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Abstract: Boron neutron capture therapy (BNCT) is a cancer treatment with clinically demonstrated
efficacy using boronophenylalanine (BPA) and sodium mercaptododecaborate (BSH). However,
tumor tissue selectivity of BSH and retention of BPA in tumor cells is a constant problem. To
ensure boron accumulation and retention in tumor tissues, we designed a novel polyethylene glycol
(PEG)-based boron-containing lipid (PBL) and examined the potency of delivery of boron using
novel PBL-containing liposomes, facilitated by the enhanced permeability and retention (EPR) effect.
PBL was synthesized by the reaction of distearoylphosphoethanolamine and BSH linked by PEG
with Michael addition while liposomes modified using PBL were prepared from the mixed lipid
at a constant molar ratio. In this manner, novel boron liposomes featuring BSH in the liposomal
surfaces, instead of being encapsulated in the inner aqueous phase or incorporated in the lipid bilayer
membrane, were prepared. These PBL liposomes also carry additional payload capacity for more
boron compounds (or anticancer agents) in their inner aqueous phase. The findings demonstrated
that PBL liposomes are promising candidates to effect suitable boron accumulation for BNCT.

Keywords: boron neutron capture therapy; boron lipid; liposomes; boron drug

1. Introduction

Boron neutron capture therapy (BNCT) has attracted considerable attention as a
cancer treatment that does not significantly reduce patient quality of life. To ensure the
effectiveness of BNCT, it is necessary to accumulate adequate boron within the tumor, and
methods to realize this aspect are being actively studied.

In particular, boron delivery systems (BDS) based on drug-delivery systems (DDS)
have emerged as promising tools [1] and technologies, such as liposomal packaging, are
widely used as DDS materials owing to the convenience of controlling the size and electric
potential. Ligand modification (e.g., carbohydrate chains, peptides, and antibodies) in the
case of liposomes can be easily realized while the cytotoxicity of liposomal materials is
extremely low. In this context, by wrapping boron in liposomes, the effectiveness of BNCT
can likely be enhanced.
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Various boron liposomes have been developed to date using two key approaches,
the first of which involves the encapsulation of boron compounds in liposomes. Yanagie
et al. first reported the encapsulation of sodium mercaptododecaborate (BSH) in lipo-
somes conjugated with monoclonal antibodies [2,3] and Hawthorne et al. developed a
polyethylene glycol-modified liposome (PEG-liposome) that encapsulated boron com-
pounds [4,5]. Moreover, Maruyama et al. demonstrated that boron liposomes modified
with transferrin are highly effective candidates for use in BNCT [6]. The second approach
involves the incorporation of lipid-conjugated boron in the liposomal membrane as seen
in a report from Hawthorne et al., where they developed a lipid analog with a single
carbon chain and a hydrophilic group of nido-carborane [7]. The liposomes prepared
using this lipid were used in a BDS for treating cancer-bearing mice. In a similar fashion,
Nakamura et al. developed a lipid analog with a double carbon chain and a hydrophilic
group of nido-carborane [8] as well as a similar base chain with a hydrophilic group of
closo-dodecaborate [9]. The liposomes prepared using this lipid exhibited low toxicity and
a higher intratumoral boron concentration.

However, in the case of these manufactured liposomes, the membrane may be destabi-
lized from the high ionic concentration and osmotic pressure. Furthermore, the abovemen-
tioned two strategies limit the development of novel drugs that may include additional
boron groups.

To overcome these limitations, we propose a novel drug-delivery strategy based on
the outer layer of the liposome membrane. Specifically, we synthesized a phospholipid
derivative as a novel boron lipid, called polyethylene glycol and boron-cluster-modified
lipid (PBL), and prepared liposomes with it. The boron groups of the lipid were located in
the outer layer of the liposome and did not interfere with the liposomal membrane or its
internal aqueous phase. Herein, we report on the results of the synthesis of PBL and the
properties of the liposomes prepared using this novel lipid.

2. Materials and Methods
2.1. Chemicals and Lipids

Distearoylphosphatidylcholine (DSPC) (COATSOME MC-8080), 1, 2-distearoyl-sn-
glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) (SUNBRIGHT DSPE-
020CN), and N-[(3-maleimide-1-oxopropyl)aminopropyl polyethylene glycol-carbamyl]
distearoylphosphatidyl-ethanolamine (DSPE-PEG-MAL) (SUNBRIGHT DSPE-020MA)
were purchased from NOF Co. (Tokyo, Japan). Cholesterol was purchased from Wako (Os-
aka, Japan). Sodium mercaptododecaborate, Na2B12H11SH (BSH, Fw = 210.25,
10B enriched > 99%) was purchased from KATCHEM (Praha, Czech Republic). All other
chemicals were of the highest commercially available grade.

2.2. Synthesis of PBL

PBL was synthesized by the reaction of DSPE-PEG-MAL and BSH. The synthesis of
PBL is illustrated in Scheme 1. DSPE-PEG-MAL (120 mg), BSH (40 mg), and phosphate-
buffered saline (PBS) (pH = 7.0) were mixed. The resulting solution was stirred at room
temperature (18–28 ◦C) for 3 h and the reaction was allowed to occur, and its progress was
monitored using the high-performance liquid chromatography (HPLC) technique. The
crude product was obtained, dialyzed to enhance purity (MWCO: 500–1000), and then
freeze-dried to obtain the final product. The dialysis was performed for 12 h under room
temperature and shading while changing the external solution (Milli-Q water) every 2 h.

2.3. Preparation of Liposome-Modified PBL

Bare liposomes were prepared using DSPC and cholesterol (1:1, molar ratio) by using
the lipid-film method [10]. Boron-liposome-modified PBL (PBL liposomes) were prepared
by coupling PBL (1% to 5% for the total lipid) to the bare liposomes via post-insertion
methods [11]. In particular, PBL dissolved in PBS was added to the bare liposomes, and
the mixture was incubated for 1 h at 60 ◦C. While preparing the PBL liposomes, the lipid
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concentration was set as 10 mg/mL. The resulting liposome solution was extruded through
a polycarbonate membrane with a pore size of 100 nm. A portion of the solution was
subjected to size-exclusion chromatography (Sepharose CL-4B column), thereby separating
the liposome, micelle, and monomolecular fractions in order [12]. The boron concentrations
of each fraction were analyzed through inductively coupled plasma-optical emission
spectrometry (ICP-OES, SPS5100, SII, Japan), and the PBL incorporation efficiency and
boron content in the liposomes were determined. The chemical structure of PBL was
drawn using ChemDraw® software version 12.0 (Perkinelmer Informatics, Inc., Waltham,
MA, USA).
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Scheme 1. Synthesis and chemical structure of PBL.

2.4. Physical Properties of Liposomes

After size-exclusion chromatography, each liposome fraction was diluted 10 times
using distilled water, and the particle size and zeta potential were determined via dynamic
light scattering on a Zetasizer Nano ZS (ZEN3600, Malvern, UK). In addition, the PBL
liposomes were observed using a transmission electron microscope (TEM; JEOL JEM-
2000EX, Hanaichi Ultra Structure Research Institute, Aichi Japan.) at an accelerating voltage
of 100 kV after the liposomes were dispersed onto a 400-mesh, carbon film-supported Cu
grid (NEM, Tokyo, Japan) and negative stained by phosphotungstic acid.

Furthermore, the stability of the drug formulation was examined by observing the
detachment of PBL from the liposomes in fetal bovine serum at 37 ◦C—which can be
considered as a model of blood—for 48 h. PBL liposomes were added to the medium and
chronologically fractionated with stirring. The resulting product was subjected to size-
exclusion chromatography. The monomolecular fractions were evaluated using ICP-OES
to identify the degree of PBL detachment.

3. Results
3.1. Identification of PBL

PBL synthesis yield and purity of the product were satisfactory. To confirm purity,
analytical ultra-performance liquid chromatography (UPLC) was performed using an
ACQUITY UPLC® 1.7 µm BEH300 C4 column (2.1 mm × 50 mm, Waters Corp., Milford,
MA, USA) and ACQUITY® UPLC H-Class system (Waters Corp., Milford, MA, USA) in a
water (0.1% trifluoroacetic acid; TFA)/acetonitrile (0.1% trifluoroacetic acid) gradient at a
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flow rate of 0.5 mL/min (95/5 to 20/80 over 7 min). The yield was greater than 64%, and
PBL purities were > 96% (Figure 1).
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Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-
TOF-MS) spectra were obtained using an AXIMA® Confidence system (Shimadzu Corp.,
Kyoto, Japan). The matrix involved α-cyano-4-hydroxycinnamic acid that was dissolved
into water containing 0.1% TFA/acetonitrile (1:1). The samples were mixed with the matrix
solution in a volume ratio of 1:1 with a final concentration of 0.5 mg/mL. The PBL exact
mass was 3146, and a peak of m/z 3147 M + H+ was observed (Figure 2a). These spectra
indicated a difference of 44 in adjacent peaks, corresponding to one unit (-CH2CH2O-) of
PEG (Figure 2b).

Further, proton nuclear magnetic resonance (1H-NMR) spectra were obtained using
ECZ400S (JEOL Corp., Tokyo, Japan) and the characteristic structure of PBL was confirmed
(Figure 3a). The samples were dissolved in chloroform-d at 5 mg/mL. The stearyl moiety
of the synthesized PBL exhibited the correct proton ratio to methyl signal at 0.88 ppm
at the end of the alkyl chain (6H, as the characteristic signal of lipid). 10B-NMR spectra
were obtained using JMN-AL400 (JEOL Corp., Tokyo, Japan) and boron cluster moieties of
synthesized PBL exhibited this boron signal (Figure 3b).

3.2. Incorporation Efficiency of PBL and Characterization of PBL Liposomes

The incorporation efficiency of PBL in the liposomes and properties of these liposomes
were examined. Homogeneous, conventional, bare liposomes, composed of DSPC and
cholesterol (1:1, molar ratio), were modified using PBL at concentrations of 1–5% by post-
insertion methods.

PBL was incorporated only in the liposomal surface (Figure 4). However, when
the constituent PBL proportion exceeded 5%, PBL formed micelles, leading to a reduced
incorporation efficiency and amount of PBL in the liposomes. Furthermore, when the
constituent PBL proportion reached 20%, it could not be incorporated in the liposomes
(Figure A1).

The characteristics of the PBL liposomes are summarized in Table 1. Up to a PBL
content of 3%, the incorporation efficiency of PBL was approximately 65–70%. When the
PBL content was 3%, the amount of PBL incorporated in the liposomes was maximized
and the PBL content in the liposomes was 0.1 µmol. Assuming that the molecular weight
of liposomes made of phospholipids is 2 million Daltons [13], PBL liposomes with BSH
bound to the end of the PEG chain will have about 840 boron atoms (70 PBL molecules) per
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liposome on their surface. The detachment of PBL from the liposomes was insignificant up
to a PBL content of 5% (Figure 5).
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Figure 4. Relationship between the incorporation content of PBL in the liposome with the construction
ratio of PBL to liposomes as visualized by size-exclusion chromatography. Each peak represents the
following fractions: the first (3.2–4.8 mL) is the liposome peak, the second (4.8–10.4 mL) is the micelle
peak, and the third (13.6–15.2 mL) is the monomolecular peak. Data are expressed as means ± S.D.
(n = 3).

Table 1. Characteristics of PBL liposomes.

Constituent PBL (%) 1 3 5

Incorporation efficiency (% ± SD) 65.6 ± 7.4 70.5 ± 1.7 36.4 ± 2.4
Loading content of PBL (µmol ± SD) 0.041 ± 0.01 0.107 ± 0.025 0.072 ± 0.039

Particle size (nm ± SD) 149.3 ± 5.9 173.8 ± 25.2 144.1 ± 3.2
Zeta potential (mV ± SD) −27.0 ± 3.3 −46.5 ± 7.6 −45.4 ± 2.8
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Figure 5. Stability of PBL liposome in a blood model. The stability of the drug formulation was
evaluated by measuring the detachment of PBL from the PBL liposomes (PBL content of 5%) for 48 h
in fetal bovine serum at 37 ◦C. Values indicate the total amount of PBL detachment at the indicated
time point (•).
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The PBL liposomes exhibited an anion charge, indicating the presence of PBL on the
liposomal surface. The anion charge increased and reached its maximum value at 3%
concomitant with increases in the PBL content. In other words, no more PBL could be
modified on the liposomal surface. Additionally, the average diameter of the liposomes in
all conditions was 150 ± 20 nm. The formation of PBL liposomes was analyzed through
transmission electron microscopy based on the negative staining method. The liposomes
appeared as unilamellar particles with a diameter of approximately 100 nm (Figure 6).

Cells 2021, 10, x FOR PEER REVIEW 8 of 11 
 

 

Table 1. Characteristics of PBL liposomes. 

Constituent PBL (%) 1 3 5 
Incorporation efficiency (% ± SD) 65.6 ± 7.4 70.5 ± 1.7 36.4 ± 2.4 

Loading content of PBL (μmol ± SD) 0.041 ± 0.01 0.107 ± 0.025 0.072 ± 0.039 
Particle size (nm ± SD) 149.3 ± 5.9 173.8 ± 25.2 144.1 ± 3.2 

Zeta potential (mV ± SD) −27.0 ± 3.3 −46.5 ± 7.6 −45.4 ± 2.8 

 

Figure 6. Transmission electron microscopy image of the vesicle formation from the PBL mixture 
after size-exclusion chromatography. 

4. Discussion 
Liposomes as boron carriers for BNCT have been synthesized and studied for dec-

ades [1,2,4–6,14,15] and the efficacy of PEGylated and other liposomes as boron carriers 
has been repeatedly demonstrated [6,16–20]. However, although the formulation of BSH 
encapsulated in the inner aqueous phase of liposomes shows a certain antitumor effect in 
vivo, the amount of boron that can be delivered by liposomes to tumor tissue might be 
insufficient for human applications and such liposomes have not been applied clinically. 

In this study, we developed boron-containing liposomes with features different from 
other previously synthesized liposomes for BNCT. The main difference is that the boron 
cluster (BSH) is modified via PEG and located at a distance from the liposome membrane, 
suggesting a very low effect on membrane stability. It has also been suggested that further 
inclusion of BSH may lead to membrane destabilization, which limits the options for fur-
ther increasing BSH load in the liposomes. Therefore, our PBL liposomes, in which boron 
is modified in the outer aqueous phase rather than the inner aqueous phase, can greatly 
contribute to boron delivery. Furthermore, the amount of boron (BSH) for encapsulation 
can be optimized by adjusting its concentration and lipid composition as liposomes incor-
porating the maximum amount of boron for the inner and outer aqueous phases will effi-
ciently shuttle boron into tumor cells for maximum BNCT effect. 

Previous reports also show the synthesis of advanced liposomes combining diagnos-
tic and therapeutic purposes [21–23]. While the inclusion of boron compounds, such as 
BSH in the inner water phase of our liposomes, can enhance the therapeutic effect of 
BNCT, encapsulation of other anticancer agents or diagnostic compounds in the inner 
aqueous phase can provide further theranostic combinations that can be realized with sin-
gle drug application. Our synthesized liposomes, with options of increased boron delivery 

Figure 6. Transmission electron microscopy image of the vesicle formation from the PBL mixture
after size-exclusion chromatography.

4. Discussion

Liposomes as boron carriers for BNCT have been synthesized and studied for
decades [1,2,4–6,14,15] and the efficacy of PEGylated and other liposomes as boron carriers
has been repeatedly demonstrated [6,16–20]. However, although the formulation of BSH
encapsulated in the inner aqueous phase of liposomes shows a certain antitumor effect
in vivo, the amount of boron that can be delivered by liposomes to tumor tissue might be
insufficient for human applications and such liposomes have not been applied clinically.

In this study, we developed boron-containing liposomes with features different from
other previously synthesized liposomes for BNCT. The main difference is that the boron
cluster (BSH) is modified via PEG and located at a distance from the liposome membrane,
suggesting a very low effect on membrane stability. It has also been suggested that further
inclusion of BSH may lead to membrane destabilization, which limits the options for
further increasing BSH load in the liposomes. Therefore, our PBL liposomes, in which
boron is modified in the outer aqueous phase rather than the inner aqueous phase, can
greatly contribute to boron delivery. Furthermore, the amount of boron (BSH) for encapsu-
lation can be optimized by adjusting its concentration and lipid composition as liposomes
incorporating the maximum amount of boron for the inner and outer aqueous phases will
efficiently shuttle boron into tumor cells for maximum BNCT effect.

Previous reports also show the synthesis of advanced liposomes combining diagnostic
and therapeutic purposes [21–23]. While the inclusion of boron compounds, such as
BSH in the inner water phase of our liposomes, can enhance the therapeutic effect of
BNCT, encapsulation of other anticancer agents or diagnostic compounds in the inner
aqueous phase can provide further theranostic combinations that can be realized with single
drug application. Our synthesized liposomes, with options of increased boron delivery
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and the potential to include other compounds in the inner water phase, could provide
advanced, synergistic options for therapeutic enhancement, and drive the development of
new anticancer agents and boron carriers for BNCT.

The major limitation of this study is the lack of biological experiments. However, in
this study, we designed and synthesized boron-containing liposomes as delivery vehicles
for other compounds to be used or tested in BNCT. For biological experiments, additional
boron or other compounds need to be incorporated into the inner part of the liposomes,
depending on the design of the biological experiments, which was outside the scope of the
present study. Therefore, we believe that such future experiments would elucidate the true
utility of our reliable and versatile biological delivery system.

5. Conclusions

We developed a novel boron lipid, PBL, and novel boron liposomes using PBL in which
the boron is present in the outer aqueous phase and does not affect the drug encapsulated
in the inner aqueous phase. These liposomes are expected to have similar retention in
the blood and tumor accumulation as PEG liposomes due to the coupling of BSH to the
extremities of the PEG chains as well as the inclusion of boron compounds in the inner
water phase to increase delivery payload. Additional encapsulation of other anticancer
drugs in the inner aqueous phase will provide options for combination treatments within
BNCT. PBL liposomes are expected to be promising candidates for new boron delivery
agents for BNCT.
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Appendix A

PBL liposomes (PBL content of 20%) were prepared using DSPC, cholesterol, and PBL
(1:1:0.5, molar ratio) by using the lipid-film method and freeze-thaw method. Figure A1
shows the comparison between PBL content of 5% (dotted line) and 20% (solid line).
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