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Abstract: Amyotrophic lateral sclerosis (ALS) is a devastating disease with evidence of degeneration
involving upper and lower motor neuron compartments of the nervous system. Presently, two drugs,
riluzole and edaravone, have been established as being useful in slowing disease progression in ALS.
Riluzole possesses anti-glutamatergic properties, while edaravone eliminates free radicals (FRs). Glu-
tamate is the excitatory neurotransmitter in the brain and spinal cord and binds to several inotropic
receptors. Excessive activation of these receptors generates FRs, inducing neurodegeneration via
damage to intracellular organelles and upregulation of proinflammatory mediators. FRs bind to
intracellular structures, leading to cellular impairment that contributes to neurodegeneration. As
such, excitotoxicity and FR toxicities have been considered as key pathophysiological mechanisms
that contribute to the cascade of degeneration that envelopes neurons in ALS. Recent advanced
technologies, including neurophysiological, imaging, pathological and biochemical techniques, have
concurrently identified evidence of increased excitability in ALS. This review focuses on the rela-
tionship between FRs and excitotoxicity in motor neuronal degeneration in ALS and introduces
concepts linked to increased excitability across both compartments of the human nervous system.
Within this cellular framework, future strategies to promote therapeutic development in ALS, from
the perspective of neuronal excitability and function, will be critically appraised.

Keywords: excitotoxicity; free radicals; cortical excitability; nerve excitability; amyotrophic lateral
sclerosis

1. Introduction

Amyotrophic lateral sclerosis is a complex disease characterized by degeneration of
the upper and lower motor neuron of the human nervous system. A recent national ALS
registry study in the United States, with data collected between 2014 and 2016, identified
age-adjusted incidence rates of 1.5 to 1.7 per 100,000 U.S. population, with ALS more
common among whites, males and persons aged 60–79 years [1]. The median survival
of ALS from the onset to respiratory failure is 2–5 years [2]. While Jean-Martin Charcot
originally described ALS in the 1860s, the definitive processes that lead to disease onset
are yet to be identified [3]. Patients with ALS frequently experience muscle cramps,
fasciculations, weakness, progressive gait disturbance, dysphagia, weight loss, dysarthria
and respiratory failure, while a significant proportion also develops cognitive difficulties
and frontotemporal dementia [4].

While the clinical phenotype is well known, the underlying pathophysiology in ALS
remains to be elucidated. While 5–10% of ALS patients have family history of ALS, the re-
maining 95% patients are classified as sporadic [5]. Multiple predisposing factors have been
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implicated in sporadic ALS, including genetic, environmental, traumatic, dietary, metabolic
and occupational factors, although the interplay of these factors remains unclear [6]. At
a molecular level, several pathophysiological changes have been reported, including
glutamate-induced excitotoxicity, increased oxidative stress, neurofilament accumulation,
ion channel and pump dysfunction, intracellular aggregation, such as SOD1 and TDP-43
protein, dysregulated RNA metabolism, mitochondrial dysfunction, disruption of axonal
transport systems, immunological changes and proteasomal dysfunction [7,8]. Separate to
disruption of the motor neuron, the supporting network of astrocytes and microglia may
also contribute to neurodegeneration, linked to insufficient release of neurotrophic factors,
secretion of neurotoxic mediators and modulation of glutamate receptor expression [9].
Combinations of these pathophysiological alterations have been linked to contribute to
ALS pathogenesis [10–14].

In terms of therapeutic progress, a recent systematic review investigated Phase II,
Phase II/III and Phase III clinical trials in ALS using trial registries and PubMed from 2008
to 2019, and it identified 125 trials that investigated 76 drug formulations with recruitment
of more than 15,000 ALS patients [15]. Despite this large body of clinical trial activity,
efficacious drugs that are available for ALS in clinical practice remain limited. Presently,
two drugs, riluzole and edaravone, have been established as useful to slow disease progres-
sion in ALS [16]. Riluzole exerts cellular and anti-glutamatergic properties, with several
randomized trials establishing the efficacy of riluzole in large populations of ALS patients,
with typically a 3–6 month extension of survival [17]. Edaravone eliminates free radi-
cals (FRs), and one randomized trial identified slowing of ALS functional deterioration
over a 6 month period, with effects particularly in younger patients with minimal disease
involvement [18]. Additionally, a recent non-randomized study also suggested that edar-
avone prolongs survival of ALS patients [19]. Based on these pieces of combined evidence,
the role of excitotoxicity and exposure to FRs have been pursued as key pathophysiologies
linked to the development of ALS, which will form the key theme of the present review.

2. Oxidative Stress in Motor Neuron Degeneration of ALS

Glutamate is the excitatory neurotransmitter, active in the brain and spinal cord, that
binds to several inotropic receptors, including α-amino-3-hydroxy-5-methyl-4-isoxazolep
ropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors [20]. Excessive activation
of these receptors, with defects in the clearance of these neurotransmitters from the synaptic
cleft, combined with increased permeability of Ca2+, accumulates excitatory mediators,
generates FRs and impairs neurons [21] (Figure 1). Neurotoxicity mediated by these
excitatory mediators (termed excitotoxicity) may secondarily induce degeneration through
the influx of calcium ions (Ca2+) [22]. This influx of Ca2+ into cells activates enzymes
such as endonucleases, phospholipases and proteases, which cause neuronal injury and
ultimately cell death [21].

It is well known that oxygen plays a pivotal role for all living organs, including
neuronal cells, although the excessive presence of oxygen becomes harmful to various
intercellular organelles [23]. As such, the usage and uptake of oxygen are strictly maintained
and monitored via complex feedback systems within the cell. Separately, oxidative stress
is produced by the imbalance between oxidants and antioxidants within this biological
system. The excessive level of reactive oxygen species (ROS) or functional impairments
of antioxidant regulatory systems result in this imbalance [24]. The univalent metabolic
reduction status of oxygen has adverse effects including the generation of ROS, not only
oxygen radicals but also non-radicals that are easily converted into radicals. FRs typically
exhibit one or more unpaired electrons and may exist independently [25,26]. ROS may
contribute to the degeneration of neuronal cells by modulating the function of target
biomolecules, such as DNA, RNA, lipids, proteins and related processes, such as nucleic
acid oxidation and lipid peroxidation in the cell. In turn, ROS released from damaged
neurons influence surrounding glial cells [27]. Moreover, ROS disrupts glutamate transport
in surrounding astrocytes, increases glutamate concentrations in the synaptic cleft, raises
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Ca2+ influx into the cells and mitochondria and leads to impaired glial function [27].
Additionally, ROS may activate glia and induce proinflammatory cytokine production.
Eventually, these neurodegenerative processes spread from a focal lesion to involve a more
diffuse neuronal population. Given that the brain itself consumes substantial oxygen, it
substantially contributes to the production of FRs, with the consequent risk of triggering
neurodegenerative processes.

Various kinds of ROS, including hydrogen peroxide, superoxide anions and hydroxyl
radicals, are known to exert deleterious effects on both the central and peripheral nervous
system. As an example, neurofilaments contribute essential cytoskeleton for the central
nervous and peripheral nervous systems, with abnormal accumulation of neurofilaments a
frequent accompaniment of ALS [28]. Linked to this accumulation, ROS produced by mice
with SOD1-mutations have been reported mainly to bind to neurofilaments, disrupting the
neurofilament proteins, while promoting neurofilament aggregation. ROS may contribute
to neurodegeneration in ALS via such a process.

While considering oxidative stress and neurodegeneration in ALS [29], motor neurons
are remarkably sensitive to this process for several reasons. First, motor neurons are large
cells, approximately 100 microns in diameter, with axons up to 1 m in length. As such,
metabolic demands are significant, with high oxygen demands and metabolism needs that
result in increased production of ROS [30]. Secondly, motor neurons express low levels of
calcium-binding proteins. As such, excessive calcium ions that enter mitochondria result
in increasing ROS production. Thirdly, the expression of protective antioxidant proteins,
such as catalase, is lower in the motor neuron than in other cell types [31]. The combination
of these factors likely contributes to the processes of degeneration that involve the motor
neuron in ALS [32].

Markers for protein oxidation and DNA oxidative damage are increased in the motor
cortex of patients diagnosed with sporadic ALS. In further support, immunohistochemical
studies established increased neuronal staining for enzymes inducible by oxidative stress,
lipid peroxidation and DNA oxidative damage in the spinal cord of sporadic ALS and
familial ALS [32]. Additionally, 4-hydroxy-2,3-nonenal (HNE), a product of membrane
lipid peroxidation, was also increased in motor neurons, astrocytes and microglia cells of
ALS patients [33]. Furthermore, these HNE levels are significantly elevated in the sera and
cerebrospinal fluid of sporadic ALS patients [34], suggesting that increased oxidative stress
significantly contributes to motor neuron degeneration in ALS.

In conclusion, excessive activation of glutamate receptors induces oxidative stress, and
oxidative stress can cause neurodegeneration via various mechanisms. Moreover, oxidative
stress increases glutamate concentrations and raises Ca2+ influx. As such, the excitatory
neurotransmitter and oxidative stress are tightly connected with each other and might be
substantially related with neurodegeneration in ALS.
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Figure 1. Neuronal excitability and free radicals accelerate motor neuron degeneration in ALS.
Excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-
D-aspartate (NMDA) receptors, mediated by glutamate, increase the influx of calcium ions (Ca2+).
Ca2+ activates enzymes such as endonucleases, phospholipases and proteases, which may induce
neuronal injury. Additionally, excessive activation of glutamate receptors generates free radicals and
oxidative stress to thereby modulate DNA, RNA, lipids and proteins, increase glutamate concentration
in the synaptic cleft and raise Ca2+ influx into the cells. These processes accumulate neurofilaments
and increase proinflammatory cytokines, which might result in neurodegeneration. Moreover,
accumulation of TAR DNA-binding protein 43 (TDP-43) in the cytoplasm of motor neurons potentially
induces ER stress, and ER stress leads to the release of Ca2+ from the ER lumen.
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3. Increased Cortical Excitability
3.1. Neurophysiological Evidence

Several neurophysiological techniques, especially transcranial magnetic stimulation
(TMS), have identified features consistent with motor cortical hyperexcitability in ALS. In
the 1980s, TMS was developed to induce electric currents in the brain through an insulated
wire coil placed on the skull to evaluate human brain function [35]. This technique can
non-invasively generate direct (D) and indirect (I) waves, which reflect brain network
function within the primary motor cortex [36–38], using single and multiple-pulse TMS
protocols [39–41].

Motor threshold (MT), which is typically measured by single pulse TMS, is usu-
ally defined as the stimulus which induces motor evoked potential (MEP) amplitudes.
Resting MT is assumed to be influenced by sodium channel function, excitability of gluta-
matergic synapses and the number and density of cortico-cortical axons and corticospinal
neurons [42–45]. Several studies have identified reduced MT in ALS, especially during
early disease stages [46]. Reduced MT is consistent with cortical hyperexcitability and
can be observed in ALS patients with hyper-reflexia, preserved muscle bulk and profuse
fasciculations [47]. Fasciculations, characteristic features of ALS, are frequently seen in
ALS patients, especially during the early stages, and suggest hyperexcitability of mo-
tor neurons [48–51]. Similarly, increased amplitudes of motor evoked potential (MEP)
have been reported in ALS, most prominently in the early stage [52,53]. MEP ampli-
tudes reflect the density of corticomotoneuronal projections onto motor neurons and are
mediated by glutamatergic, noradrenergic and GABAergic neurotransmission. As such,
increased MEP amplitudes are consistent with an increased excitability via alterations in
these neurotransmitters. Supplementally, several lines of evidence have disclosed increased
glutamatergic and noradrenergic and decreased GABAergic neurotransmitters in ALS
patients [54–56]. These alterations, suggesting increased excitability, might contribute to
increased MEP amplitudes.

The cortical silent period (CSP), also measured by single pulse TMS, is determined by
cortical and spinal mechanisms [57,58], particularly GABAB inhibitory neurons. Absence
or shortened CSP duration has typically been reported in ALS, especially during the early
phase of the disease, and are rarely observed in mimic neuromuscular diseases, including
multifocal motor neuropathy (MMN), spinal muscular atrophy (SMA), Kennedy’s disease,
post-poliomyelitis syndrome and distal hereditary motor neuronopathy with pyramidal
features [59–63]. The reduction of CSP is potentially related with dysfunction of GABAB
inhibitory neurons.

Short interval intracortical inhibition (SICI), measured by paired pulse TMS, is a
biomarker of inhibitory GABAergic intracortical circuits located within the primary mo-
tor cortex [64,65]. Numerous studies have established the presence of decreased SICI
in sporadic and familial ALS cohorts, suggesting dysfunction of GABAA inhibitory neu-
rons within the motor cortex [66–68]. A complementary study investigated SICI in pre-
symptomatic SOD-1 mutation carriers and found that SICI becomes reduced 6–9 months
prior to symptom onset [53]. Additionally, this decreased SICI evolves with disease
progression and spreads from clinically affected regions to involve previously spared
regions [67,69]. Decreased SICI is a feature found in ALS and not in ALS mimic disorders,
such as Kennedy’s disease, MMN, chronic inflammatory demyelinating polyneuropathy
and SMA [70]. As such, decreased SICI is assumed to be a promising diagnostic biomarker
that differentiates ALS from ALS-mimic disorders with high sensitivity and specificity [70].

Other features that support the advent of cortical hyperexcitability include intracortical
facilitation (ICF), which is mediated by I waves, which originate at the cortical level through
synaptic input from excitatory interneuronal circuitries onto corticomotoneuronal cells [64].
Increased ICF, suggesting increased intracortical excitability, is a typical finding in ALS [71],
while somatosensory evoked potentials (SEP) also exhibited increased amplitudes [72,73],
with sensory hyperexcitability associated with shorter survival [72].
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3.2. Imaging Evidence

Spectroscopy provides information about the neurochemical composition of the brain
and has been applied to ALS [74]. Results have identified altered glutamate/GABA neu-
rotransmitter flux balance in ALS. When normalized for neuronal volume, several stud-
ies revealed elevated neuronal glutamate, suggesting increased activity of glutamatergic
neurons [75,76]. This increase in neuronal glutamate concentration, combined with de-
creased neuronal volume, is assumed to be specific to ALS. Additionally, when normalized
to glutamate levels, a decrease in neuronal GABA, suggesting a loss of inhibitory regula-
tion, has been reported in several studies [77,78]. Moreover, the combination of increased
neuronal glutamate and decreased neuronal GABA appears highly specific to ALS [74].

Radioligand neuroimaging studies using the GABAA receptor ligand [11C]-Flumazenil
have been reported in ALS [55,79–81], with widespread reductions in binding in sporadic
and SOD1 D90A ALS patients, particularly involving the frontal lobes and anterior cingulate
gyri [55,79–81]. The PET ligand [62Cu]-ATSM is a copper-linked small molecule known
to distribute to areas of hypoxia and oxidative stress [82]. A PET study using this [62Cu]-
ATSM showed increased tracer accumulation in the motor cortex, paracentral lobules and
right superior parietal lobule in ALS compared to controls.

3.3. Pathological and Animal Model Evidence

In terms of animal models, a microdialysis study in the wild-type rat lumbar spinal
cord revealed glutamate excitotoxicity [83]. Specifically, perfusion of AMPA elicited in-
tense muscular spasms, followed by permanent hindlimb paralysis with a remarkable
motor neuron degeneration, with effects prevented by co-perfusion with an AMPA re-
ceptor antagonist. Findings from this study suggest a susceptibility of motor neurons to
Ca2+ dysregulation [84]. In ALS patients, GluA2 transcriptional editing of motor neurons
becomes impaired, leading to increased Ca2+ permeability [85].

From a physiological perspective, glutamate is released into the synaptic cleft by
the presynaptic neuron and non-neuronal cells such as astrocytes, with the extracellular
concentration of glutamate regulated by rapid uptake transporters on those cells [86].
Excitatory amino acid transporter 2 (EAAT2), expressed by astrocytes, is the most important
glutamate transporter and clears glutamate from the extracellular space. Homozygous mice
deficient in glutamate transporter GLT-1 (the rodent ortholog of human EAAT2) express
lethal spontaneous seizures and degeneration of hippocampal neurons [87]. Contrarily,
increased expression of EAAT2 in the G93A SOD1 mouse has been reported to delay
disease onset [88]. EAAT2 function in the cortex and spinal cord of familial and sporadic
ALS patients has been reported to be reduced [89]. Aberrant RNA or oxidative stress is
assumed to contribute to downregulation of EAAT2 at the transcriptional, translational or
post-translational level [90,91].

Increased release of glutamate from presynaptic terminals has been speculated in
ALS [92]. Overactivity of the presynaptic neuron can be induced through calcium dysregu-
lation at terminals. The endoplasmic reticulum (ER) is an essential cellular compartment
and stores Ca2+, and ER stress leads to the release of Ca2+ from the ER lumen [93]. Accu-
mulation of TAR DNA-binding protein 43 (TDP-43) in the cytoplasm of motor neurons
may potentially induce ER stress in ALS. As such, ER stress has been reported to play a
central role in ALS pathogenesis [92]. Additionally, increased levels of cytosolic Ca2+ lead
to the activation of ER stress [94]. Moreover, using in vitro models, the basal glutamate,
released from spinal cord nerve terminals of mice expressing human SOD1 with the G93A
mutation, is elevated compared to transgenic mice expressing the wild-type human SOD1
or to non-transgenic controls [95]. Combinations of these alterations potentially increase
the release of glutamate, promoting a degenerative cascade.

A recent study investigated expression profiles of inhibitory receptors in the corti-
cospinal motor neuron of hSOD1G93A mice at the presymptomatic stage and disclosed
altered expression of several types of subunits of GABA receptors [96]. These findings may
also support evidence that shows hyperexcitability in ALS.
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3.4. Fluid Biomarkers

The level of glutamate in fasting plasma has been reported to be increased in ALS,
measured by high performance liquid chromatography (HPLC), especially in patients with
spinal onset, longer disease duration and male gender [97]. Moreover, this finding was
confirmed through advanced metabolomics techniques, showing significantly elevated
glutamic acid in plasma [98]. Furthermore, the concentration of glutamate in cerebrospinal
fluid was also increased [56]. Additionally, high glutamate concentrations in cerebrospinal
fluid, as measured by HPLC, were associated with a spinal onset, impaired limb function
and a higher rate of deterioration in muscle strength. Combined these findings suggest
that elevations of CSF glutamate concentrations are related to a cellular insult within the
spinal cord.

4. Increased Excitability of the Peripheral Nerve
4.1. Neurophysiological Evidence

Widespread fasciculations and muscle cramps are characteristic features experienced
by patients with ALS [99]. Recent advances in muscle ultrasonography have identified
that widespread and profuse fasciculations are specific to ALS [100–105]. This concept
has been incorporated into the Awaji Criteria and more recently, the Gold Coast Crite-
ria for ALS [106,107]. Needless to say, abundant electromyogram studies also showed
widespread and profuse fasciculations in ALS [108]. Additionally, about 95% of ALS pa-
tients experience muscle cramps during the course of their disease [109–111], and it seems
likely that a significant proportion of these symptoms are related to an increase in axonal
excitability [100].

While routine nerve conduction studies measure conduction velocities and estimate
the number of axons contributing to the amplitude of compound potentials, excitability
measurements assess axonal membrane function and provide insight into underlying
disease mechanisms [112]. Nerve excitability measurements in ALS patients have identified
increased persistent sodium conductances and decreased potassium currents in motor
nerves of ALS patients [113]. At a basic level, sodium currents are excitatory, while
potassium currents are inhibitory, suggesting an increased excitability in the motor axon of
ALS patients that likely contributes to symptoms of fasciculations and muscle cramps [114].
In terms of longitudinal approaches, this increased excitability becomes more prominent
with disease evolution [115] and may contribute to the pattern of hand muscle atrophy
observed in ALS patients. Specifically, the ALS split hand is characterized by prominent
atrophy involving the thenar eminence, with a relatively preserved hypothenar region,
which appears specific to ALS [116–119]. Excitability measurements have established that
increased motor nerve excitability is more prominent in the median nerve compared with
the ulnar nerve [120]. This difference in nerve excitability between the median and ulnar
nerves has been speculated to contribute to this dissociated hand muscle atrophy. Finally,
consistent with the motor predominance of ALS, assessment of peripheral sensory nerve
excitability appears to be normal in ALS [121].

4.2. Pathological Evidence

A microarray analysis of spinal motor neurons in ALS patients determined a reduced
expression of mRNA involving several types of potassium channels (KCNA1, KCNA2
and KCNQ2) [122]. Separate studies that investigated expressions of sodium and potas-
sium channels in ventral and dorsal roots of ALS patients disclosed a markedly reduced
expression of potassium channels in the ventral roots [123]. Consistent with functional
neurophysiological approaches, these pathological findings are consistent with the de-
velopment of motor hyperexcitability in ALS. Regarding potential causation, impaired
transport of axonal membrane proteins, including proteins required for maintaining the
integrity of potassium channels, seems likely to contribute to this altered expression of
potassium channels.
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5. Therapeutic Potential of Altered Neuronal Excitability in ALS
5.1. Ion Channel Modulators

Several studies have investigated the relationship between neuronal excitability and
prognosis in ALS. Assessment of cortical function has identified that ALS patients with a
hyperexcitable motor cortex, especially dysfunction of GABAergic neurons, have shorter
survival compared to patients with preserved motor function [124]. Similarly, axonal
excitability techniques have revealed that ALS patients with hyperexcitable peripheral
nerves, especially increased persistent sodium currents and decreased potassium currents,
have shorter survival with a more rapid functional decline [125,126]. In support, the
neuroprotective agent riluzole partly suppresses cortical and axonal hyperexcitability
(‘pseudonormalization’) in patients with ALS [127].

Based on these findings, suppression of cortical and axonal hyperexcitability in ALS
has been attempted in several recent clinical trials, using ion channel modulators (Figure 2).
Mexiletine is a class Ib antiarrhythmic drug and blocks sodium channels [128]. A clinical
trial investigated the utility of mexiletine, with sixty patients randomly assigned (1:1) to
riluzole 100 mg or riluzole plus mexiletine 300 mg [129]. The primary endpoint was set
as changes in the revised ALS functional rating scale (ALSFRS-R) for six months, and the
secondary endpoint was defined as strength–duration time constant (a measure of persis-
tent sodium conductances), as determined by nerve excitability. This trial determined that
300 mg mexiletine failed to slow ALSFRS-R decline or suppress the strength–duration time
constant. At the conclusion of this trial, it was speculated that higher doses of mexiletine
would be required to suppress sodium currents. In terms of symptomatic approaches,
a further clinical trial used mexiletine for muscle cramps in ALS [130]. Sixty patients
with ALS were randomly allocated 1:1:1 to placebo, mexiletine 300 mg/day or mexiletine
900 mg/day, with longitudinal assessment for 12 weeks. This trial established significant
reductions of muscle cramp frequency and cramp intensity in the mexiletine group and
concluded that mexiletine treatment resulted in dose-dependent reductions in muscle
cramp frequency and severity, with further support provided by a subsequent placebo-
controlled crossover clinical trial [131]. Other sodium channel blocking agents have also
been trialled, including flecanide, the latter by means of a double-blind, placebo-controlled,
randomized clinical trial of 32 weeks duration, with a 12-week lead-in phase [132]. The
slope of decline of ALSFRS-R during the treatment period was investigated as a primary
endpoint. Additionally, nerve and cortical excitabilities were measured as a secondary
endpoint. Fifty-four participants were randomly assigned to flecainide (26 patients) or
placebo (28 patients) groups. No serious adverse events were reported in either group.
There was no significant difference in the rate of decline in the primary endpoint, which
measured ALSFRS-R between placebo and flecainide groups. Nerve excitability mea-
surements revealed that changes in hyperpolarizing threshold electrotonus and current
threshold relationship (markers of membrane potential) were milder in the flecainide group
during the treatment period compared with those in the placebo group. This clinical trial
concluded that flecainide may stabilize membrane potential. Additionally, riluzole has a
few effects on several types of ion channels and modulates not only glutamate receptors
but also sodium channels [133]. Blocking effects of the channel with riluzole should also
be a focus.

Several clinical trials have focused on potassium channel modulators for ALS. As an
exemplar, a recent double-blind, placebo-controlled randomized clinical trial examined the
effect of ezogabine, a potassium channel opener, on cortical and peripheral excitability in
a cohort of ALS patients [134]. A total of 65 ALS patients were allocated to placebo
(23 participants), ezogabine 600 mg/day (23 participants) and ezogabine 900 mg/day
(19 participants). Regarding changes in cortical function, ezogabine 900 mg/day increased
SICI (ezogabine 600 mg/day did not change it), consistent with a decrease in cortical
excitability. Regarding peripheral nerve function, ezogabine 900 mg/day suppressed a
strength–duration time constant, and both ezogabine 600 mg/day and 900 mg/day in-
creased rheobase. Additionally, ezogabine 900 mg/day increased depolarizing threshold
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electrotonus, and both ezogabine 600 mg/day and 900 mg/day decreased superexcitabil-
ity. Taken in total, these alterations in nerve excitability are consistent with membrane
hyperpolarization. In terms of safety profiles, drug tolerability rates were similar to
those of ezogabine therapy for epilepsy, and further, more definitive studies are currently
under consideration.

Figure 2. Neuronal excitability and therapeutic development. Ion channel modulators have been
investigated for efficacy in ALS. Riluzole inhibits glutamate release, enhances glutamate uptake,
blocks voltage-dependent sodium channels, antagonizes NMDA receptors and inhibits GABA uptake.
Perampanel exerts effects via AMPA receptors, retigabine and ezogabine through potassium channels
and mexiletine and flecainide via sodium channels (see text for clinical trial results). These ion
channel modulators showed several lines of evidence.

Several clinical trials have focused on the function of an AMPA receptor in ALS. For
instance, a randomized, double-blind, placebo-controlled clinical trial analyzed the effect
of perampanel (an AMPA receptor blocker) on cortical function in ALS [135]. A total of
10 patients, received perampanel 4 mg/day, 5 received 8 mg/day and 4 received placebo.
MT, as measured by single pulse TMS, was increased by perampanel administration,
suggesting decreased cortical excitability. No side effects were reported. Two further
clinical trials have investigated clinical utility of perampanel for ALS. One open label pilot
study verified the safety and tolerability of perampanel for ALS [136]. A total of six patients
with ALS was enrolled and received perampanel, which was gradually increased from
2 mg/day to 8 mg/day. All participants experienced adverse events, mostly behavioral
events, and four participants withdrew from this trial due to adverse events. This study
concluded that administration of perampanel for ALS was limited by its poor tolerability in
high dose administration. Another randomized, double-blind, placebo-controlled, phase 2
clinical trial evaluated the efficacy and safety of perampanel for ALS [137]. Sixty-six patients
were randomly allocated (1:1:1) to receive placebo, perampanel 4 mg/day or perampanel
8 mg/day for 48 weeks. A total of 18 participants for placebo, 14 participants for 4 mg
perampanel and 7 participants for 8 mg perampanel completed the 48-week trial. Decline
rates of ALSFRS-R in the perampanel 8 mg group were greater than those of placebo due
to worsening of the bulbar subscore in the perampanel 8 mg group. Serious adverse events
were more frequent in the perampanel 8 mg group than in the placebo group. This trial
concluded perampanel was inefficacious to slow ALS progression.



Pharmaceuticals 2022, 15, 433 10 of 18

Based on these clinical trials, it is concluded that several ion channel modulators may
potentially modulate cortical and peripheral nerve hyperexcitability in ALS. What remains
lacking to date are larger scale international studies with more regimented trial protocols
and a focus on ALS disease progression [138,139]. It is further concluded that excitability
techniques, both central and peripheral, may facilitate clinical trial design through their
utility as functional biomarkers, potentially shortening trial durations and reducing the
number of participants, ideally in a platform trial design.

5.2. Non-Pharmacological Approaches

Advanced neuromodulation techniques have also been used in a clinical trial setting
to slow disease progression in ALS [140]. As an example, corticospinal excitability can be
modulated through non-invasive brain stimulation (NIBS) techniques, such as transcranial
direct current stimulation (tDCS) and repetitive TMS (rTMS) [141]. While the exact physio-
logical mechanisms inducing alteration of corticospinal activity still remain unclear, most
NIBS protocols selectively modulate I waves [37]. The interaction of the induced currents
in the brain has an impact on interneuronal function connected to corticospinal neurons
or via a reverberating local circuit within M1, composed of the superficial population of
excitatory pyramidal neurons of layers II and III, the large pyramidal neurons in layer V
and the inhibitory GABA cells.

In contrast, tDCS delivers constant and low (1–2 mA) electrical direct current via a
circuit formed between two or more electrodes on the head and thereby modulates cortical
excitability. Subthreshold membrane depolarization or hyperpolarization, as induced by
this technique, can influence the neuron spontaneous firing, such as long-term potentiation
(LTP) and long-term depression (LTD) synaptic plasticity [142]. Depending on protocols
with different types of electrode size, placement, current and duration of stimulation, the
overall effect may vary. Cathodal tDCS can suppress cortical excitability for several hours.
As such, several clinical trials have attempted to slow ALS progression based around
this technique. One clinical trial applied cathodal tDCS on M1 for two ALS patients to
evaluate effects on disease progression [143]. Changes of ALSFRS-R in both patients were
monitored before cathodal tDCS and during the period of cortical stimulation, and it
determined that changes were similar before and during cathodal tDCS. Other clinical
trials investigated the utility of tDCS based around the similar methodologies [144,145].
One trial included a single ALS patient, applied 12 sessions each of anodal, sham and
cathodal tDCS for 4 weeks and measured changes of ALSFRS-R and mobility. No adverse
events or change in disease progression were identified during the study period, but gait
speed was slightly improved during anodal tDCS. Another trial incorporated long-term
treatment using home-based protocols for remote supervision of anodal tDCS on M1. Two
ALS patients were included and completed 24 remotely supervised anodal tDCS sessions
for 8 weeks. No major adverse effects were revealed, but apparent clinical benefits were
not discerned. From a physiological point of view, one study delivered three sessions of
cathodal tDCS to M1, lasting 7, 11 or 15 min for 10 ALS patients and 10 healthy controls
and investigated cortical excitability before and after the tDCS [146]. While cathodal tDCS
induced a consistent decrease in cortical excitability in healthy controls, similar effects were
not evident in ALS patients. Recently, a randomized, double-blind, sham controlled trial
with tDCS for 30 ALS patients was performed [147]. Patients were randomly allocated to
receive real or sham cortico-spinal tDCS (2:1) for 20 min/day and 5 days/week for 2 weeks.
Two separate concurrent anodes were placed on the scalp over the motor cortex areas, and
the cathode was placed over the spinal cervical enlargement (over C6). tDCS significantly
improved muscle strength and scores for caregiver burden and quality of life and restored
SICI and ICF, measured by paired pulse TMS. Additionally, these clinical improvements
persisted at 6 months following the end of treatment and were associated with restoration
of TMS indices. In conclusion, tDCS may modulate cortical excitability and mildly improve
clinical findings, but the strength of those effects do not appear substantial.
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A further technique, rTMS, delivers trains of pulses with a variety of frequencies, to
induce prolonged effects on cortical excitability [148,149]. Specific patterns of magnetic
stimulation may produce divergent responses. Basically, while low frequency constant-
rate rTMS (<1 Hz) reduces cortical excitability, rTMS with higher frequency (>10 Hz)
stimulation may increase cortical excitability. Additionally, a recently developed rTMS
technique, termed theta burst stimulation (TBS), effectively alters cortical excitability over
a short period. While continuous TBS (cTBS) generates a 40 s train of three pulses of 50 Hz
stimulation repeated every 200 ms for a total of 600 stimuli and decreases cortical excitability,
intermittent TBS (iTBS), with 10 bursts of high frequency stimulation, three pulses at 5 Hz,
applied at 5 Hz every 10 s for a total of 600 pulses, increases cortical excitability. The utility
of these techniques has been established in psychiatric disorders, especially depression,
and they are widely used in clinical practice [150]. In ALS, several techniques have been
assessed to slow ALS progression. One pilot clinical trial investigated the effectiveness of
rTMS with low (1 Hz) and high (20 Hz) frequencies on M1 in ALS patients [151]. While low
frequency rTMS was used to decrease cortical excitability, high frequency rTMS was tried
to generate brain-derived neurotrophic factor (BDNF), because a prior study showed that
high frequency (20 Hz) rTMS increases BDNF plasma levels in healthy subjects [152]. A
total of four patients was included and allocated to low or high frequency rTMS (1:1) in this
trial. Participants were evaluated before and during rTMS treatment, with Norris rating
scale and muscle strength. rTMS was well tolerated, and patients with low frequency rTMS
showed slightly slow deterioration in both evaluation items compared with before rTMS
treatment. Moreover, an opposite tendency was observed in patients with high frequency
rTMS, possibly mediated by increasing non-NMDA transmission [44]. Another pilot study
utilized 5 Hz rTMS applied to the M1 region bilaterally over a 2-week period [153]. A total
of 10 patients was assigned to active or sham stimulation (1:1), and they were evaluated
with functional, fatigue, quality of life and muscle strength scales. At the end of active
rTMS, quality of life and muscle strength were transiently improved, compared with
sham groups, although these effects did not persist 2 weeks after discontinuation of rTMS.
Similarly, cTBS was tested in several clinical trials. One double-blind, placebo-controlled
trial enrolled 20 ALS patients and investigated the efficacy of cTBS. Participants were
randomly allocated to active or sham stimulation (1:1) [154]. While five patients dropped
out of this study, bilateral cTBS was delivered to M1 for 5 days/month for 6 months and
slowed disease progression, measured by ALSFRS-R and muscle strength, in patients with
active stimulation, compared to patients with sham stimulation. Based on this clinical trial,
another trial was designed to disclose the usefulness of cTBS for ALS [155]. This trial was
also performed as a double blind, placebo-controlled trial and delivered bilateral cTBS to
M1 for 5 days/month for 1 year. A total of 20 ALS patients was enrolled and assigned to
active or sham stimulation (1:1). However, this study failed to confirm the findings of the
previous study and showed similar deterioration of ALSFRS-R between active and sham
groups. The most prominent limitation to these clinical trials is the number of patients,
because the numbers of participants were small.

While several clinical trials with NIBS for ALS patients may suggest potential clinical
utility, there are several technical issues yet to be overcome. One of the main problems in the
therapeutic use of NIBS relates to the duration of effectiveness. To drive a more persistent
effectiveness of NIBS, repeated deliveries seem necessary. However, NIBS requires time,
specific equipment and the assistance of trained staff. Separately, based on similar reasons,
the number of participants in prior clinical trials has remained relatively small. As such,
it seems likely that simpler and clinically suitable equipment will need to be developed.
Additionally, a remotely supervised NIBS system will be required. After solving these more
technical issues, NIBS potentially combined with pharmaceutical interventions, including
ion channel modulators, may potentially slow ALS progression, akin to the utility of these
techniques in psychiatric disorders, particularly depression.
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