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Biotechnology has experienced innovations in analytics and data processing. As the volume of data and its
complexity grow, new computational procedures for extracting information are being developed. However,
the rate of change outpaces the adaptation of biotechnology curricula, necessitating new teaching methodolo-
gies to equip biotechnologists with data analysis abilities. To simulate experimental data, we created a virtual
organism simulator (silvio) by combining diverse cellular and subcellular microbial models. With the silvio
Python package, we constructed a computer-based instructional workflow to teach growth curve data analy-
sis, promoter sequence design, and expression rate measurement. The instructional workflow is a Jupyter
Notebook with background explanations and Python-based experiment simulations combined. The data anal-
ysis is conducted either within the Notebook in Python or externally with Excel. This instructional workflow
was separately implemented in two distance courses for Master’s students in biology and biotechnology with
assessment of the pedagogic efficiency. The concept of using virtual organism simulations that generate
coherent results across different experiments can be used to construct consistent and motivating case studies
for biotechnological data literacy.
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INTRODUCTION

Biotechnology is increasingly generating vast amounts of

complex data that require advanced computational analyses (1).

The experiments include, among others, multiomics investiga-

tions (2), high-throughput techniques, or multiplexed experi-

ments (3), and computational modeling approaches demand

advanced data skills (4). In parallel, new tools facilitate data analy-

sis by simplified machine learning scripts, e.g., the Python SciKit

learn library (5), and easily accessible data analysis environments,

like Jupyter Notebooks (6), Galaxy (7), KBase (8), or KNIME (9).

Data analysis with Jupyter Notebooks is becoming particularly

popular (10) and has been used to guide metabolomic data analy-

sis (11), metabolic engineering (12, 13), and gene expression (14).

However, these developments in computational analysis have

rarely managed to receive adequate attention in the curriculum

of biotechnology.

Increasing the share of data analysis and bioinformatics

in the biology and biotechnology curricula are excellent

means for developing critical 21st-century skills by fostering

inquiry-based interdisciplinary learning (15). Student moti-

vation is particularly important, because the topic can devi-

ate from many students’ prime interests and skills. Several

reports have discussed problem-based learning and flipped

classrooms in computational biology (15–18). A particularly

useful tool for motivation can be gamification and serious

game elements (19, 20), which contribute more strongly to

positive self-assessment than exam results (21).

Python is particularly popular because of the extensive

community that supplies and maintains easily accessible pack-

ages to support general tasks from machine learning to specific

biological solutions (22). The Jupyter Notebook technology is

an interactiveWeb-based tool that allows one to combine pro-

gramming, computational output, explanatory text, and multi-

media resources in a single browser-accessible document.

Jupyter Notebooks are developed to facilitate data analysis and

code sharing for Python (6) and are popular teaching resour-

ces, e.g., in engineering (23, 24), with guidelines for their setup

(19, 25). Jupyter Notebooks are run on a server, a JupyterHub,

that provides the Python computational environment, the
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Kernel. The JupyterHub is accessed with an Internet browser

that renders the Jupyter Notebook on the client computer.

Thus, users need no special software, hardware, or operating

system except Internet connection with a browser.

The course was taught remotely with Zoom as well as in-

person seminars with an optimal timing of 3 h and contained a

background lecture (see the supplemental material), individual

reading, and Jupyter Notebooks with a Python introduction

and the biotechnology data simulation (Table 1). The course

delivered learning objectives for Biology, namely, students

could outline the box-based promoter-driven gene expres-

sion, calculate primer melting temperature, and analyze data

to estimate growth rates, as well as computational objectives,

namely, the students could learn Python code and can use

Jupyter Notebooks. Student motivation is fostered by present-

ing the simulation in the context of a biotechnology-relevant

narrative, Moodle quizzes, by social learning in student groups,

varied learning media, and gamification of the simulations. A

rubric is provided and details the outcome level for the differ-

ent learning categories (Text S1). An evaluation of the course

was performed by anonymous feedback that included prior

knowledge, competence inventory and experience, and usabil-

ity of the Jupyter Notebook. The teaching materials containing

lecture, Python introduction Notebook, biotechnology simula-

tion Notebook, and Moodle course implementation (see the

supplemental material) are available with CC BY 4.0 license

online at https://git.rwth-aachen.de/ulf.liebal/biolabsim.

PROCEDURE

The simulator of virtual organisms

The microbial phenotypes are simulated in Python with

an ensemble of models connected with the silvio (simulator

of virtual organisms) framework. silvio is a Python package

containing multiple models to simulate microbial physiology,

such as logistic growth and gene expression, and experimen-

tal parameters, such as primer annealing temperature. silvio
generates surrogate molecular and microbiological data with-

out the attempt to reproduce real phenotypes. Instead, at

each start of silvio, a new virtual organism is initiated with

unique parameters to generate realistic data regarding type,

structure, and complexity. The data are simulated by models

of the associated experiments, including mechanistic models,

i.e., growth laws, and statistical models, i.e., random forest

for gene expression prediction. Fig. 1 provides an overview

of the architecture of silvio.
silvio is organized in a parent object (exp) from which all

experiments and genetic manipulation is performed. Two types

of functions can be distinguished, one for changing host parame-

ters and another for performing analytical experiments. The host

object class contains all biologically relevant information, for

example, the host strain (e.g., Escherichia coli, Pseudomonas putida),
the maximum biomass of cultivation (strain specific, 30 to 145 g

TABLE 1

Overview of intended audience, prerequisite knowledge, learning time, and outcomes of the recombinant expression simulation Jupyter

Notebook workflowa

Parameter Details

Intended audience Late Bachelor, early Master Biology, Biotechnology

Learning time 180 min

Prerequisite knowledge
Distinction of Eukaryotes, Prokaryotes and Archaea, DNA structure and principles of gene expression,

basic linear algebra, Internet and file browsing

Teaching content

Background lecture on growth and gene expression (40 min)

Reading and quiz of Nature article on Jupyter Notebooks (25 min)

Python and Jupyter introduction for programming basics (25 min)

Biotech simulation data analysis group activity (80 min)

Result wrap-up and reflection (10 min)

Learning objectives

Informative

� Recognize promoter architecture of�35 and�10 boxes

� Explain strain specificity of growth and biomass

� List factors that impact cloning efficiencies

Performative

�Distinguish Python variable types
� Calculate DNA melting temp

� Calculate growth rate and maximum biomass with linear regression
aThe teaching focus was on biotechnology-related data analysis and was suited for all programming experience levels. A Python introduction

was available for beginners, whereas advanced students were provided with complex programming tasks. All required background

information regarding growth experiments and promoter architecture was covered by the preceding lecture. Calculations of melting

temperature were provided with the Notebook in the associated documentation of the simulation.

BIOTECH DATA SIMULATION WITH JUPYTER JOURNAL OF MICROBIOLOGY AND BIOLOGY EDUCATION

April 2023 Volume 24 Issue 1 10.1128/jmbe.00113-22 2

https://git.rwth-aachen.de/ulf.liebal/biolabsim
https://journals.asm.org/journal/jmbe
https://doi.org/10.1128/jmbe.00113-22


of cell dry weight [CDW]/liter), the optimal temperature (25 to

40°C), the optimal primer length for cloning (16 to 28 nucleo-

tides [nt]), and a correction factor for the expression strength

(30 to 50), as well as budget information. The budget represents

money which has to be invested in the initial lab equipment and

in each experiment. The limited budget strengthens the impor-

tance of rational experiments and precludes a massive random

search for the solution. The amount of investment in the initial

lab equipment determines the probability of experiment failures.

In addition to the budget resource, the time dimension is consid-

ered such that experimental functions are designed to last a few

seconds. Host-changing functions alter the values stored in the

host object. Cloning, the only current host-changing function,

duplicates the host properties with changes in the genetic infor-

mation. The data are stored in separate objects to facilitate

processing, visualization, and export.

silvio contains several models to simulate biological processes

which are measured or optimized during biotechnological strain

engineering and include growth, the growth constant, DNAmelt-

ing temperature, and gene expression (Table 2). A logistic growth

model based on the Verhulst equation simulates the growth

experiments to determine optimal growth temperature. The

maximum biomass (K) is randomly initiated between 30 and 100

and 45 to 145 g CDW/liter for E. coli and P. putida, respectively.
The temperature dependence of the growth constant (r) is calcu-
lated via a normal distribution, and the optimal temperature is

randomly initiated between 25 and 40°C.

Empirical formulas are used to calculate the DNA melting

temperature and the gene expression strength. The optimal

primer length is randomly initiated between 16 and 28 nucleo-

tides (26). Two equations are used to calculate the optimal

melting temperature: the first equation for primers of <25 nu-

cleotides and the second equation for larger primers (Table 2).

Gene expression is predicted based on the promoter sequence

with 40 nucleotides upstream of the open reading frame. The

regression is performed by a random forest machine learning

module trained with measurements of a σ70-dependent syn-
thetic promoter library expressed in E. coli and Pseudomonas tai-
wanensis (14). The silvio simulation environment is available as a

ready-to-install PyPI-package at https://pypi.org/project/silvio,

and the Jupyter Notebook is available at https://github.com/

uliebal/RecExpSim/. The Jupyter Notebook is provided as a

HTML file (in the supplemental material) and can be cloned

from Github and adapted as to the requirements of the respec-

tive courses. The biotechnology data analysis simulation can be

run without any further software installation and without

accounts using the public, GitHub-connected JupyterHub

Binder. A link is provided in the README.md file in the GitHub

repository.

General teaching setup

We developed an instructional workflow to convey bio-

technological principles of recombinant expression within a

modern data analysis environment. The course starts with a

FIG 1. The silvio code logic. A global experiment object (exp) is the
starting point of functions for host engineering and genetic mani-
pulation (Eng. funct.) and for analytical experiments (sim. funct.). Both
functions require input about the host for the experiment (Host),
available money (Budget), and experiment success probability (ExpSuc).
The host organism is defined as an object with user-defined properties
(strain type) and randomly initiated variables (optimal temperature,
maximum biomass). Simulation data are stored in data objects with
associated functions for postprocessing.

TABLE 2

Models in silvio for biological processes

Process Model Details Output

Growth

Verhulst logistic model P(t), biomass (g CDW/liter);

K, max. biomass, random; P0, 0.1 g
(CDW)/liter (initial biomass); r,
growth constant, temp dependent

CSV file with growth data, columns

for time (h) and biomass (g CDW)

for different temps
P(t) = K/{1 + [(K� P0)/P0]e

�rt}

Growth constant Normal distribution
l, mean optimal temp, random;

σ = 5 (variance)
No output

DNA melting

Tm = 2(A + T) + 4(C + G)
A, C, G, T are the no. of specific

base present
No output

Tm = 64.9 + 0.41(GC)� (600/NNt)
GC content (%); NNt, number of

nucleotides

Gene expression Random forest regression
E. coli, P. taiwanensis promoter

library (unpublished)

CSV file with strain information,

columns for host, gene, promoter, GC

content, temp, biomass, expression
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lecture on the theory of growth phases, equations, and

gene expression to ensure a balanced competence level.

The students proceed to an individual reading of a Nature
article about the development, popularity, and caveats of

Jupyter Notebooks (10), followed by an individual quiz to

self-check understanding. After the theoretical background,

the students start coding in a Python and Jupyter introduc-

tion with different levels for novices about variable types

and functions, medium levels about loops, and professional

experience about file input-output and list comprehension.

In the last 90 min, the biotechnology simulation itself is con-

ducted. A Moodle course room was our central navigation

space for the students, along the different steps of the

course, while Jupyter Notebooks were provided by external

Jupyter Hubs as links from the Moodle (in our case, the

RWTH JupyterHub and Binder).

The biotechnology simulation is embedded in a motivating

narrative about a fictional biotech company that aims to engi-

neer a strain for coronavirus vaccine production and encour-

ages a competition for the highest production rates among stu-

dent participants. The students are told that the company

provides a budget for the strain development and they need to

decide on an investment for general, unspecified laboratory

equipment while bearing in mind future experiment expendi-

tures. Too little investment into the general equipment leads to

higher experimental failure rates, whereas too-generous

investment limits the amount of experiments that can be per-

formed (Table 3). The simulated steps are (i) host organism

choice and characterization, (ii) promoter sequence design and

cloning, and (iii) final expression rate measurement. The final

rates depend only on the promoter sequence and the preci-

sion by which the students measure host growth properties.

During the simulation, different experiments are performed by

using predefined functions appropriately. Each experiment

requires resources: the money budget is limited (Table 3), and

some experiments are time-consuming to stimulate economic

and effective use of the simulated experiments.

The teaching unit was conducted as part of a biotech

training for biology and biotechnology Master students at the

RWTH Aachen University and the Westfälische University of

Applied Science, respectively. The courses were conducted as

Zoom meetings and in-person seminars, starting with a lec-

ture, individual reading, Python and Jupyter introduction, and

biotech simulation. The biotech simulation was preceded by a

walk-through of the simulation, including the solution to all

steps (15 min). Next, participants were allotted to two-per-

son groups in breakout rooms to work autonomously for 85

min on solving the simulation with regular support (every

�20 min) by a supervisor. We found that about 75% of the

participants managed to test at least one successful vaccine

expression. To increase success rate in the future, we will ask

the student groups to use a group-specific seed number, to

divide the growth and cloning sections among themselves,

and to finally integrate their results. In the last �10 min, all

participants joined a conclusion round, during which the sta-

tistical relationship of promoter sequence and expression was

examined, the production rates were compared, and the

group with best production was honored.

Data analysis in recombinant expression

The recombinant engineering workflow is simulated with

four selected steps and data analysis tasks (Table 3). The first

input from the student is an integer seed, which determines

the performance of the random number generator. The

TABLE 3

Computational steps of the Jupyter Notebook workflowa

Step Variable Activity Challenge

1. Host choice

� Seed: int
� Read general introduction

� Python variable assignment

�myInvest: int
�myMutant: str � Cost: free

2. Host characterization
� Temperatures:

array of int

� Analyze Excel data � Variance in biomass level

� Estimate growth curve parameters �Growth expt fails
� Cost: 100 e

3. Promoter design

�mySequenceID: str � Learn importance of promoter boxes �Optimal primer length unknown

�myPromoter: str � Calculate DNA melting temp � Cost: 200 e
�myPrimer: str �Derive primer complementary to promoter

�myTm: int

4. Evaluation

� host_names: list � Judge effectiveness of promoter �Multiple rounds of promoter design

� gene_name: str � Test impact of GC content on expression � Cost: 500 e
� cult_temp: int

� growth_rate: float
� biomass: int

aint, integer; str, string; list, list of strings; float, real number.
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parameters in silvio are randomly initiated, and the seed

ensures that students can continue with the same host charac-

teristics over several course dates and can work in a group on

an identically parameterized virtual host. The second parame-

ter is the host bacterium choice, predefined as either E. coli or
P. putida. Both are popular bacterial hosts and are related to

important pathogens. The host choice does not affect the final

rate, which is normalized to the maximum possible host-spe-

cific expression rate, but it does affect the maximum biomass

concentration and the promoter activity. Thus, the host choice

is rather a cosmetic feature which we included to have the op-

portunity to discuss two popular prokaryotic expression sys-

tems. Along with the host, the user also decides how much

money is invested in the laboratory equipment. The experi-

mental success rate is a hyperbolic function with variables of

the total budget predefined by the lecturer and the investment

of equipment chosen by the students, and it reaches an optimal

plateau at �20% of total budget. In each step, the students

have to assign values of the right type (string, list, integer, float,

array of integers) to variables to start the simulations. The gen-

erated data for analysis are stored in comma-separated value

files online, which can be downloaded for further analysis.

Growth characterization

In the second step, the user identifies the optimal growth

temperature and the associated growth rate and biomass.

The optimal temperature and the maximum biomass are ran-

domly initiated and the maximum growth rate is 1/h (see

Procedure). The user inputs a vector with the test tempera-

tures as an argument to the experiment function from silvio
(simulate_growth in the experiment class) to simulate growth

experiments to identify the optimal temperature. The

experiment for each temperature costs 100 EUR and takes

�3 s of simulation time. With a low probability of �10%,

depending on investment in equipment, the growth fails and

remains at the inoculum level. The outcome of this experi-

ment is a CSV file with data formatting as generated by the

instrument GrowthProfiler (Enzyscreen BV). The students

could choose subsequent data analysis in Excel, LibreOffice,

or Python. In Excel or LibreOffice, the data have to be cor-

rectly imported, followed by logarithmic operation and visual-

ization. The temperature data with the strongest biomass

increase are then subjected to linear regression within the lin-

ear regimen of the logarithmic data to determine the growth

rate and the average biomass during the stationary phase in

the original data. The procedure was explicitly presented to

the students. In Excel, it involves using the functions for natural

logarithm, the sloped function to estimate the growth rate in

the initial linear regimen, and the average function to deter-

mine the mean maximum biomass level. To encourage Python-

based analysis, we provided, disordered, the lines of code

(Parsons puzzle). The students had to understand and rear-

range the script. Two Python blocks exist: for visualization

(Fig. 2), and for linear regression to extract growth rate and

biomass. Analogous to the Excel procedure, the user identifies

the optimal temperature along with growth rate and biomass.

Promoter construction and cloning

After characterizing the host organism, the students iden-

tify a suitable promoter sequence and an abstract cloning pro-

cedure is simulated. The key learning objectives are knowl-

edge about the structure of a standard σ70 promoter, including
boxes that control prokaryotic gene expression, computation

of DNA melting temperature, and appreciation of the fickleness

FIG 2. Example experiments (at 22 to 38°C) to determine optimal growth temperature.
Five temperatures separated by 4°C were analyzed, which required �15 s of simulation
time. The experiment at 34°C resulted in the most robust linear growth increase to �7
h. The experiment at 38°C failed, with an expected growth rate comparable to that for
the experiment at 30 to 34°C. Very slow growth was measured at the suboptimal
temperature of 22°C.
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of cloning. In the lab, cloning proceeds along numerous steps

and the simulation only captures the first step of designing a

promoter and cloning into a plasmid. The subsequent experi-

mental steps require artful procedures that can be appreciated

only in real lab courses. A 40-nt promoter reference sequence

is provided (GCCCAXXXXXXAXGCXXXCXCGTXXXGG
XXXXXXTGCACG; Xs in italics represent positions to be

replaced by standard nucleotides, and the boldface Xs represent

biologically important �35 and �10 boxes, respectively). The

optimal composition of the box positions is explained in the

accompanying text and literature links (27). The primers for

cloning start with the first nucleotide of the promoter, whereas

the optimal primer length is unknown and randomly initiated

between 16 and 28nt. The user then calculates the melting tem-

perature according to the basic formula given by the equation in

Table 2. The cloning experiment has a higher error rate and

identical configurations can lead to different results with

relatively frequent cloning failures. The cloning process is

time-consuming and weakly predictive and aims to mirror

the process of the learning of a beginner. The students are

motivated to try several versions of promoters to improve

expression.

Simulation results and cross-connection

Following promoter design, vaccine expression values

are measured and compared among the group, and the pos-

sibility of correlations between GC content and expression

are examined. The users first measure the promoter

strength of each promoter construct. silvio contains an

expression prediction algorithm for E. coli and P. taiwanensis
promoters that was trained on libraries of the respective

hosts with 40-nt promoter sequences, and it predicts green

fluorescent protein expression in fluorescence units per

gram of dry weight (14). The final simulated experiment

reports the vaccine production, but only if correct values

from the host characterization experiments are provided (opti-

mal temperature, biomass, and growth rate are within 10% of

the correct values) (see the variables in Table 3). As each group

will only have tested 1 to 4 promoter variants, combining the

results across the groups can lead to further insight. We investi-

gated correlations between GC content and vaccine expression

strength for all tested promoters, and we used the following

two strategies to secure and integrate the students’ simulations
(Fig. 3). Strategy 1: during online Zoom courses the students

reported their value pairs via the chat function and the lecturer

copied the values into Python to generate a plot. Strategy 2: for

in-person classes, the corresponding plot was developed on a

blackboard, with groups sequentially naming their value pairs.

DISCUSSION

The course was supported with an evaluation to esti-

mate the didactic benefit of the teaching concept. Established

questionnaires in this study were used to obtain comparable,

accurate, and trustworthy data. The teaching evaluation took

place at the end of the course, between the 21 April and 25

May 2021, via an online questionnaire implemented on the

platform SoSciSurvey (questions are reported in Text S1 of

the supplemental material). In total, 16 students responded

via the questionnaire, which amounted to an �40% feed-

back rate; the students are registered in biology and bio-

technology, with 60% females. Due to the small sample

size, a statistically reliable analysis of the results was not

guaranteed.

Survey instruments for teaching evaluation

To evaluate the educational benefit of the Jupyter Notebook-

based course, we asked the course participants to self-assess their

prior knowledge, perceived competence, and competence

gains, as well as the increase in topic-related interest. We

were also interested in how the course participants per-

ceived the user-friendliness of the Jupyter Notebook and

how they rated the course overall. Perceived competence

was assessed using the KIM questionnaire (a short scale of

intrinsic motivation) (28). The questionnaire contained 12

perception-related statements (e.g., joyfulness, satisfac-

tion, distress) and students rated the extent of agreement

on a scale of 1 (full opposition) to 5 (full agreement).

Competence gains were explored using the Graz evalua-

tion model of competence acquisition (GEKO) for higher-

education courses (29). The GEKO contains a list of six

different areas, for example “the acquisition of theoretical,

subject-related knowledge (e.g., theories and their con-

texts)” or “the ability to work in a team (e.g., coordination

of cooperation with fellow students, division of tasks),”
reported on a scale of 1 to 5. This scale of assessment was

also used to evaluate increase in topic interest and the

prior knowledge of students (novice to expert). A newly

FIG 3. Joint simulation results for all groups for determining the
relationship of GC content to expression strength. The chart
shows the potential to combine results from all groups to arrive
at new knowledge when the effort of all groups is integrated.
We concluded that GC content and relative expression did not
correlate linearly.
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designed question section assessed the usability: experi-

enced independence, the user-friendliness of the interface,

the topic-related knowledge, and the complementarity to

the parallel lecture (scale of 1 to 5). The survey ended

with the students’ overall evaluation of the course by

seven self-developed questions (scale of 1 to 5).

Evaluation of the survey

In the self-rated evaluation after the course (questions

are provided in Text S2), the students reported on average lit-

tle prior knowledge before attending the course (prior_-

knowledge; mean =1.75, standard deviation [SD] =1.13) and

a relatively high competence gain (GEKO; mean=3.66,

SD=0.56). The course also succeeded in raising interest in

the topics and competencies covered (interest; mean=3.88,

SD=1.02). In particular, the acquisition of competences in

teamwork received the highest rating and testified to the

effectiveness of digital collaborations (mean=3.94, SD=1.12).

The evaluation of the KIM questionnaire showed that the

course participants had a high intrinsic motivation and the ex-

perience of competence on average (KIM; mean=3.37,

SD=0.49). Regarding the usability, the evaluation revealed

that students found working with BioLabSim enjoyable and

the simulations were rated overall as user-friendly (usability;

mean=3.67, SD=0.55). The total score rating of the course

also indicated that the students enjoyed the course (rating;

mean= 3.58, SD=0.43). (Fig. 4). Overall, the feedback demon-

strated that the Jupyter Notebook-based course led to a gener-

ally positive learning experience.

Conclusions

We have developed a model ensemble to simulate bio-

technological relevant experiments for microorganisms (sil-
vio). These experiments were combined in an instructional

Jupyter Notebook to teach selected data analysis steps in a

recombinant gene expression project. By adding new mod-

els to silvio, new biotechnological experiments can be simu-

lated and converted into instructional, motivating data anal-

ysis projects in the form of Jupyter Notebooks. Our

approach decouples the computational data analysis from

often lengthy, expensive, and sometimes unavailable experi-

ments. We stress that our simulations are not meant to

replace the physical experience of conducting the experi-

ments in the laboratory, but rather to support analytical lec-

tures by providing practice in data handling and evaluation.

Finally, our survey documented the positive learning experi-

ence by the students.
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Supplemental material is available online only.

SUPPLEMENTAL FILE 1, PDF file, 0.3 MB.

FIG 4. Distributions of total scores of scales regarding competence acquisition (GEKO), the students’
assessments of the extent to which their interest in the topics was increased by the course (interest),
the perceived competence experience (KIM), how the students assessed their prior knowledge before
attending the event (prior knowledge), the overall evaluation of the event (rating), and the usability of
the Jupyter Notebook.
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