST analysis.

For the second order entropy calculations, we performed 
a 10 µs MD simulation of water in carbazole using the same 
starting structure. We stored 10 million frames (1 frame per 
ps) and kept all other simulation settings equal.

GIST calculations

After centering the solute coordinates at the origin, GIST 
analyses were performed using a grid of 81 × 81 × 81 voxels 
with a spacing of 0.5 Å in every direction. Both the grid and 
the solute were centered at the coordinate origin. The refer-
ence densities were chosen as described in the Theory sec-
tion and can be found in the SI. A version of the GPU-ena-
bled GIST implementation [22, 50, 59, 84, 85] was used for 
all contributions except the ion entropy, with minor patches 
to ensure correct counting of water molecules in the pres-
ence of ions. The first order ion entropy and the second order 
entropies were calculated using our Python implementation 
(see “Implementation details” in the Theory section).

The free energy of hydration was calculated by integrat-
ing the GIST results over all voxels within 6 Å of any heavy 
atoms of the solute. The six-dimensional entropy estimate 
was used in favor of the translational and orientational 
contributions.
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TI calculations

To assess the accuracy of our method in terms of absolute 
free energy values, we also performed a Thermodynamic 
Integration (TI) calculation of carbazole in 1.0 M salt solu-
tion. The results are shown in “Results and discussion” sec-
tion, in the subsection titled “Free energy of solvation”.

We used a 2-step TI protocol consisting of an electrostat-
ics part, where the charges of the molecule were removed, 
and a VdW part, where the already decharged molecule was 
decoupled from the system using softcore potentials [86, 
87].

The 2 steps were started independently. For the electro-
statics part, the same equilibrated structure as for the GIST 
calculations was used. For the VdW part, an extra equilibra-
tion step of 25 ns was run before the first lambda window, 
to account for the loss of charges after the initial equilibra-
tion. Soft-core potentials were used with an α parameter of 
0.5.

Both steps were composed of 11 equally spaced lambda 
windows. For the VdW part, we used a simulation time of 
25 ns with a time step of 1 fs for each lambda window. Of 
each window, we discard the first 10 ns as equilibration and 
use the other 15 ns for analysis. For the electrostatics part, 
we used 100 ns simulation time at a timestep of 2 fs, discard-
ing the first 40 ns as equilibration.

Furthermore, we ran gas-phase TI calculations as a refer-
ence for the electrostatic contribution, using the periodic box 
of the equilibrated structure without a barostat. This is not 
required for the VdW part due to the way softcore interac-
tions are handled in Amber.

Free energies profiles were computed separately for the 
two steps, using the MBAR method as implemented in PyM-
BAR [88].

KS values

From each GIST or TI run, the salting-out coefficient KS and 
its standard error were computed using Eq. 16 from the slope 
of ΔGsolv plotted against the salt concentration c.

Results and discussion

Energy and first‑order ion entropy

We performed a 10 μs simulation of a 1 M NaCl solution 
around carbazole, storing 10 million frames. We used all 
frames to obtain first-order ion entropies, and 100,000 
frames to compute the GIST energy contributions. We use a 
reference density of 0.03244 Å−3 for water and 6.190 × 10−4 
and 6.145 × 10−4 for  Na+ and  Cl−, respectively. We reference 
the energy using Eq. 11 and subtract a reference value of 

0.0024 kcal/mol from TΔSsix . Figure 1 shows slices of the 
3-dimensional contributions to those quantities around the 
carbazole.

We find that the  Na+ entropy around carbazole is con-
sistently positive, indicating a reduced density compared to 
bulk. The  Cl− entropy is also mostly positive but features a 
strongly negative region around the nitrogen atom, indicat-
ing that the density there is increased compared to bulk. In 
total, the first order entropy contributes very little to the 
solvation free energy, with integrals of 0.05 and 0.01 kcal/
mol for  Na+ and  Cl−, respectively.

The energy contributions are much larger. As expected, 
we find that the solute–solvent energy is negative, while the 
referenced solvent–solvent energy is positive. The effect of 
the hydrophobic moiety on the energy contributions is much 
smaller than that of the nitrogen atom, which is a hydrogen 
bond donor. This is also true for the solvent–solvent contri-
bution, confirming that the hydrogen bond network around 
a hydrophobic solvent stays largely intact, while a hydrogen 
bond donor reduces the number of water–water hydrogen 
bonds.

Second order entropy with and without KSA

We use Eq. 14 to compute the second order (3-body) entropy 
of all combinations of water,  Na+ and  Cl− around carba-
zole at 1 M salt concentration. We compute the entropy 
using histograms of the radial solvent–solvent distance 
on a three-dimensional grid. We use a grid resolution of 
1 × 1 × 1 Å3 and a radial bin size of 0.125 Å. All entropy 
values shown are multiplied by kBT  to give (negative) free 
energy contributions, and properly referenced to bulk. To 
assert that the bin size of 0.125 is sufficient, we re-computed 
the water–water, water–cation and water –anion entropy at a 
coarser bin size of 0.25 Å. The result is very similar and is 
shown in SI Fig. 1.

The total contributions of all first- and second-order 
entropies are shown in Fig. 2. The largest contributions to 
the total entropy are the first order water entropy and the 
second order water–cation and water–anion entropies.

Furthermore, we computed all second order entropies 
using the KSA. This allows us to validate this approximation 
by plotting the KSA values per voxel against the respective 
values from the conditional histograms, as shown in Fig. 3.

We find that the predictions of the KSA are qualitatively 
wrong whenever the second molecule v′ is water. This is seen 
most clearly in the cation–water entropy, but the correlations 
for the anion–water and water–water entropies are similarly 
bad, except for few voxels with very high entropies.
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On the other hand, the entropies where v′ is an ion are 
predicted much better by the KSA. This finding is con-
sistent with literature stating that the KSA is valid at suf-
ficiently low density [89]. Especially the water–cation and 
water–anion correlations are predicted almost perfectly. This 
is especially important since those contributions show very 
large absolute numbers compared to the ion–ion entropies.

As seen in Fig. 2, the water–water entropy shows the 
highest individual voxel values. However, the integral of this 
contribution is very small, since the positive and negative 
values cancel out. We note that this does not take rotational 

contributions into account, which are likely to be significant 
for the water–water entropy, due to the high anisotropy of 
water.

To gain a better understanding of why the KSA works 
for the water–ion contributions but not for the water–water 
contribution, we plot the individual ginh , g0 , and Gs�′ values 
that are required to compute the second order entropy. Fig-
ure 4 shows the water–water and water–cation distribution 
functions at a grid voxel close to the carbazole molecule 

Fig. 1  TΔS of the first order ion entropy (first row) and solvent–sol-
vent and solute–solvent energy around carbazole (second row). To 
improve visibility of smaller values, the colorbar in each row is scaled 

so that the highest absolute value exceeds the color limit 25-fold. The 
integrals were computed within 10 Å of any carbazole atom
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(centered at [0.5, 4.5, 0.5] Å). Using the KSA amounts to 
assuming that  ginh and  g0 are equal.

In terms of GIST, the assumption underlying the KSA is 
that, given solvent types � and �′ , a molecule � in a region 
with little �′ will be poorly coordinated by �′ molecules. 
In the case of water–water this assumption is violated, as 
shown in the left panel of Fig. 4. Gs�′ indicates that there 
should be rather little water at a distance of 0.3 nm to the 
reference voxel, since a part of the volume at this distance is 
excluded by the solute. Therefore, the KSA assumes that a 
water molecule at this position would be poorly coordinated. 
However, the high peak in ginh shows that this is not the case, 
and that a water molecule at this position is indeed coordi-
nated rather strongly, resulting in a second-order entropy 
that is lower than in bulk. This is expected, since it is well 
known [90] that water molecules near small hydrophobic 
solutes tend to keep up their hydrogen bond network at the 
cost of an entropic penalty.

In the case of the water–cation entropy, however, the 
assumption of the KSA holds true. The right panel of Fig. 4 
shows that the coordination of a water molecule with  Na+ is 
reduced in the vicinity of a hydrophobic solute. For this spe-
cific test voxel, it is even lower than expected by the KSA, 
indicated by a lower peak in ginh.

In Fig. 5, we visualize the spatially resolved water–water, 
water–cation, and water–anion entropy contributions around 
carbazole. The carbazole molecule may be divided in two 

regions, where one is a large hydrophobic moiety formed 
by the aromatic carbon atoms, and the other is the nitrogen 
atom, which is a hydrogen bond donor and therefore creates 
a region of increased water and  Cl− density.

For the water–water contribution (first row in Fig. 5), 
we find that the KSA is qualitatively wrong over the whole 
hydrophobic moiety of carbazole, predicting the wrong sign 
of the water–water entropy contribution. Close to the hydro-
gen bond donor, the agreement is better. This is because the 
carbazole nitrogen already satisfies one of the water hydro-
gen bonds, and thereby reduces the coordination of water 
more effectively than the hydrophobic region.

In contrast, the KSA performs very well overall for 
the water–cation contribution (second row in Fig. 5). The 
highest values are found close to the hydrogen bond donor 
group, where the water density is very high, but the  Na+ 
density is very low. Similarly, the KSA performs well for 
the water–anion contribution. Here, we find an additional 
region with entropy lower than bulk, indicating that water 
in this region may be coordinated to a  Cl− that is next to the 
nitrogen atom, resulting in an increased Gs�′.

Free energy of solvation

We performed TI calculations of carbazole in 1.0 M NaCl 
solution, which result in a solvation free energy of −7.4 kcal/
mol. Summing up all the energies and first- and second-
order entropies calculated above results in a free energy of 
solvation of carbazole of +4.2 kcal/mol. As shown above, 
the effect of the water–water entropy is very small, but it is 
known from previous work on GIST in pure water that the 
second and higher orders should be on the order of −0.4 
times the first order water entropy. If we omit the second-
order entropy and use this approximation instead, we arrive 
at a more realistic value of −2.34 kcal/mol.

This shows that orientational water–water correlations 
are more relevant to the final hydration free energy than the 
radial contribution described here. However, an analog lin-
ear correction does not seem to be possible for the ionic con-
tributions, since e.g., the water–ion correlations are larger 
than the total ion entropy.

For prospective works, this implies that the water–water 
entropy should be estimated either via a simple linear cor-
rection, or via a higher-dimensional approximation of the 
second-order entropy. Since the KSA performs well on 
water–ion entropies, while strongly reducing the amount of 
sampling required, it should be feasible to compute ionic 
entropies via the KSA in a higher-dimensional represen-
tation. This would allow for fast and accurate estimation 
of the ionic entropy. A full 3-body treatment of the ionic 
contributions, however, would be prohibitively challeng-
ing in terms of sampling requirements. Therefore, such a 

Fig. 2  Waterfall plot showing the contributions of different entropy 
terms to the solvation free energy of carbazole in 1 M NaCl solution
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higher-dimensional representation is out-of-scope for the 
present work.

KS values from GIST

To test the validity of our method on a more diverse set 
of structures, we used GIST to calculate KS values of 16 
rigid small molecules, for which experimental KS values are 

available from the literature [34]. We only use the rigid mol-
ecules from the dataset, since GIST is defined with respect 
to a rigid solute structure, and flexible molecules require 
individual calculations for each relevant conformation.

For each molecule, we performed 11 simulations at dif-
ferent salt concentrations from 0 to 1.0 M and used GIST 
to obtain the free energy of solvation (ΔGsolv). We did not 
perform the full 3-body calculation but estimated the second 

Fig. 3  Scatter plots of the KSA entropy values per voxel against the values from the conditional histograms, for every combination of solvents. 
All values are in kcal/(mol Å3)
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order entropy contributions using the KSA (excluding the 
water–water contribution).

ΔGsolv increases linearly with the salt concentration. We 
compute KS from the slope of ΔGsolv and use the uncertainty 
of the fit as a measure of accuracy.

In Fig. 6, we compare the results to experimental KS val-
ues [34].

Without the second order entropy, we find a Pearson cor-
relation of 0.74 between the calculated and experimental val-
ues. However, the individual values are substantially higher 
than the experimental ones. This shows that the missing 
higher order entropies counteract the energy contribution in 
terms of the salting out effect.

Subtracting the second order integrals of TΔS, we 
find that the absolute values are significantly closer to the 
experimental ones, and the Pearson correlation (R) slightly 
improves from 0.74 to 0.78. This indicates that the second 
order entropy, and especially the water–ion entropy, present 
a large negative contribution to (and thereby reduce) the 
salting-out effect.

There is still a significant overprediction of the salting-out 
effect. One likely reason for this is the simplified 1-dimen-
sional representation of the pair distribution functions in the 
second-order entropy. However, higher-order entropy con-
tributions might also play a role.

In Fig. 6, the KS value of bisphenol A (BPA) is signifi-
cantly overpredicted. This has already been noted in prior 
work by Misin et al. [54]. They argue that this overpredic-
tion is due to a relatively stable dimer between BPA and a 

 Na+ ion, which is hard to describe using conventional force 
fields.

Conclusion

The thermodynamics of solvation are crucial in many fields, 
such as the pharmaceutical industry or environmental 
research. While most implicit solvent models treat the ionic 
strength as an integral part of solvation, many methods based 
on explicit solvent models lack in this regard.

While the GIST method has been previously applied to a 
wide range of topics ranging from drug discovery [91, 92] 
to biophysical properties of antibodies [57], it was previ-
ously limited to pure solvents composed of rigid molecules. 
Here, we extend it towards salt-water systems and, prospec-
tively, to arbitrary solvent mixtures. Since many biochemical 
processes and methods rely on high salt concentrations, we 
believe that this will greatly increase the applicability of 
GIST, and that the detailed resolution of free energy values 
computed by this method will be valuable for in-depth analy-
sis of solvation effects. In cases where ions are only used to 
neutralize the simulation box, the ionic entropy contribu-
tions will be negligibly small due to the low concentration. 
However, our approach provides a physical way of treating 
the ion–water energy in those cases.

While the extension of the energy calculation is relatively 
straight-forward, the entropy calculation is more challeng-
ing. We benchmark our algorithm by presenting spatially 
resolved contributions to the solvation entropy of carbazole 

Fig. 4  ginh , g0 , and Gsν� distribution functions for water–water (left panel) and water–Na+ (right panel) systems, at a grid voxel close to the carba-
zole molecule, centered at (0.5, 4.5, 0.5) Å in the same coordinate system as used below
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in a 1 M NaCl solution. We compute the second order 
entropy from a 1-dimensional histogram representation on 
a 3D grid and test the possibility of quickly estimating those 
contributions using the KSA.

Our results show that the first-order ion entropy, as well 
as the second order ion–ion and ion–water entropies, are 
very minor contributions to the solvation entropy. On the 
other hand, the water–ion entropies contribute strongly to 

Fig. 5  Spatially resolved water–water, water–cation, and water–anion 
entropies around carbazole. The left column shows the values com-
puted from the KSA, while the right column shows the values from 

the conditional histogram approach. The outline of carbazole is 
superposed on the image for reference. The integrals were computed 
within 10 Å of any carbazole atom
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the free energy of solvation. The water–water contribution 
largely cancels out, even though the individual voxel values 
are rather high. Combined with literature results on solva-
tion in pure water showing that the higher order entropies 
are roughly −0.4 times the first order entropy, this indicates 
that orientational contributions also play a significant role.

The good performance of the KSA at computing 
water–ion entropies is crucial for practical applications of 
our method, since it allows a fast estimation of the ionic 
contributions to the entropy of solvation, which would oth-
erwise be very challenging computationally. In future works, 
using a higher-dimensional representation of the water–ion 
pair distribution function for the KSA computation might 
also be feasible.

However, the KSA should not be used to compute the 
water–water entropy, and will probably also fail when the 
salt concentration significantly exceeds the 1 mol/L used 
here. Instead, the relatively high density of water makes it 
easier to obtain converged results for the 3-body entropy 
calculation. The most effective way of obtaining the full sol-
vation entropy in a salt-water mixture would be a combina-
tion of KSA calculations for the ionic terms and full 3-body 
computation for the water–water entropy.

We further benchmark our algorithm by calculating 
salting-out coefficients for a set of 16 small molecules. We 
find a compelling correlation to experimental values, though 
the individual values are strongly overpredicted. The sec-
ond order reduces this overprediction roughly by a factor of 
2, indicating that the missing degrees of freedom are also 
relevant.

Due to the wide applicability of GIST, we expect that 
our extension will provide an effective tool to explain salt-
dependent processes that govern the function of biomolecu-
lar systems.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10822- 021- 00429-y.
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