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Abstract

Background: RNA sequencing (RNA-seq) is an indispensable tool in the study of gene regulation. While the technology has
brought with it better transcript coverage and quantification, there remain considerable barriers to entry for the
computational biologist to analyse large data sets. There is a real need for a repository of uniformly processed RNA-seq
data that is easy to use. Findings: To address these obstacles, we developed Digital Expression Explorer 2 (DEE2), a
web-based repository of RNA-seq data in the form of gene-level and transcript-level expression counts. DEE2 contains >5.3
trillion assigned reads from 580,000 RNA-seq data sets including species Escherichia coli, yeast, Arabidopsis, worm, fruit fly,
zebrafish, rat, mouse, and human. Base-space sequence data downloaded from the National Center for Biotechnology
Information Sequence Read Archive underwent quality control prior to transcriptome and genome mapping using
open-source tools. Uniform data processing methods ensure consistency across experiments, facilitating fast and
reproducible meta-analyses. Conclusions: The web interface allows users to quickly identify data sets of interest using
accession number and keyword searches. The data can also be accessed programmatically using a specifically designed R
package. We demonstrate that DEE2 data are compatible with statistical packages such as edgeR or DESeq. Bulk data are
also available for download. DEE2 can be found at http://dee2.io.
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Background

Since its first description 10 years ago, RNA sequencing (RNA-
seq) has become a powerful method in transcriptomics, allowing
highly accurate gene expression quantification [1]. As the cost of
sequencing decreases, RNA-seq data are becoming more ubiqui-
tous in the scientific literature. It is standard practice in the field
and a compulsory requirement for journals to deposit these data
to Gene Expression Omnibus (GEO) and Sequence Read Archive
(SRA) [2,3] in the form of raw and processed files, with the aim of
fostering greater reuse and transparency. In practice, however,

there are several hurdles that impede widespread reuse by bi-
ologists. First, processing raw sequence data from SRA requires
significant computational resources and command-line exper-
tise. Second, the processed RNA-seq data hosted by GEO are pre-
pared in assorted formats that utilize various software tools and
genome annotation sets, which complicates meta-analyses. De-
spite the value of these data to the scientific community and
tremendous cost to generate them, RNA-seq data aggregation ef-
forts have been largely limited to human and mouse [4,5] or are
closed source/subscription services [6]. BgeeDB provides array
and sequencing-based expression data on many animal species
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Figure 1: Overview of RNA-seq data processing, storage, and provision.

with a particular focus on high-quality measurements of base-
line samples at different life stages (excluding disease, treat-
ments, or genetic perturbations) [7]. Expression Atlas is one of
the most comprehensive repositories of processed expression
microarray data with an informative graphical interface, but
only a comparatively small number of RNA-seq data sets are cur-
rently included [8]. In an effort to boost reuse of public transcrip-
tome data, we developed Digital Expression Explorer 2 (DEE2), an
open-access web-based repository of uniformly processed RNA-
seq digital gene-level and transcript-level expression data for
several major organisms that is compatible with many types of
downstream analyses.

Data Processing

DEE2 consists of 3 parts: (i) a pipeline that downloads and pro-
cess raw data sets from SRA; (ii) a data repository where pro-
cessed files are collected, filtered, and organized/stored and job
queues are generated; and (iii) a web server where users can
search metadata and obtain data sets of interest. A schematic di-
agram of the organization of DEE2 is provided in Fig. 1. Data pro-
cessing nodes request SRA run accession numbers from the web
server and obtain raw data from SRA. Processed data are sent
to the web server, validated, and relayed to the DEE2 repository
server. The repository server performs further validation checks,
incorporates new data sets into the repository, collects corre-
sponding metadata from SRAdbV2 [9], and queues outstanding
jobs. The repository server then sends updated metadata and
job queue information to the web server. End users obtain data
from the web browser, command line, or bulk dumps.

Pipeline Features

The DEE2 pipeline uses containerization to enable rapid ap-
plication deployment and guarantees analytical reproducibil-
ity across different computer systems. End users can run the
Docker image [10] on their own hardware to process SRA data
sets of interest as specified with a species name and SRA run ac-

cession. After completion of the processing, users will have im-
mediate access to the outputs, and after validation by the DEE2
repository server, the data sets will be available publicly. In this
way, power users obtain benefit by using an established analysis
pipeline and simultaneously contribute to expanding the public
resource. One concern with Docker images is that they cannot
be run without administrator ”root” permissions, e.g., by users of
a shared high-performance computing system. To address this
limitation, the image can be converted for use by Singularity [11]
or UDocker [12] without root permissions.

The steps involved in data processing are summarized in
Fig. 2. The pipeline fetches the appropriate reference genome,
annotation, and complementary DNA sequence data from En-
sembl (August 2017 version) [13]. Transcriptome sequencing
data sets are downloaded from SRA using Aspera. The pipeline
handles both single-end (SE) and paired-end (PE) sequencing
data with the exclusion of colorspace sequence data. A sam-
ple of 4,000 reads is used to perform basic checks including
read and quality string format using FastQC [14] prior to extrac-
tion of fastq files with a parallel implementation of fastq-dump
[15]. Skewer [16] is used to trim bases with phred quality <10
on the 3′ ends and discards reads shorter than 18 nucleotides.
Adapter sequences at the 3′ end are detected using Minion, part
of the Kraken package [17]. Adapter sequences are clipped us-
ing Skewer if the predicted adapter sequence is not present in
the genome and exceeds a frequency of 2.5%. To handle nonref-
erence 5′ bases including unique molecular identifiers, a sam-
ple of 10,000 reads undergo progressive clipping of 5′ ends (4,
8, 12, 20 nucleotides) followed by genomic mapping with STAR
to determine the optimal number of bases to clip from the 5′

end, as determined by the proportion of uniquely mapped reads.
STAR [18] is then used to map all reads that pass quality control
(QC) to the genome and generate gene-wise expression counts
with the ”–quantMode GeneCounts” (no alignment files are gen-
erated). STAR output is also used to diagnose whether the data
set is strand specific. To classify a data set as strand specific,
there needs to be a 5:1 strand bias in assigned reads according to
STAR. This option is passed to Kallisto, which maps reads to the
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Figure 2: Overview of steps in the RNA-seq data processing pipeline.

transcriptome to generate estimated transcript counts [19]. Gene
and transcript counts, along with analysis logs and QC metrics,
are zipped and transferred to the web server by sftp. The pipeline
has the added ability to process users’ own fastq files using the
same pipeline, although the results remain private. The pipeline
code is open source and available online [20]. Software versions
and parameters used in the pipeline are provided in Supplemen-
tary Table S1.

Data Provided

Currently DEE2 hosts data from 9 organisms selected because
they are important model organisms and have a large num-
ber of corresponding transcriptome data sets in SRA. Currently,
there are >580,000 RNA-seq data sets available, with each data
set corresponding to a specific SRA run number. Together the 9
species included constitute 73.5% of all transcriptome data sets
available from SRA.1 DEE2 consists of >5.3 trillion assigned se-
quence reads (Table 1). The data provided include gene-wise ex-
pression counts, transcript-wise estimated counts, gene infor-
mation, transcript information, summary metadata, full meta-
data, and QC metrics, provided as 7 separate tables in tsv format.
The gene information table contains the gene accession num-
ber, corresponding gene symbol, and gene length as calculated
by GTFtools v0.6.5 [21]. The transcript information file contains
transcript-parent gene relationships, gene symbol, and tran-
script length. Gene and transcript length information will allow
straightforward normalization of expression by contig length.
The full metadata table contains all corresponding metadata
from SRAdbV2, while the summary metadata contains only cor-
responding SRA accession numbers and experiment title. More-
over, analysis logs for each data set are provided. Classification
of data sets by QC metrics is discussed below.

Quality Control Metrics

QC is paramount for a resource such as this. A range of qual-
ity metrics are accessible and can be viewed on the search re-

1 These 9 species represent 822,819 of the 1,119,784 RNA experiments
present in SRA as of 29 October 2018.

sults page, which includes mean base quality scores, number of
reads, alignment rates, and read assignment statistics. Detailed
analysis logs are distributed alongside expression data. Sum-
mary statistics for human data sets are provided in Fig. 3. There
are roughly equal numbers of runs with SE and PE sequencing
(Fig. 3A). Almost all data sets are encoded in Illumina 1.9 for-
mat (also known as Sanger), and a small number of data sets
with Illumina 1.5 quality encoding (Fig. 3B). The median read
length is 75 base pairs ( bp) and mode is 50 bp (Fig. 3C). Most
(71.3%) data sets had ≥95% of reads pass QC filtering (Fig. 3D).
The median number of reads passing QC filtering was 4.6 million
(Fig. 3E). The median proportion of STAR unique mapping was
82% (Fig. 3F). Median assignment proportion recorded a median
of 59.4% (Fig. 3G). The majority of data sets were classified as un-
stranded (67.3%), with smaller numbers of runs biased towards
each strand (Fig. 3H). The median proportion of reads mapped
with Kallisto was 63.2% (Fig. 3I).

Although there are no definitive thresholds for what consti-
tutes a valid RNA-seq data set, there are 2 main principles: (i) the
digital nature of RNA-seq means that data sets with more reads
will provide more accurate quantification, and (ii) data sets with
a large proportion of reads excluded from downstream analy-
sis will be less representative of the original sample, and sug-
gest issues with sample quality, library preparation, or sequenc-
ing instrumentation. Using these principles, we have classified
the data sets as ”pass,” ”warn,” and ”fail” according to heuris-
tics outlined in Table 2. Each rule has a numeric code, and this
is provided in the search results. Because sequencing depth rec-
ommendations are larger for more complex organisms, the met-
rics describing integer counts are proportional to transcriptome
complexity (the number of protein-coding genes as defined by
Ensembl).

Furthermore, if a data set profile is substantially different to
the bulk of ”pass” data sets, this may be useful information for
end users. To quantify this, an average gene expression profile
(STAR) of ”pass” data sets is calculated and each data set is com-
pared by Pearson correlation (Methods). If the correlation coeffi-
cient is <0.5, then the data set is flagged as ”warn.” As new data
sets are periodically added, these correlation values may vary
slightly over time.

To understand why some data sets have low correlation to
the bulk of ”pass” data sets, we undertook an unsupervised clus-
tering analysis of correlation in 5,808 S. cerevisiae data sets. While
most Spearman correlation coefficients were >0.7, there was a
small fraction <0.5 (Fig. 4A). Most data sets (5,571) were classified
into 2 large clusters (Fig. 4B; blue and light blue). The remaining
236 data sets belonged to several smaller clusters. These smaller
clusters mostly contained data sets derived from nonstandard
RNA-seq library construction protocols such as 3′ end RNA-
seq (ERP004367, SRP048715, SRP048715, SRP021938), Ribo-Seq
(SRP075766, SRP082147), and RNA-IP-Seq (SRP032276). One of the
smaller clusters contained data sets of cells undergoing sporula-
tion and meiosis (e.g., SRP092588, SRP061166, SRP032309). From
this analysis, we can conclude that highly correlated data sets
are standard RNA-seq/mRNA-seq and data sets with low corre-
lation are mostly due to the use of nonstandard library construc-
tion protocols, but also some data sets derived from less charac-
terized biological states (e.g., meiosis/sporulation in the case of
S. cerevisiae).
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Table 1: Hosted gene expression data as of 11 January 2019

Species Projects Experiments Runs
QC classification

pass/warn/fail
Assigned reads

(STAR)
Assigned reads

(Kallisto)

Arabidopsis
thaliana

986 17,095 26,061 5,602/15,122/5,337 2.87e + 11 2.92e + 11

Caenorhabditis
elegans

339 5,759 7,722 1,647/2,446/3,629 8.71e + 10 7.88e + 10

Drosophila
melanogaster

678 14,401 18,713 4,410/7,471/6,832 1.75e + 11 1.87e + 11

Danio rerio 457 26,246 28,100 1,084/5,826/21,190 1.11e + 11 6.20e + 10
Escherichia coli 180 1,488 1,638 355/376/907 1.26e + 10 9.40e + 09
Homo sapiens 6,768 197,836 229,634 42,225/77,254/110,155 2.27e + 12 2.51e + 12
Mus musculus 7,078 204,850 252,058 23,840/85,874/142,344 1.84e + 12 2.08e + 12
Rattus
norvegicus

349 4,965 5,799 426/2,651/2,900 5.95e + 10 6.42e + 10

Saccharomyces
cerevisiae

442 10,239 11,369 3,025/2,783/5,561 7.41e + 10 7.32e + 10

Total 17,277 482,879 581,094 82,614/199,803/298,855 4.92e + 12 5.35e + 12

Table 2: Criteria for data set quality classification

Metric Meaning Fail threshold Warn threshold Code

NumReadsQcPass
No. reads passed QC filtering <50 reads per

genea

<500 reads per
genea

1

QcPassRate Proportion of reads passed QC filtering <60% <80% 2

STAR UniqMapRate
Proportion of reads mapped uniquely
to the reference genome using STAR

<50% <70% 3

STAR AssignRate
Proportion of reads assigned to genes
with STAR

<40% <60% 4

STAR AssignedReads
No. reads assigned to genes with STAR <50 reads per

genea

<500 reads per
genea

5

Kallisto MapRate
Proportion of reads assigned to
transcripts with Kallisto

<40% <60% 6

Kallisto MappedReads
No. reads assigned to transcripts with
Kallisto

<50 reads per
genea

<500 reads per
genea

7

DatasetCorrel Pearson correlation coefficient to
passed data average

– <0.5 8

aNumber of protein-coding genes was obtained from Ensembl and used as an estimator of transcriptome complexity.

Pipeline Validation

To demonstrate the accuracy of the pipeline, we performed a
simulation study. Synthetic Illumina HiSeq RNA-seq data were
generated from Ensembl transcripts and processed with the
pipeline (see Methods). The reads per million (RPM) values were
compared between the ground truth and DEE2-processed data,
and Spearman correlation coefficients (ρ) were calculated (Fig. 5;
Supplementary Table S2). We observed that analyses of sim-
pler organisms were, in general, more accurate than for more
complex transcriptomes of human and mouse. Overall there
was only a small improvement in accuracy in PE over SE reads.
Transcript quantification results from Kallisto were less accurate
than gene level quantification with STAR. On the other hand,
Kallisto transcript counts collapsed into their parent gene were
substantially more accurate than STAR gene counts (Fig. 5; Sup-
plementary Table S2), consistent with previous a previous report
[22].

In a separate validation exercise, we compared author-
supplied expression count data present in GEO with correspond-
ing DEE2-STAR counts, and quantified the similarity at the level
of individual runs as well as across contrasts (see Methods for
details). At the level of individual runs, there was a tight corre-

lation between DEE2-derived and author-supplied RPM values,
with Spearman coefficients in the range of 0.95–0.99 (Fig. 6A). Af-
ter differential expression analysis with edgeR [23], genes were
ranked by significance. Author-derived differential expression
results were then compared with DEE2-derived differential ex-
pression results, enabling us to generate a single Spearman
correlation coefficient for each contrast. Using this approach,
the correlation in differential expression results between DEE2-
STAR and author-supplied counts ranged between 0.55 and 0.95,
with a median of 0.81 (Fig. 6B). Differential expression correla-
tion was higher in comparisons with more replicates (ρ = 0.757,
n = 9, P = 0.018). Both exercises support the validity of DEE2 data.

A Brief Meta-analysis of Yeast Gene
Expression

To demonstrate the utility of DEE2 data we undertook an ex-
ploratory analysis of gene expression in S. cerevisiae. We corre-
lated the expression of all genes in 5,808 data sets in DEE2 and
performed unsupervised hierarchical clustering. This resulted
7,126 genes being classified into 10 clusters (Fig. 7A). The largest
cluster consisted of 3,634 genes (light blue), and the remain-
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Figure 3: Summary QC metrics for human data sets. (A) sequence format. (B) Base quality encoding, Illumina version 1.9 and 1.5. (C) Read length histogram. (D)
Proportion of reads that pass QC filtering. (E) Number of QC passed reads per run. (F) Proportion of STAR uniquely mapped reads. (G) Proportion of reads assigned to
genes. (H) Classification of reads by strandedness. (I) Proportion of reads mapped with Kallisto. Data accessed 20 December 2018.

ing clusters contained between 634 and 175 genes. Gene ontol-
ogy analysis was performed to detect overrepresented biologi-
cal pathways in each cluster (Fig. 7B). Interestingly, each clus-
ter was involved in different biochemical specializations. For
example, the dark green cluster was overrepresented in genes
involved in translation, while the nearest neighbour, light pur-
ple, was overrepresented in amino acid metabolism. Similarly
the light orange cluster was enriched for genes involved in mi-
tochondrial function and the nearest neighbour, pink, was in-

volved in adenosine triphosphate metabolism. These findings il-
lustrate one way in which DEE2 facilitates meta-analysis of gene
expression.

Reuse Potential

The financial cost of generating these raw data sets is substan-
tial. A rough estimate of the cost to generate raw data included
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Figure 4: Unsupervised clustering analysis of the correlation of 5,807 S. cerevisiae data sets. (A) Colour key and histogram of Spearman correlation coefficients. (B) Heat
map of pairwise correlation values with data sets clustered by similarity. Red indicates high correlation and blue indicates low correlation.

Figure 5: Comparison of ground truth and DEE2 pipeline inferred expression profiles. Human SE 100 bp RNA-seq reads simulated with ART [24] underwent mapping

with the DEE2 pipeline, generating gene-level and transcript-level expression counts. Inferred expression count values were normalized for library size and plotted
against the corresponding ground truth values. Dashed lines show the 2 and –2 fold expression differences. STAR gene counts were generated with the –quantMode
GeneCounts feature. Kallisto-estimated counts were used to quantify transcripts. Kallisto gene counts were calculated by aggregating (sum) estimated transcript
counts to their parent gene.

in DEE2 is ∼$162 million US.2 In contrast, the estimated cost to
process these data sets on Amazon EC2 infrastructure is esti-
mated at just $97,000 but could be reduced to ∼$24,000 using off-
peak resources.3 Therefore, data aggregation efforts like DEE2
can, with a modest budget, add substantial value to these exist-

2 Estimated cost (in US dollars) of generating 5.3 trillion 100 bp SE reads
from 399,377 experiments. Cornell University Institute of Biotechnol-
ogy advertises HiSeq2500 at $18 ,407 for 8 lanes 100 bp SE [25]. Illumina
HiSeq2500 v4 specifications sheet estimates 1.5 billion reads per 8-lane
flow cell [26]. That gives $12.27 per million reads. The cost of sequenc-
ing is $65.0 million. Library preparation costs ∼$200 per sample, which
is in the range advertised at Cornell multiplied by 482,879 experiments
equates to $96.6 million for library construction. Grand total of $162 mil-
lion.

3 Estimated cost of Amazon EC2 pricing is based on the mean elapsed
time for processing a data set being 894 seconds on a 16-thread Intel
Xeon E3-12xx v2 (Ivy Bridge, indirect branch restricted speculation) 2.6
GHz, 64 GB RAM with ∼400 MB/s download speed from the National
Center for Biotechnology Information. The equivalent Amazon instance
is r5d.2xlarge and would require a 500 GB volume. The elapsed time is
based on observations from a set of 705 human data sets. The breakdown

ing data by enabling straightforward reuse. Another benefit of
aggregation is that genome annotations are updated over time
as compared to author-submitted data that remain static.

To enhance the reuse potential, we have designed a sim-
ple and easy-to-use website to access the data. Users select 1
of the 9 species featured and provide either keywords or ac-
cession numbers to identify data sets of interest (Fig. 8A). The
web interface provides data sets in batches of ≤500 runs. When
501–5000 matches are obtained, users can download the corre-
sponding metadata and are given options to access expression
data (see below). The search results page contains correspond-
ing SRA accession numbers, experiment title, and keyword con-
text if a keyword was used (Fig. 8B). The results page provides
links to QC information so that users can be assured of data set

for the total on demand cost is $83,697 for compute, $131 for data trans-
fer, and $12 ,750 for persistent data volume. The off-peak cost breakdown
is $11, 544 for compute, $131 for data transfer, and $12 ,750 for persis-
tent data volume. The persistent data volume cost is valid if using 17
instances continuously for a full year. Compute price is based on east-
ern US ocation (Ohio) and is more expensive at other locations.
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Figure 6: Comparison of DEE2 data with author-uploaded gene-level count data. (A) Sample level RPM correlation between author-provided and DEE2-processed
expression profiles. (B) Correlation of differential expression results. Ath: A. thaliana; cel: C. elegans; dme: D. melanogaster; dre: D. rerio; eco: E. coli, hsa: H. sapiens; mmu:
M. musculus; rno: R. norvegicus; sce: S. cerevisiae.

Figure 7: Unsupervised hierarchical clustering of gene expression in S. cerevisiae. (A) Clustering and correlation heat map. Red indicates high correlation and blue
indicates low correlation. (B) Biological process gene ontology enrichments of each cluster. Only the top 3 biological processes are shown (as ranked by significance).

quality. If ≤500 matches are found, the QC information can be
seen simply by hovering the mouse over the QC summary field
(Fig. 8B). Users then tick the box of every data set they would like
to download, and by hitting the ”Get Counts” button, the data
sets are downloaded. The searching and retrieval steps for the
example depicted in Fig. 8 took 13 seconds. Fig. 8C demonstrates
how data are delivered to end users: as a zip archive containing
tab-separated expression count, contig information, metadata,
and QC information. The web server is limited to fetching 500
data sets at a time. To enable easy access to large data sets we

provide zip ”bundles” for each project with ≥200 runs that have
been fully processed by DEE2; there are 425 such bundles as of
11 January 2019 [27].

Because R is the main language for downstream statistical
analysis of RNA-seq data, we also provide an R package getDEE2
to obtain DEE2 data. In the example shown in Box 1, data sets
belonging to an experiment with GEO series GSE33569 are ob-
tained. Transcript-wise counts can be aggregated to gene-level
counts with a single command (Tx2Gene).
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Figure 8: Example of the DEE2 web interface. (A) Users select the species of interest and supply either accession numbers or keywords to search. (B) In this case, a search
for ”fatty acid” for S. cerevisiae yields 20 hits. Mouse pointer hovering over the QC summary field shows the key quality criteria of the processed data sets. (C) Users
can select the data sets to download by ticking the boxes and hitting the ”Get counts” button at the bottom of the page. The downloaded zip file (C left side) contains
detailed processing logs of each run, along with a matrix of gene-wise counts, transcript-wise counts, metadata information, QC information, and information on

transcripts and genes. The gene-wise count matrix and QC information are shown in C, middle and right side, respectively.

For power users, bulk data dumps are available and will be
of use to researchers wishing to do wholesale meta-analyses,
as 3 studies already have [28–30]. Irrespective of the method
of acquisition, DEE2 data are compatible with many different
downstream applications including R/Bioconductor [31,32], De-
gust [33], and Galaxy [34].

Conclusion

DEE2 provides a unique framework and user-friendly resource of
processed RNA-seq data that alleviates many of the bottlenecks
researchers currently face with analysis of public RNA-seq data.
Our testing shows that DEE2 and Degust enable analysis of pub-
lic RNA-seq data on mobile devices such as smartphones. Bulk
data provided by DEE2 are a useful starting point for researchers
performing meta-analyses of RNA-seq data.

Methods

Analysis of correlation

Correlation of a data set to the bulk of other high-quality data
sets could be a useful metric to filter by when performing meta-
analyses. To make this a tractable calculation, first a mean gene
expression profile is generated using STAR gene expression data
from ≤10,000 randomly selected data sets that pass all other QC
checks. Next, each data set is compared to the average pass pro-
file and a Pearson correlation coefficient is calculated. As new
data sets will be added to DEE2 regularly, the average pass pro-
file will vary slightly over time and as such, the correlation coef-
ficient is calculated to 2 significant figures only.

In the analysis of data set correlation (Fig. 4), the Spearman
correlation of all 5,808 S. cerevisiae data sets classified as ”pass”
and ”warn” was calculated in a pairwise fashion (data as of 3
January 2019). Clustering was performed using the hclust func-
tion in R with the complete linkage method, followed by tree
cutting at 0.375 of the maximum branch length. The heatmap.2
package was used to generate the heat map. In the analysis of
gene expression correlation (Fig. 7A), the S. cerevisiae data were
transposed prior to correlation analysis, then tree cutting was



Ziemann, Kaspi and El-Osta 9

Box 1: An example of obtaining gene and transcript expression data sets using the R functions (GEO series: GSE33569). The Tx2Gene function is used to aggregate

(sum) transcript counts to gene-level counts.

performed at 0.17 of the maximum branch length. The clusters
obtained were subjected to gene ontology analysis at the level
of biological pathways using the enrichGO tool in the cluster-

Profiler package version 3.8.1 (clusterProfiler, RRID:SCR 016884)
[35]. Only the top 3 pathways for each cluster were plotted.

https://scicrunch.org/resolver/RRID:SCR_016884
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Box 1: (Continued).

Pipeline validation using simulated data

To validate the accuracy of the DEE2 pipeline, we generated Il-
lumina HiSeq2500-like sequence reads from Ensembl comple-
mentary DNA sequences using ART (v2016-06-05) [24] with a de-
fined seed (1,540,165,885) and a uniform fold coverage of 2. Read
lengths were 50 and 100 bp in SE and PE format, respectively. The
read sets were processed with the DEE2 pipeline and the ob-
served expression data were compared with the ground truth,
using Spearman correlation of library size normalized profiles
in RPM as an indicator of accuracy. For Kallisto-based analysis,
estimated transcript counts ”est counts” were used. Transcript-
estimated counts were totalled for each parent gene to generate
gene-wise expression counts. These analyses were performed
for all 9 organisms currently included in DEE2.

Pipeline validation using public data

Another way to validate the accuracy of DEE2 data is to compare
with author-submitted results available on GEO. We searched for
studies that reported expression data as raw counts with offi-
cial gene names or Ensembl accession numbers, ≥2 replicates,
and acceptable read depth and genome mapping rate. Author-
supplied counts were obtained from GEO for the data sets listed
in Table 3 [36–44]. Spearman correlation of RPM values was used
to quantify the similarity of DEE2 and author-supplied data at
the level of individual runs. To determine the similarity in dif-
ferential expression results, the same edgeR v3.22.3 [23] analysis
was performed in parallel on author-supplied counts and DEE2
counts. The runs defined as control and case for each experi-
ment are listed in Table 3. To rank genes by significance in dif-
ferential expression, the sign of the fold change was multiplied
by the negative log2 P-value. Spearman correlation analysis was
used to quantify the similarity in differential expression results
using these 2 data sources.

Availability of source code and requirements
� Project name: Digital Expression Explorer 2
� Project home page: http://dee2.io
� Operating systems (data set): Platform independent
� Operating systems (pipeline): Unix and MacOS

� License: GNU GPL v3
� Any restrictions on use by nonacademics: none

Availability of supporting data and materials
� Data set access: http://dee2.io (RRID:SCR 016929)
� https://dee2.io/bulk.html Bulk data access:
� Source code: https://github.com/markziemann/dee2 (RRID:

SCR 016930)
� Pipeline Docker image: https://hub.docker.com/r/mziemann/

tallyup/ (RRID:SCR 016931)

A snapshot of the latest update of the bulk data presented in
this article is available in the GigaScience GigaDB repository [45].

Additional files

Supplementary Table S1. Software versions and parameters
used in the pipeline.
Supplementary Table S2. Spearman correlation coefficients (ρ)
between ground truth and DEE2 processed expression profiles
(RPM) from simulated data.
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Table 3: Details of author-supplied processed data used to compare to DEE2 gene expression counts

Species, GEO series
Contrast

(control/case) Spots Author pipeline

A. thaliana, GSE53078 [36] GSM1281703 15,143,653 Genome: TAIR10
GSM1281704 12,498,123 Annotation version: Unknown
GSM1281705 22,721,359 Mapper: TopHat
GSM1281706 17,255,612 Counter: HTSeq

C. elegans, GSE46344 [37] GSM1128862 30,650,959 Genome: WS220/ce10
GSM1128863 47,245,721 Annotation: Ensembl v66
GSM1128864 54,573,311 Mapper: TopHat
GSM1128868 49,315,179 Counter: HTSeq
GSM1128869 56,295,663
GSM1128870 68,641,842

D. melanogaster, GSE43180 [38] GSM1057982 24,902,977 Genome: dm3
GSM1057983 36,434,276 Annotation: Ensembl v64
GSM1057984 32,591,508 Mapper: Tophat
GSM1057985 35,375,654 Counter: HTSeq

D. rerio, GSE80768 [39] GSM2136810 19,404,674 Genome: Zv10
GSM2136811 22,820,115 Annotation: Ensembl (version unknown)
GSM2136812 25,181,184 Mapper: USeq and Novoalign
GSM2136813 21,487,514 Counter: USeq
GSM2136814 24,831,643
GSM2136815 22,664,352
GSM2136816 22,629,782
GSM2136817 21,842,104
GSM2136818 20,601,291
GSM2136819 18,183,746
GSM2136820 21,007,467
GSM2136821 20,992,396
GSM2136822 24,708,106
GSM2136823 21,105,462
GSM2136824 28,069,482

E. coli, GSE80251 [40] GSM2122743 5,221,858 Genome: E. coli K12 MG1655
GSM2122744 6,503,454 Annotation: GenBank NC 000913.3
GSM2122745 6,209,263 Mapper: TMAP (map4)
GSM2122746 6,391,549 Counter: Bedtools
GSM2122747 6,197,872
GSM2122748 5,090,669

H. sapiens, GSE63776 [41] GSM1556982 30,007,994 Genome: hg19
GSM1556983 27,252,897 Annotation: UCSC (version unknown)
GSM1556984 42,212,497 Mapper: Bowtie2 (after adapter clipping)
GSM1556985 31,456,271 Counter: HTSeq
GSM1556986 31,569,339
GSM1556987 37,477,777

M. musculus, GSE59970 [42] GSM1462883 32,015,112 Genome: GRCm38.70/mm10
GSM1462884 30,997,187 Annotation: Ensembl v70
GSM1462885 32,612,584 Mapper: Olego
GSM1462886 31,485,760 Counter: BedTools
GSM1462887 30,207,461
GSM1462888 31,028,501

R. norvegicus, GSE65715 [43] GSM1604049 42,296,446 Genome: rn4
GSM1604050 34,887,323 Annotation: Ensembl (version unknown)
GSM1604051 42,725,865 Mapper: Tophat2
GSM1604052 28,210,194 Counter: HTSeq
GSM1604053 30,748,641
GSM1604054 28,450,626

S. cerevisiae, GSE76444 [44] GSM2809655 35,869,614 Genome: EF 4
GSM2809656 37,425,737 Annotation: Ensembl v72
GSM2809657 39,227,797 Mapper: Bowtie
GSM2809658 33,974,055 Counter: HTSeq
GSM2809659 33,339,067
GSM2809660 37,546,069



12 Digital expression explorer 2

ceives funding from the National Health and Medical Re-
search Council—European Union Collaborative Research Grants
Scheme (APP1075563).

Author contributions

M.Z. and A.E.-O. conceived and designed the study. M.Z. and A.K.
wrote the computer code. M.Z. coordinated data processing and
drafted the manuscript. All authors read, revised, and approved
the final manuscript.

Acknowledgements

This research was made possible by use of the Multi-modal Aus-
tralian Sciences Imaging and Visualisation Environment (MAS-
SIVE) and Nectar Research Cloud, both supported by the Aus-
tralian National Collaborative Research Infrastructure Strategy
(NCRIS). This work was supported by Deakin eResearch and
Monash eResearch Centres. We thank Dr. Ross Lazarus and Dr.
Haloom Rafehi for bioinformatics expertise, advice, and helpful
discussions. We thank Julian Vreugdenburg for technical sup-
port. We thank the many users who have provided feedback on
earlier versions of DEE2.

References

1. Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional
landscape of the yeast genome defined by RNA sequencing.
Science 2008;320:1344–9.

2. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive
for functional genomics data sets–update. Nucleic Acids Res
2013;41:D991–5.

3. Kodama Y, Shumway M, Leinonen R, et al. The Sequence
Read Archive: explosive growth of sequencing data. Nucleic
Acids Res 2012;40:D54–6.

4. Collado-Torres L, Nellore A, Kammers K, et al. Repro-
ducible RNA-seq analysis using recount2. Nat Biotechnol
2017;35:319–21.

5. Lachmann A, Torre D, Keenan AB, et al. Massive mining of
publicly available RNA-seq data from human and mouse. Nat
Commun 2018;9:1366.

6. Hruz T, Laule O, Szabo G, et al. Genevestigator v3: a refer-
ence expression database for the meta-analysis of transcrip-
tomes. Adv Bioinformatics 2008;2008:420747.

7. Bastian F, Parmentier G, Roux J, et al. Bgee: Integrating
and comparing heterogeneous transcriptome data among
species. In: Bairoch A, Cohen-Boulakia S, Froidevaux C ,
eds. Data Integration in the Life Sciences. Lecture Notes in
Computer Science, vol. 5109, Berlin, Heidelberg: Springer;
2008;124–31.

8. Papatheodorou I, Fonseca NA, Keays M, et al. Expression At-
las: gene and protein expression across multiple studies and
organisms. Nucleic Acids Res 2018;46:D246–51.

9. Davis S. The SRAdbV2 package. 2018. https://github.com/sea
ndavi/SRAdbV2. Accessed 16 October 2018.

10. Ziemann M. Tally-up: bulk reprocessing of RNA-seq data.
2018. https://hub.docker.com/r/mziemann/tallyup. Ac-
cessed 16 October 2018.

11. Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific con-
tainers for mobility of compute. PLoS One 2017;12:e0177459.

12. Gomes J, Bagnaschi E, Campos I, et al. Enabling rootless Linux
Containers in multi-user environments: the udocker tool.
Comput Phys Commun 2018;232:84–97.

13. Zerbino DR, Achuthan P, Akanni W, et al. Ensembl 2018. Nu-
cleic Acids Res 2018;46:D754–61.

14. Andrews S. FastQC: a quality control tool for high through-
put sequence data. 2010. https://www.bioinformatics.babra
ham.ac.uk/projects/fastqc. Accessed 5 March 2018.

15. Valieris R. Parallel-fastq-dump. 2016. https://github.com/rva
lieris/parallel-fastq-dump. Accessed 5 March 2018.

16. Jiang H, Lei R, Ding SW, et al. Skewer: a fast and accurate
adapter trimmer for next-generation sequencing paired-end
reads. BMC Bioinformatics 2014;15:182.

17. Davis MP, van Dongen S, Abreu-Goodger C, et al. Kraken:
a set of tools for quality control and analysis of high-
throughput sequence data. Methods 2013;63:41–9.

18. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast uni-
versal RNA-seq aligner. Bioinformatics 2013;29:15–21.

19. Bray NL, Pimentel H, Melsted P, et al. Near-optimal proba-
bilistic RNA-seq quantification. Nat Biotechnol 2016;34:525–
7.

20. Ziemann M. Digital Expression Explorer 2 (DEE2): a repository
of uniformly processed RNA-seq data. 2018. https://github.c
om/markziemann/dee2. Accessed 11 January 2019.

21. Li HD. GTFtools: a Python package for ana-
lyzing various modes of gene models. bioRxiv
2018;263517.doi:10.1101/263517.

22. Soneson C, Love MI, Robinson MD. Differential analyses for
RNA-seq: transcript-level estimates improve gene-level in-
ferences. Version 2. F1000Res 2015;4:1521.

23. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconduc-
tor package for differential expression analysis of digital
gene expression data. Bioinformatics 2010;26:139–40.

24. Huang W, Li L, Myers JR, et al. ART: a next-generation se-
quencing read simulator. Bioinformatics 2012;28:593–4.

25. Cornell University Institute of Biotechnology. Illumina Se-
quencing Price List. http://www.biotech.cornell.edu/brc/ge
nomics/services/price-list. Accessed 24 October 2018.

26. Illumina Inc. System Specification Sheet for the HiSeq 2500
System. 2015. https://www.illumina.com/documents/produ
cts/datasheets/datasheet hiseq2500.pdf. Accessed 24 Octo-
ber 2018.

27. Index of DEE2 bundles. http://dee2.io/bundles.Accessed 11
January 2019

28. Rau A, Maugis-Rabusseau C. Transformation and model
choice for RNA-seq co-expression analysis. Brief Bioinform
2018;19(3):425–36.

29. Espinar L, Schikora Tamarit MÀ, Domingo J, et al. Promoter
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