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Omega-3 polyunsaturated fatty acids (PUFAs) can play important roles in

maintaining mental health and resistance to stress, and omega-3 PUFAs

supplementation can display beneficial e�ects on both the prevention and

treatment of depressive disorders. Although the underlying mechanisms

are still unclear, accumulated evidence indicates that omega-3 PUFAs can

exhibit pleiotropic e�ects on the neural structure and function. Thus, they

play fundamental roles in brain activities involved in the mood regulation.

Since depressive symptoms have been assumed to be of central origin,

this review aims to summarize the recently published studies to identify

the potential neurobiological mechanisms underlying the anti-depressant

e�ects of omega-3 PUFAs. These include that of (1) anti-neuroinflammatory;

(2) hypothalamus-pituitary-adrenal (HPA) axis; (3) anti-oxidative stress; (4)

anti-neurodegeneration; (5) neuroplasticity and synaptic plasticity; and (6)

modulation of neurotransmitter systems. Despite many lines of evidence have

hinted that these mechanisms may co-exist and work in concert to produce

anti-depressive e�ects, the potentially multiple sites of action of omega-3

PUFAs need to be fully established. We also discussed the limitations of current

studies and suggest future directions for preclinical and translational research

in this field.

KEYWORDS

omega-3 PUFAs, depression, neurotransmitter systems, neuroplasticity, synaptic
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Introduction

Depression is a mental disorder characterized by the sadness, loss of interest in

activities, and decreased energy. It is often accompanied by the cognitive impairment

and different physical symptoms. In severe cases, it may lead to suicidal tendencies (1).

Depression is a high-incidence mental illness that has affected more than 264 million
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people of all ages worldwide by 2021 (2). Subclinical depression

has a higher incidence in the general population. The rate of

subclinical depression can reach up to 17% in the primary care

and community setting (3, 4). Moreover, the rate for the high

school students is 22.9%, while that for the college students

have reached 36.56%. Most currently available antidepressants

can target monoamine neurotransmitter function. However,

current pharmacological treatments of depression suffer from

major problems, such as a low rate of response, slow onset of

therapeutic effects, loss of efficacy over time, and serious side

effects. Therefore, development of novel strategies both for the

prevention and treatment of depression has become increasingly

important in today’s medical field.

Omega-3 polyunsaturated fatty acids (PUFAs) are currently

an attractive candidate for the prevention and treatment of

depressive symptoms (5, 6). Being an essential nutrient, humans

cannot synthesize omega-3 PUFAs de novo, therefore, these fatty

acids must be obtained through diet or supplementation. Fatty

acids are the most abundant organic compounds in the brain,

making up 60% of the dry weight, among which 20% of these

fatty acids are PUFAs. The two most abundant PUFAs in the

brain are omega-3 docosahexaenoic acid (DHA, C22:6 ω-3) and

omega-6 PUFAs arachidonic acid (AA, C20:4 ω-6) (7). Brain

function is heavily dependent on adequate omega-3 PUFAs

levels. Omega-3 PUFAs, mainly DHA and eicosapentaenoic acid

(EPA) which have strong anti-inflammatory and inflammation-

resolving effects, also antagonizing the pro-inflammatory

effects of omega-6 PUFAs which are the precursors of pro-

inflammatory mediators. The balance between omega-6 PUFAs

and omega-3 PUFAs is essential for homeostasis and the proper

functioning of the central nervous system (CNS) to promote

mental health and prevent neurological diseases (7, 8). Since

omega-3 PUFAs and omega-6 PUFAs compete for incorporation

into cell membranes, a balanced intake of these different type

of PUFAs is essential (8). In modern society, human diets are

unbalanced between omega-3 PUFAs and omega-6 PUFAs that

may restrict the supply of omega-3 PUFAs to the tissues leading

to a mild or severe omega-3 PUFAs deficiency in both developed

and developing countries worldwide (9–12).

As an integral component of cell membranes, omega-

3 PUFAs can increase membrane fluidity and permeability.

Omega-3 PUFAs are largely esterified to the phospholipid

in the cell membrane. Once omega-3 PUFAs are released

from the membrane following neurotransmitter receptor-

mediated activation of specific phospholipase A2 (PLA2)

enzymes, they can act as secondary messengers and regulate

signal transduction, either directly or indirectly by their

bioactive derivatives (13, 14). Omega-3 PUFAs and their

derivatives regulate various processes within the CNS, such

as neuroinflammation, neurotransmission, synaptic plasticity,

neurogenesis, neurodegeneration, and thereby mood and

behavior. Omega-3 PUFAs deficiency are associated with many

neurological disorders, including Alzheimer’s disease, major

depression and anxiety disorder (7, 14). There is a substantial

body of evidence that provides general support for the beneficial

effects of omega-3 PUFAs supplementation on brain structure

and function in healthy human subjects (15).

There is a considerable amount of literature regarding the

mechanism of action of omega-3 PUFAs to improve physical

health and brain functioning [see, e.g., (8, 14, 16–18)], and many

of them have been further considered as possible mechanisms

for omega-3 PUFAs to improve depressive symptoms. Omega-

3 PUFAs supplementation in depressed subjects has many

structural and functional benefits for the brain, including

promoting neurogenesis and neural repairment, preventing

neuroinflammation and neurodegeneration, improving mood,

cognition and memory etc., thus, exerting a wide range

of ameliorating effects on depression (19–21). They are

nutritious and safe, and when used in combination with

other antidepressants, they can accelerate and increase efficacy

significantly (5).

However, the antidepressant mechanisms of omega-3

PUFAs acting on the CNS are still not fully understood.

Nowadays, there is limited data on human brain with respect

to the antidepressant effect of omega-3 PUFAs. This paper, for

the first time, makes a systematic review about the research

progress in this field over the last decade, starting with the

cellular and molecular basis of omega-3 PUFAs. This will

provide information reference for the future research and

clinical practice.

The cellular and molecular basis of
omega-3 PUFAs

As shown in Figure 1, omega-3 PUFAs have a wide range of

effects at the molecular and cellular levels, which may produce

profound influences on mental health. We now summarize the

main effects as follows:

Increasing cell membrane fluidity and
lipid bilayer elasticity, thereby influencing
the structure of lipid microdomains, the
interaction and function of proteins
(including receptors, channel proteins,
enzymes) in the membrane

Through optimizing themembrane fluidity, omega-3 PUFAs

can improve the binding of neurotransmitter and their receptors

and ion channel function in the membrane (22, 23). It has

been reported that DHA can facilitate gamma-aminobutyric

acid (GABA) systems binding and increase the rate of its

receptor desensitization by modulating the elasticity of the lipid

bilayer (24–26).

Frontiers in Psychiatry 02 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.933704
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhou et al. 10.3389/fpsyt.2022.933704

FIGURE 1

Hypothesized antidepressant mechanisms of omega-3 PUFAs acting on the central nervous system.

Stimulating cell membrane expansion
and promoting membrane fusion

It has been found that by activating the plasma membrane

protein syntaxin 3, omega-3 PUFAs can stimulate cell membrane

expansion at the nerve growth cones, thereby promoting

neurite outgrowth (27). As an enriched component in brain

membrane phospholipids, DHA plays important roles in neurite

outgrowth and neurotransmitter releases, the latter is a process

involving membrane fusion and soluble N-ethylmaleimide-

sensitive fusion factor attachment protein receptors (SNARE)

complex binding or disassembly (23, 28).

Regulatory role on signal transduction

Omega-3 PUFAs can act as agonist ligands for G protein-

coupled receptor 40 (GPR40) and G protein-coupled receptor

120 (GPR120), peroxisome proliferator-activated receptors

(PPARs) and retinoid X receptor α (RXRA). In addition, omega-

3 PUFAs can also downregulate nuclear factor kappa-B (NF-κB)

through their inhibitory effects on toll-like receptor 4 (TLR4)

or binding to peroxisome proliferator-activated receptor-γ

(PPARγ) (29–31). Omega-3 PUFAs may exert neurological

benefits through activating corresponding receptors such as

GPR120, GPR40 as well as PPARs (23). Using RXRA conditional
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knockout mice, unesterfied DHA has been found to promote

spinogenesis, synapse formation and transmission in vivo in a

RXRA-dependent manner (32).

Regulating gene expression and
epigenetic modifications

As previously reported, numerous brain genes expression

was found to be regulated by omega-3 PUFAs supplementation

(33). In addition, omega-3 PUFAs supplementation can

modulate DNA methylation and histone modifications (34, 35).

For example, high-mobility group box 1 (HMGB1), a nuclear

regulator of gene expression, acts as an endogenous danger

signal to activate inflammatory responses (36). Omega-3 PUFAs

can prevent traumatic brain injury-induced inflammatory

response through deacetylation of the HMGB1/NF-κB pathway.

Antagonizing inflammation and
modulating immune response

Omega-3 PUFAs and their derivatives are multifunctional

regulators of inflammation (37). Omega-3 PUFAs can

competitively inhibit AA metabolic enzymes by competing

with AA in vivo, thereby inhibiting AA mediated production

of inflammatory substances. Omega-3 PUFAs plays important

roles as the precursor of specialized pro-resolving mediators

(SPMs), such as maresins, protectins, resolvins, and lipoxins, all

of which are involved in the process of inflammation resolution

(38). Omega-3 PUFAs can regulate nuclear transcription factors

in the nucleus to inhibit the expression of inflammatory factors.

By binding to the specific receptor such as GPR120, omega-3

PUFAs can downregulate the proinflammatory signal pathways,

such as NF-κB and c-Jun N-terminal kinases (JNK)-related

pathways (39, 40). Omega-3 PUFAs can also inhibit TLR4 and

tumor necrosis factor receptor (TNFR), thereby inhibiting the

expression of pro-inflammatory factors (32). As to cellular

immune response, omega-3 PUFAs can also increase the

expression of the macrophage or microglia M2 phenotype,

thereby promoting the resolution of inflammation (41, 42).

A�ecting mitochondrial function and
reactive oxygen species homeostasis

Through changing mitochondrial membrane phospholipid

composition and membrane viscosity, omega-3 PUFAs have

various effects on mitochondrial function (i.e., membrane

potential, respiration, individual complex activities, and ROS

production). Supplementation with omega-3 PUFAs increases

EPA or DHA while decreases omega-6 PUFAs in mitochondrial

membrane, and can increase cardiolipin, a critical phospholipid

for optimal mitochondrial function. Some literature reports that

omega-3 PUFAs increases the antioxidant potential through

increasing the activity of glutathione-related antioxidant enzyme

and superoxide dismutase activity (43). As to the effect of

omega-3 PUFAs supplementation on ROS production within the

mitochondria, studies have shown inconsistent results possibly

due to different experimental conditions (43–45).

A�ecting cell proliferation, cell viability,
cell repair or apoptosis

Many studies have reported that dietary omega-3 PUFAs

improves neural viability, promotes the proliferation of

neurocytes, benefits brain cell survival and repair, and inhibits

apoptosis through neurotrophic, anti-apoptotic, and anti-

inflammatory signaling (46–48). In addition, DHA can increase

neurogenesis through influencing cell-fate decision of adult

neural stem cells and survival of the newly born cells (49).

E�ects of omega-3 PUFAs on
depression

A number of epidemiological studies have shown that

appropriate omega-3 PUFAs intake or higher serum omega-

3 PUFAs are associated with lower risk of depression (50–

52). Similarly, the depressed people exhibited lower levels of

omega-3 PUFAs in blood samples than the health controls

(53, 54). Furthermore, many human studies have also pointed

out that the intake ratio of omega-3 PUFAs: omega-6 PUFAs is

inversely associated with the risk of depressive symptoms (55,

56). Selective dietary deprivation of omega-3 PUFAs over several

generations or post-weaning has consistently been shown to

increase the expression of depression/anxiety-like behavior

without affecting general locomotor activity in rodents. Some

researchers have further suggested that omega-3 PUFAs index

(which refers to the sum of EPA and DHA in red blood cells)

may be used as potential treatment response marker for youthful

depressed patients receiving omega-3 PUFAs (57). The expert

consensus panel has reached up to consensus on using omega-3

PUFAs in the prevention and treatment ofMDD subgroups such

as pregnant women, children, and older adults (5).

Low levels of omega-3 PUFAs, particularly EPA, are found

to be associated with depressive/anxious mood, low cognitive

function, sleep disturbance, aggression and impulsive behaviors

(58–61). Omega-3 PUFAs supplementation can improve many

aspects of depressed patients including emotion regulation skills,

cognitive function, sleep, and so on (58, 62–64). In addition, it

has been reported that lower omega-3 PUFAs intake or serum

omega-3 PUFAs levels are associated with greater risk of suicide

attempt and MDD (65).
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Several cross-sectional studies fail to find significant

associations between omega-3 PUFAs and depressive symptoms

(66, 67). This may mean that not all subtypes of depression

are responsive to omega-3 PUFAs treatment. MDD is well

recognized as a multifactorial disease which can be caused

by biological, psychological or social factors. A simple lack

of omega-3 PUFAs does not necessarily trigger depression, or

sufficient omega-3 PUFAs can certainly avoid depression. The

effects of omega-3 PUFAs on depression can be confounded

by the etiology, physical constitution of patients, characteristic

of fish oil (including purity, ratio of EPA to DHA), dose and

duration of fish oil intake and so on.

Possible anti-depressant
mechanisms of action of omega-3
PUFAs

Anti-neuroinflammatory e�ects of
omega-3 PUFAs

Multiple lines of evidence have shown that there is a

strong correlation between inflammation and depression. This

evidence includes: (1) Depression is often accompanied by

increased neuroinflammation (68). In the CNS, increased pro-

inflammatory cytokines, which may come from the periphery

or be produced from cells within the CNS, and activation of

microglia as the resident immune cells of the brain are observed

in MDD by imaging and post-mortem studies (69–73). (2) The

central administration of exogenous inflammatory irritants can

induce depressive symptoms (74, 75). (3) Chronic psychological

or physiological stress results in neuroinflammation, which

plays an important role in the occurrence of depression

(76–79). (4) Neuroinflammation has close relationships with

deficiency of monoamine neurotransmitter, dysfunction of brain

neurotransmitters, hyperactivation of HPA axis, oxidative stress,

neurodegeneration, cognitive dissonance and so on (80).

Omega-3 PUFAs and their derivates are effective in reducing

neuroinflammation and has the therapeutic potential in treating

neuroinflammation-related brain or mental diseases, such as

Alzheimer’s disease and substance abuse (81–83). In addition,

it has been found that during development, deficiency of

omega-3 PUFAs in diet dysregulates offspring’s microglial

homeostasis and increases microglial-driven inflammatory

response, resulting in excessive synaptic pruning and subsequent

behavioral abnormalities in mice (84).

It has been suggested that inflammation can be used as

a predictive biomarker for response to omega-3 PUFAs in

MDD (85). Both chronic inflammation and omega-3 PUFAs

deficiency have often been found to be associated with MDD

(86, 87). A number of studies have pointed out that omega-

3 PUFAs (particular EPA) can probably exert some of their

clinical effects via anti-inflammatory mechanisms of action, and

patients with high inflammation levels have better improvement

in depressive symptoms in response to omega-3 PUFAs

supplementation (17, 88). Indirect evidences have pointed out

that anti-neuroinflammatory mechanisms may be implicated in

the antidepressant effects of omega-3 PUFAs (89). In vitro cell

culture studies have shown that omega-3 PUFAs prevents the

inflammatory response of microglia, which may be implicated

in its antidepressant effects (90, 91). Moreover, supplementation

of omega-3 PUFAs significantly reduced doxycycline (DOX)-

induced neuroinflammation and effectively protected DOX-

induced depressive behaviors (92).

Role of omega-3 PUFAs in the
modulation of functions of HPA axis

Hyperactivity of HPA axis, with resulting high cortisol

levels is commonly found in depressed patients. Disfunction

of glucocorticoid receptors (GRs) which impair the HPA

axis negative feedback is one of the main causes of HPA

axis hyperactivity. The brain GR, especially expressed in

the hypothalamic paraventricular nucleus, hippocampus and

prefrontal cortex, are generally assumed to subserve the bulk of

glucocorticoid feedback regulation of the HPA axis (93).

Preclinical and clinical data has reported that low

plasma omega-3 PUFAs levels have correlation with higher

corticotrophin-releasing factor (CRF) (94) and higher plasma

cortisol (95–97), while supplementation with omega-3 PUFAs

can reduce CRF expression and corticosterone secretion

(98, 99). Healthy men treated with 3 weeks of fish oil intake

show a decreased cortisol response to acute mental stress (100).

As to high chronically stressed men subjects, omega-3 PUFAs

phosphatidylserine supplementation is also found to improve

the function of HPA axis (101). In a rat model of depression,

corticosterone hypersecretion induced by chronic restraint

stress is dampened by omega-3 PUFAs supplementation (102).

On the aspects of the CNS, evidence shows that nutritional

omega-3 deficiency dampens the GR signaling pathway in the

PFC of mice, which is associated with dendritic arborization in

PFC as well as emotional deficits (103). It has also been shown

that omega-3 PUFA supplement ameliorates the decreased

expression of GR in the hippocampus of parous rats induced by

the omega-3 deficient diet, whichmay promote the hyperactivity

of the HPA axis and postpartum depression (104).

The possible mechanism of omega-3 PUFAs in regulating

HPA activity may be related to the fact that omega-3 PUFAs

can significantly down-regulate the expression of inflammatory

factor while increasing the negative feedback sensitivity of HPA

axis. Indeed, inflammatory cytokines and their related signaling

pathways have been well-known to inhibit GR function,

further leading to attenuated negative-feedback inhibition of

the HPA axis (105, 106). The anti-inflammatory properties of
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omega-3 PUFAs can thereby help to reduce the irritation of

inflammatory stress on the secretion of CRF and thus inhibit

HPA hyperactivity (107, 108). In rat cortical cultures, DHA

treatment inhibits corticosterone-induced downregulation of

GR expression on βIII- tubulin-positive neurons, which may

contribute to the beneficial effect of DHA on ameliorating

stress-induced neuronal damage (109). Up-regulation of GR

expression by omega-3 PUFAs may also be related to down-

regulation the expression of miRNA218 which is a post-

transcriptional regulator of GR gene expression. Studies in

female rats have reported that omega-3 PUFAs supplementation

improve the maternal-pup separation-induced postpartum

depression and post-menopausal depression, possibly involving

the effects on HPA axis activities associated with reduced

miRNA-218 expression and increased GR expression in the

hippocampus (107, 110).

Anti-central oxidative stress e�ects of
omega-3 PUFAs

Depression is often accompanied by excessive oxidative

stress in the brain, which may lead to neurotoxicity and

neuronal degenerative processes including decrease in

neuroplasticity, neurogenesis, and an increase in apoptosis

(111, 112). Many reasons including abundant O2.-/H2O2 by-

products of mitochondrial respiration resulting from the brains

extraordinary ATP demand, action potential dependent Ca2+

signaling-induced oxidative stress, glutamate (Glu)-induced

excitotoxicity, extremely high content of unsaturated fatty acids

and modest endogenous antioxidant defenses, make the brain

especially vulnerable to oxidative stress (113–115). A number

of the preclinical and clinical studies have reported increased

oxidative biomarkers but lowered levels of antioxidants in the

neurobiology of depression (116–118).

Evidence suggests that omega-3 PUFAs supplementation

could attenuate oxidative stress in the brain (119–122), which

might provide beneficial effects in depression prevention and

treatment (51, 123). Postnatal omega-3 PUFAs supplementation

can significantly enhance glutathione levels and reduce lipid

peroxidation in the dentate gyrus and the cerebellum of

prenatal ethanol exposure animals (124). A systematic review

and meta-analysis of clinical trials have indicated that omega-

3 PUFAs supplementation can enhance antioxidant defense

through increasing serum total antioxidant capacity, glutathione

peroxidase (GPx) activity, while reducing malondialdehyde

levels (125). Oral administration of omega-3 prevents protein

carbonylation and lipid peroxidation, and decreases the activity

of myeloperoxidase, while improves the activities of superoxide

dismutase and catalase in the brain of rats subjected to stress

events (126). Using proton magnetic resonance spectroscopy,

researchers found that the supplementation of 12-wk omega-3

decreases in vivo thalamus glutathione concentration in patients

“at risk” for major depression (127). Several mechanisms can

be suggested for the effect of omega-3 PUFAs on oxidative

stress, including: (1) Increasing superoxide dismutase activity,

elevating resistance to ROS damages and decreasing lipid

peroxidation; (2) Inhibiting cyclooxygenase-2 (COX-2) enzyme

activity. COX-2 metabolizes AA to inflammatory and oxidant

prostaglandins which may promote lipid peroxidation; (3)

Increasing the expression of nuclear factor-erythroid 2-related

factor 2 (Nrf2) which is a transcriptional regulator that

can effectively mediate antioxidant response by stimulating

expression of the various antioxidant and anti-inflammatory

genes (125, 128). In rat primary astrocytes, omega-3 PUFAs

treatment can reduce ROS generation and enhance the

antioxidant defense through Nrf2 activation under basal and

oxidative stress conditions, suggesting that enrichment of

astrocytes with omega-3 PUFAs may help to protect neurons

in harmful conditions (129). Transcriptomic analyses of human

hippocampal progenitor cell show that both EPA and DHA

treatment regulates immune response pathways and Nrf2-

mediated antioxidant pathways, which may be the molecular

mechanisms underlying the preventive effect of omega-3 PUFAs

on cortisol-induced decrease in neurogenesis and increase in

apoptosis (130).

It has been found that only among participants with

increased oxidative stress biomarkers, the omega-3 PUFAs index

is negatively correlated with depressive symptoms, suggesting

that oxidative stress status may be taken as a potential predictor

of response to omega-3 PUFAs treatment of depression (131).

Moreover, evidence indicates that omega-3 PUFAs may be

more effective in improving the depressive symptoms of

coronary heart disease patients with higher levels of oxidative

stress marker (132). Omega-3 PUFAs can also prevent the

brain’s oxidative damage by decreasing the levels of protein

carbonylation, lipid peroxidation, and the concentrations of

nitrite/nitrate, and reducing myeloperoxidase activity, while

increasing superoxide dismutase and catalase activities, which

may contribute to the inhibitory effects of omega-3 PUFAs on

the depressive-like behavior of the rats subjected to early or late

life stress (126).

Anti-neurodegenerative e�ects of
omega-3 PUFAs

Neurodegenerative disorders have been closely related to

depression (133). The physiological factors underlying various

neurodegenerative changes include: increased inflammation

level, enhanced oxidative stress damage, decreased secretion of

the brain-derived neurotrophic factor (BDNF) and excessive

glucocorticoid level associated with the chronic stress. The

evidence of the correlation between neurodegeneration and
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depression can be mainly derived from the following aspects:

(1) Hippocampal and the pre-frontal cortex (PFC) volume has

been observed to be consistently reduced in the depressed

patients (134–136); (2) Decreased levels of BDNF, dendritic

atrophy, decreased neurogenesis, and increased neuronal death

in patients with depression (137, 138); (3) Depression and other

neurodegenerative diseases can exhibit a high co-morbidity

(139). Previous epidemiological studies have shown that the co-

morbidity rate of depression and Alzheimer’s disease was about

40% (140), and the co-morbidity rate of Parkinson’s disease was

about 30% (141).

Omega-3 PUFAs play important roles in preventing

neurodegeneration by inhibiting neuroinflammation,

promoting synaptic plasticity and neurogenesis, facilitating

nervous system repair, and protecting against the reduction of

gray matter volume and the decline of white matter integrity

(19, 142, 143). Studies have found that omega-3 PUFAs can

promote the proliferation and migration of nerve cells, and

inhibit apoptosis (48, 144). According to a ten-year follow-up

study, higher levels of plasma EPA and DHA are associated with

a slower decline in medial temporal lobe volume and a lower

risk of dementia in older adults (145). Higher blood EPA level

is found to have correlations with lower gray matter atrophy in

the right amygdala, while higher atrophy of the right amygdala

is correlated with more severe depressive symptoms (146).

Omega-3 PUFAs can prevent neurodegeneration through

modulating a variety of pathways, including anti-apoptotic

(147, 148), anti-oxidative (149–151), and anti-inflammatory

pathways (152). Omega-3 PUFAs supplementation have been

also found to increase the synthesis of neutrophic factor

BDNF (153–155). BDNF plays important role in protecting

against neurodegeneration and promoting neuronal plasticity,

thereby having potential in depression treatment (156, 157).

In addition, changes in the activities of telomerase and

mammalian target of rapamycin (mTOR) may also be involved

in the anti-neurodegeneration actions of omega-3 PUFAs

(158, 159). Clinical trials have also confirmed that omega-3

PUFAs can effectively improve neurodegenerative diseases (such

as Alzheimer’s and Parkinson’s diseases) with an associated

improvement of the co-morbid depressive symptoms (160).

Pro-neuroplastic and pro-synaptic
plasticity e�ects of omega-3 PUFAs

Depression is deeply connected with irregular neural

plasticity processes which are often found in the prefrontal

cortex, hippocampus, amygdala and other limbic systems

(161). Impaired neural plasticity can be primarily reflected

in decreased neurogenesis, reduced dendritic spine density,

decreased synapse number and strength, reduced synaptic

remodeling, dendritic atrophy, as well as reward circuit

dysregulation (162–166). At present, it has been found that

the vast majority of antidepressant treatments, including

physical therapy (such as electroconvulsive therapy, transcranial

direct current stimulation, and transcranial alternating current

stimulation) and drug therapy (such as fluoxetine, ketamine,

and TJZL184), can primarily exert their antidepressant effects by

regulating neural plasticity (167–170).

Omega-3 PUFAs have been shown to promote

neuroplasticity in multiple ways. DHA supplementation

could effectively promote neurogenesis by increasing the

proliferation of neural stem/progenitor cells (NSPCs) as well

as the number of NSPCs differentiating into the neurons and

promoting the survival of newly born neurons (49). Moreover,

increasing the brain levels of omega-3 PUFAs can increase

the synthesis of new dendritic spines and synapses (171). The

underlying mechanisms for the pro-neurogenesis effect of

omega-3 PUFAs may be related to activation of proliferation-

related pathways involving signaling molecular including

GPR40, p38 MAPK, cAMP-response element binding protein

(CREB), and BDNF (172–174). By using transgenic fat-1 mice

rich in endogenous omega-3 PUFAs, researchers have found

that substantial increase in brain DHA can significantly promote

hippocampal neurogenesis and increase the genesis of dendritic

spines of CA1 pyramidal neurons (172).

Omega-3 PUFAs supplementation could also regulate

synaptic formation, synaptic transmission and affect synaptic

plasticity (32, 171, 175). Omega-3 PUFAs may play an important

role in regulating the expression of several important neural

and glial proteins such as E-cadherin, early growth response

1, postsynaptic density protein 95, and signaling factors that

have been implicated in synaptic plasticity [such as N-methyl-

D-aspartic acid (NMDA) receptor and Fyn] (176). It has been

reported that omega-3 PUFAs deficiency can reduce long-term

potentiation (LTP), the concentrations of glutamate receptor

subunits, and synaptic vesicle proteins at the hippocampal

glutamatergic synapses (177).

In addition, DHA and EPA can be converted into

endocannabinoids (eCBs) docosahexaenoyl ethanolamide

(DHEA) and eicosapentaenoyl ethanolamide (EPEA) which

exerts physiological effects through activating eCB receptors.

DHEA and EPEA have been reported to exhibit various

immunomodulatory and anti-inflammatory activities and

effects on food intake and mood (20, 178). The eCBs can

induce short-term changes and long-term synaptic plasticity

in the whole nervous system, because eCBs synthesized in

the postsynaptic neurons can function reversely to regulate

the presynaptic input (179). Maternal omega-3 PUFAs

deficiency can induce the impairment of eCBs gating of LTP

in hippocampus of weaned pups (180). It has been also found

that life-long omega-3 PUFAs deficiency can lead to the specific

inhibition of eCBs-mediated long-term synaptic depression

in the prelimbic prefrontal cortex and the accumbens of

adult mice. This effect is accompanied by decreased CB1
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receptor function which is associated with impaired emotional

behavior (181).

Neurotransmitter system modulatory
e�ects of omega-3 PUFAs

The neurotransmitter and neurotransmitter receptor

hypothesis of depression propose that various disorders in

multiple neurotransmitter systems are involved in etiopathology

of depression. Emerging literature has also shown that

depression might be associated with the various molecular

abnormalities and functional deficiency in brain transmitter

systems including that in 5-hydroxytryptamine (5-HT),

dopamine (DA), norepinephrine (NE), Glu and GABA (157).

Accumulating evidences indicate that the neurotransmitter

transmission predominantly depends on adequate level of

omega-3 PUFAs or optimal omega-6 PUFAs: omega-3 PUFA

ratio in the brain (23). Being rich in membranes of the synaptic

terminals, DHA has been considered to be important for the

function of neurochemical transmission. Low availability of

omega-3 PUFAs can influence the synthesis, synaptic release,

uptake of multiple neurotransmitters including 5-HT, DA, NE,

Glu and GABA.

Accumulating evidences indicate that the normal functional

activities of neurotransmitter systems depend on adequate levels

of omega-3 PUFAs in the brain (23, 182). Omega-3 PUFAs

have wide effects on the synthesis, synaptic release, uptake of

multiple neurotransmitters including 5-HT, DA, NE, Glu and

GABA (23, 183, 184). It has been pointed out that improving

the transmission of 5-HT and DA; reducing 5-HT2 receptor

and increasing D2 receptor in the frontal cortex may be

the possible mechanisms underlying the beneficial effects of

omega-3 PUFAs on depression (23). It is reported that fish-oil

supplementation produces an antidepressant-like effect in LPS-

induced depression model and this effect is related to decreased

expression of indoleamine-2,3-Dioxygenase and elevated 5-HT

levels in the hippocampus (185). Omega-3 PUFAs can also

influence the expression levels of multiple neurotransmitter

receptors. It has been shown that DHA supplementation can

prevent the increase of binding density of 5-TH receptors (5-

HT1A and 5-HT2A), CB1 and GABA-A receptors induced by

the high saturated fat diet, which have been related to the

cognitive function of the brain (186).

In addition, previous studies have demonstrated that

omega-3 PUFAs deficiency can aggravate the age-associated

decrease in glutamatergic synaptic efficacy in the hippocampal

CA1 (187). It can further affect the glutamatergic synapse

development and anxiety-like behavior in male adult rats (188).

It has also been found to decrease the subunits of NMDA

receptors NR2A, NR2B in rodents (188–190). Similarly, omega-

3 PUFAs deficiency also leads to decreased concentrations of

Glu receptor subunits (GluA1, GluA2 and NR2B) and other

synaptic vesicle proteins in the hippocampal synaptosomes of

mice (177).

Preclinical and clinical findings have suggested that

eCBs/CB1R signaling can contribute to depression risk and

omega-3 PUFAs can exert the anti-depressant effects through

altering the PUFA-derived eCBs levels in the whole brain

(181, 191–193). It has been reported that omega-3 PUFAs

supplementation can increase plasma DHEA and EPEA levels

and increased EPEA levels are positively related to the clinical

remission rate of MDD patients (180).

The correlations of the six mechanisms of
omega-3 PUFAs action

These six aspects of omega-3 PUFAs action may not play

independent parts, but just like different aspects of the same

thing they probably work in an interconnected system. The

simplified model for the assumed interconnection of the six

mechanisms are shown in Figure 1. Neuroinflammation and

oxidative stress often flame each other and have been considered

as the major causes of neurodegeneration followed by MDD

(194). Chronic stress-induced hyperactivation of the HPA-axis

and neuroinflammation can create a vicious cycle, lead to

dysfunction of neurotransmitters system, impair neuroplasticity

and promote neurodegeneration (195–199). It has been

indicated that HPA axis hyperactivation causes inflammation

response in MDD. Immunological communication between

the CNS and the body periphery triggers neuroinflammation,

which further induces the failure of glucocorticoid negative

feedback within the brain. In addition, inflammatory factors

activate the kynurenine pathway resulting in the reduction

of serotonin biosynthesis and the increased production of

neurotoxic metabolites, and eventually neurodegeneration

(198). There are lots of papers which have reviewed the

correlations between neuroinflammation and neural or synaptic

plasticity, neuroinflammation and neurotransmitter systems,

neurotransmitter systems and synaptic plasticity, which can

be referred to the following references (200–203). We also

summarized the experimental designs and results of animal

studies reported in the references in this paper. As shown in

Table 1.

According to research results, omega-3 PUFAs deficiency

often leads to dysfunction of multiple neurobiological systems,

such as neuroinflammation, inactivated GR signaling pathway

and HPA axis hyperactivity, deteriorated serotoninergic,

noradrenalinergic and dopaminergic neurotransmission,

impaired neurogenesis, neurodegeneration and so on

(96, 103, 208). It has been found that chronic dietary omega-3

PUFAs deficiency led to a significant reduction in 5-HT and NA

content, increased production of kynurenine, along with HPA
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TABLE 1 Experimental design and results summary of animal studies in references.

References Year Animals Experimental model Omega-3 Dose Effects Molecular change

Song et al. (95) 2009 Sprague Dawley rats Olfactory bulb resection

depression model

1% EPA diet Water maze: spatial memory↑ mRNA expression and activity of cPLA2↓; Serum

IL-1β and PGE2 concentrations↓; CRF mRNA

expression and blood corticosterone

concentration↓; NGF expression in the

hippocampus↑;

Ferraz et al. (102) 2011 Wistar rats Restraint stress induced

depression model

3.0 g/kg animal weight of an

oral compound containing 12%

of EPA and 18% of DHA

FST: immobility frequency↓; swimming

frequency↑; climbing frequency↑;

Water maze test: mean latency time↓;

percentage of spent time in target

quadrant↑; percentage of entries into

closed arms↓; EPM: percentage of

entries into open arms↑; percentage of

time spent in closed arms↓; percentage

of time spent in the open arms↑

None

Labrousse et al. (204) 2012 C57Bl6/J mice Control diet

non-depression model

An isocaloric LCω3 PUFA

supplemented diet containing a

mixture of rapeseed oil,

high-oleic sunflower oil, palm

oil and tuna oil resulting in a

10% EPA and 7% DHA diet

Spatial recognition: Spatial memory

deficit↓

AA/dGLA↑; EPA and DHA in the brain↑;

(dGLA+EPA)/AA↑; microglia-dependent

activation↓; proinflammatory cytokines

production in microglia↓; CD11b mRNA

expression↓; TNF-α expression mRNA↓; IL-6

mRNA expression↓; IL-1β expression↓; length of

astrocytic processes in aged mice↑; c-Fos positive

cells↑; microglia-dependent activation↓;

proinflammatory cytokines production↓

Balvers et al. (193) 2012 C57BL/6 mice i.p. LPS induced depression

model

1% or 3% fish oil None DHEA↑; EPEA↑; endocannabinoids↓; NAEs↓;

DGLEA↓; adipose tissue levels of SEA↑; plasma

levels of SEA↓; ARA↓; DHA↑; EPA↑; oxylipins↓;

LTB4 in ileum and adipose tissue↓; LTB4 in liver↑;

Lipoxin A4↑

Larrieu et al. (205) 2014 C57BL/6 mice Chronic social defeat stress

induced depression model

3.1% lipids Number of social explorations↓ OFT:

time spent exploring the center↓

Simplification of apical dendritic tree on

pyramidal neurons of the dlPFC and dmPFC↓;

total corticosterone elevation↓; HPA axis

hyperactivity↓; neuronal atrophy↓
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TABLE 1 (Continued)

References Year Animals Experimental model Omega-3 Dose Effects Molecular change

Wu et al. (92) 2016 Sprague Dawley rats Depressive model induced

by intraperitoneal injection

of doxorubicin

EPA: DHA 3:2; EPA 510mg/kg;

DHA 360mg/kg

Weight loss↓ OFT:Number of

crossings↑; number of rearing↑; latency

time↓; FST: swimming time↑;

immobility time↓

MDA in prefrontal cortex↓; MDA in

hippocampus↓; SOD in hippocampus↑; IL-1

mRNA expression in prefrontal cortex↓; IL-6

mRNA expression in prefrontal cortex↓; IL-6

mRNA expression in hippocampus↓; TNF-α

mRNA expression in hippocampus↓; protein level

of NF-κB↓; protein level of iNOS↓; Number of

nuclear pyknosis↓; Apoptotic index

TUNEL-positive cells↓gene expression of Bcl-xl↑;

gene expression of Bcl-2↓.

Larrieu et al. (103) 2016 C57BL6/J mice Mifepristone subcutaneous

implantation

non-depression model

Containing 6% of rapeseed oil Number of social interaction↑; OFT:

Center time ↑

Plasma corticosterone levels ↓; the total apical

dendritic material in both dlPFC and dmPFC ↑

Abdel-Maksoud et al.

(153)

2016 Sprague-Dawley rats Control diet

non-depression model

EPA: DHA 3:2; EPA 180mg;

DHA120mg

None BDNF gene expression↑; serum total cholesterol↓;

triacylglycerol↓; serum glucose level↓; HOMA

index↓; triacylglycerol levels↓

Morgese et al. (98) 2017 Wistar rats Control diet

non-depression model

Containing 6% total fat in the

form of only rapeseed oil (n-3

enriched, rich in linolenic acid

18:3n-3)

FST: immobility frequency↓; swimming

frequency↑; struggling frequency↑;

OFT: time of performing

self-grooming↓

Cortical 5-HT concentrations↓; CRF content↑;

corticosterone levels↑; plasmatic Aβ levels ↑; NA↑

Tang et al. (104) 2018 Sprague-Dawley rats Control diet

non-depression model

Fish oil (20 g/ kg) FST: immobility frequency↓; SPT:

sucrose preference↑

Protein expressions of glucocorticoid receptor ↑

Cigliano et al. (206) 2019 MRL/lpr mice Non-depression model An oral dose (30mg) of FO

(85%) containing 16 and 9,5mg

of DHA and EPA

None Double-stranded DNA (anti-dsDNA) IgGs↓;

TNF-α↓; PPAR-γ↑; DHA concentration in the

brain↑; BDNF↑; SynaptophysinI↑;

SynaptotagminI↑; SynapsinI↑; compensatory

hyperactivation of phase 2 enzymes (GSR, G6PD)

activities↓; GCL↓; GSR mRNA levels↓; Nrf2 ↓

Yang et al. (183) 2019 Sprague-Dawley rats CUMS induced depression

model

Fish oil (20 g/kg) FST: Immobility times↓; SPT: sucrose

preference↑; OFT: number of locomotor

crossing↑; number of rearing↑

5-HIAA↓; DOPAC↑; HVA↓; VMA↓; GLN↑; DA

turnover rate 2↓; NE turnover rate 1↓; NE

turnover rate 2↓; DA/NE between-metabolite

ratio 1↑
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TABLE 1 (Continued)

References Year Animals Experimental model Omega-3 Dose Effects Molecular change

Choi et al. (107) 2020 Wistar rats Pup separation-induced

depression model

EPA:DHA 5:3; EPA 450mg;

DHA260mg

FST: immobility time↓; climbing time↑;

Sucrose preference index↑; Pup retrieval

test: Latency of the first contact↓;

Latency to retrieve↓

Adrenocorticotropic hormone↓; corticosterone↓;

hypothalamic corticotrophin releasing factor↓;

hippocampal miRNA-218↓; prostaglandin E2↓;

TNF-α↓; IL-6↓; miRNA-155↑; serotonin↑;

serotonin-1A receptor↑; cAMP response element

binding protein (CREB)↑; pCREB; brain-derived

neurotrophic factor↑; miRNA-182↑.

Cutuli et al. (144) 2020 C57BL/6 mice icv. mu-p75-saporin

induced depression model

EPA: DHA 5:4 300 mg/kg EPM: expected aversion↓; NORT: total

object contact time↓

Preserved hippocampal volume; neurogenesis in

the dentate gyrus↑;astrogliosis in the

hippocampus↓

Peng et al. (207) 2020 Sprague Dawley rats CUMS induced depression

model

1% ethyl-EPA (96% pure) or 1%

DHA (96% pure)

SPT: Sucrose consumption↑; FST:

immobility time↓; OFT: numbers of

locomotor crossing↑; numbers of

rearing↑

Arachidonic acid (AA) level in the brain↓;

docosapentaenoic acid in the brain↑; total

cholesterol level ↓; serum corticosterone ↓; NE ↑;

5-HT ↑; NE/MHPG↑; IL-1β↓; IL-6↓; TNF-α↓;

CD11b expression↓; p75NTR expression↓; GDNF

expression↑; NF-KB and p38 expression↓; bax

expression↓; bcl-2↑; bax/bcl-2↓

Carabelli et al. (185) 2020 Wistar rats i.p. LPS induced depression

model

3.0 g/kg (approximately 3.0

mL/kg) of fish oil containing

18% of EPA and 12% of DHA

Weight loss↓; FST: swimming

frequency↑; immobility time↓

5-HT↑; 5HIAA/5-HT↓; IDO expression↓

Choi et al. (110) 2021 Wistar rats CMS+ovariectomy induced

depression model

EPA: DHA 3:2; EPA 300mg/kg;

DHA260mg/kg

FST: swimming time↑; immobility

time↓; SPT: sucrose preference index↑

Brain endocannabinoid/oxylipin levels↑; blood

levels of adrenocorticotropic hormone and

corticosterone↓; tumor necrosis factor-α,

interleukin (IL)-6, IL-1β, and prostaglandin E2↓;

brainstem serotonin levels and hippocampal

expression of the serotonin-1A receptor, cAMP

response element-binding protein (CREB),

phospho-CREB, and brain-derived neurotrophic

factor↑

“↑” Indicates increased levels or protein expression of factor substances in vivo after treatment with omega-3 compared to controls. “↓” Indicates decreased levels or protein expression of factor substances in vivo after treatment with omega-3 compared

to controls. FST, Forced Swimming Test; SPT, Sucrose Preference Test; OFT, Open Field Test; EPM, Elevated Plus Maze; NORT, New Object Recognize Test; NGF, Nerve growth factor; LTB4, Leukotriene B4; MDA, Malondialdehyde; HOMA index,

Homeostatic model assessment index; HVA, Homovanillic acid; VMA, Vanillylmandelic acid; GLN, glutamine.
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axis hyperactivity, higher proinflammatory cytokine production

associated with higher expression of TLR2 and TLR4 and

increased expression of oligomeric Aβ in hippocampus of

female rats (209).

Both clinical and pre-clinical evidences have shown that the

alterations of many different aspects of the CNS are involved in

the anti-depressant effect of omega-3 PUFAs supplementation

(63, 88, 89, 130, 184, 205, 206, 208, 210–213). Therefore, the

six antidepressant mechanisms of omege-3 PUFAs that we

summarized probably act synergistically but not separately.

However, there is currently no clear conclusion on how these

mechanisms are linked or how they interact, and whether there

are causal links. All these questions require further studies to

be answered.

Based on existing evidence, we summarized a variety

of central mechanisms of omega-3 PUFAs anti-depressant

actions, from molecular mechanisms to cellular mechanisms to

neurobiological mechanisms. At the molecular level, omega-3

PUFAs directly changes lipid profiles, regulating membrane

fluidity and membrane-associated cellular processes such as

the assembly of membrane protein complexes and lipid valves;

neurotransmitters and neuroendocrine exocytosis as well as

microglia phagocytosis. Through metabolism and acting on

the plasma membrane or intracellular receptors, omega-3

PUFAs can improve total antioxidant capacity; prevent lipid

peroxidation: produce anti-inflammatory metabolites and

regulate inflammatory signal pathways. At the cellular level,

omega-3 PUFAs indirectly affect a wide range of cellular

activities, such as the cell resistance to stress damage; various

signaling transduction pathways; the neurotransmitter systems;

the whole-genome expression profile; cell proliferation,

differentiation, growth, development, senescence, apoptosis

and so on. Based on its molecular and cellular mechanisms at

the neurobiological level, omega-3 PUFAs exert a widespread

and far-reaching influence on the mood regulating function

of the central nervous system. Omega-3 PUFAs can improve

neuroinflammation; dysfunction of neuroendocrine (HPA

axis); oxidative stress; neurodegeneration; neuroplasticity;

neurotransmitters system and so on. All these effects may

play roles in the prevention and improvement of depression.

Abbreviations: TRPV4, Transient receptor potential vanilloid 4;

ROS, Reactive oxygen species; EGFR, Epidermal growth factor

receptor; GPR120,G-protein coupled receptor 120; PPARγ,

Peroxisome proliferator-activated receptor-gamma; TLR4,

Toll-like receptor 4; COX-2, Cyclooxygenase-2; BDNF, Brain-

derived neurotrophic factor; CREB, cAMP-response element

binding protein; PPAR, peroxisome proliferator-activated

receptor; Nrf2, nuclear factor-erythroid 2-related factor 2; 5-HT,

5-hydroxytryptamine; NE, Norepinephrine; CB, Cannabinoids;

GC, Glucocorticoid; NF-κB, nuclear factor kappa-B; JNK,

c-Jun N-terminal kinases; p38MAPK, p38 mitogen-activated

protein kinase.

Future directions

The pathological mechanisms of depression have been

found to be closely associated with multiple aspects of neural

functions. Currently, omega-3 PUFAs are a kind of molecules

of diverse biological activities, capable of producing multiple

antidepressant effects in the CNS. The six possible mechanisms

summarized in this review are probably interconnected in

complex manner and can function synergistically to produce the

anti-depressant effects. However, there is a critical need for well-

designed systematic researches to identify the eventual unitary

anti-depression mechanism from various different actions of

omega-3 PUFAs.

Although there have been numerous studies published that

have demonstrated the regulation of various physiological

functions by omega-3 PUFAs in depressive disorders,

there are still insufficient reports related to the causal

mechanisms of omega-3 PUFAs anti-depressant action. Omega-

3 PUFAs can have diverse regulatory effects on neurogenesis,

synaptic plasticity, oxidative stress, neuroendocrine, and

neurotransmitter transduction, but the specific molecular

regulatory pathways remain largely unclear. In addition, it is

also unclear to how these PUFAs affect depressive symptoms

from the molecular to the behavioral level. To answer this

question may depend on the thorough understanding about

the role of omega-3 PUFAs in human life as well as the

pathophysiological nature of depression.

It is still unclear which ones are direct or indirect

mechanisms; which ones are the primary effects and which ones

are the secondary mechanisms of the anti-depressant effect of

omega-3 PUFAs. Clarifying these issues which will help establish

the central pharmacological action and pharmacodynamics of

omega-3 PUFAs.

In order to facilitate translation to application, future

research may need to elucidate the anti-depressant mechanism

of omega-3 PUFAs action by using quantitative systems

pharmacology and to identify the clinical biomarkers and

the antidepressant-response biomarkers in target subgroups of

depressed patients.

Moreover, omega-3 PUFAs may play different roles in

different depressed patients with different constitutions. Further

studies should be conducted to explore the potential different

mechanisms of the action of omega-3 PUFAs on depression

in children, adolescents, postpartum women, and eldly adults

or depressed patients with concomitant physical diseases such

as cardiovascular disorders. This will help the personalized

application of omega-3 PUFAs in different subgroups of MDD.

In addition, according to ISNPR’s 2019 practice guideline

for the assisted treatment of depression with omega-3 PUFAs,

omega-3 PUFAs are found to be more effective as an adjuvant

treatment than monotherapy for MDD treatment. So, what

are the specific mechanisms by which omega-3 PUFAs can
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accelerate or enhance effects of other antidepressants? This

requires further studies to explore the exact mechanisms

underlying greater efficacy of clinical antidepressants in

combination with omega-3 PUFAs. This may be the good news

for clinical use of antidepressants that act quickly but are often

associated with side effects, or work too slowly, or do not

work significantly.

Conclusions

This article provides a review of the neurobiological

mechanisms underlying the antidepressant effects of omega-

3 PUFAs. Based on the accumulated evidence from recent

publications, we identified six potential mechanisms, including:

(1) anti-neuroinflammatory; (2) anti-oxidative stress; (3)

modulation of HPA axis; (4) anti-neurodegeneration; (5)

neuroplasticity and synaptic plasticity; and (6) modulation of

neurotransmitter systems. All these antidepressant mechanisms

may be based on the molecular action and cellular effects of

omega-3 PUFAs, however, how these processes work remains

largely unknown. Although neurobiological mechanisms are

probably interconnected and interdependent, the multiple sites

of action of omega-3 PUFAs are still needed to be clarified.

This review contributes to a better understanding the potential

mechanisms of benefit of omega-3 PUFA and may provide

useful references for the development of new strategies for the

treatment of depressive disorder with omega-3 PUFAs.
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