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A B S T R A C T   

Temperature and relative humidity are important indicators of utility tunnel indoor atmosphere 
hazards and operational risks, which can be effectively mitigated by accurate forecasting and 
corrective control measures. To this end, this paper proposed a multi-layer long short-term 
memory (LSTM) recurrent neural network (RNN) architecture to forecast the changing trend of 
temperature and relative humidity inside utility tunnels with distant past monitoring data. Based 
on the forecasting architecture, an intelligent control approach was designed, including early 
warning and ventilation control measures. Case study results showed that the proposed archi-
tecture fit the training dataset well and the prediction accuracy on testing datasets of temperature 
and relative humidity exceeded 98% and 99%, respectively. Meanwhile, the proposed LSTM-RNN 
architecture can also be used to simulate and evaluate the ventilation effects on the temperature 
and relative humidity environment of urban utility tunnels. Findings of this paper provide a 
reference for the safe, efficient and energy-saving indoor environment control of urban utility 
tunnels.   

1. Introduction 

As a key urban infrastructure housing various municipal pipelines, urban utility tunnels are widely considered a sustainable and 
resilient solution to traditional overhead or trenching practices [1–5]. Inside such a long, narrow and enclosed underground space, air 
quality tends to be worsened by harmful substances accumulating with poor air circulation, which poses a threat to the facilities, 
equipment and people entering utility tunnels [6]. Current literature shows that temperature and relative humidity are important 
indicators of utility tunnel indoor atmosphere hazards and operational risks [7]. For instance, a high humidity environment can in-
crease the growth rate of harmful microorganisms [8,9], and the probability of pipeline corrosion and electronic component damage 
[10]. Also, a high temperature environment is likely to result in short circuits and fires of electricity/telecom cables [11,12]. 

Ventilation is an effective means to improve air quality and to mitigate indoor atmosphere hazards and operational risks [13]. To 
optimize the ventilation design of utility tunnels, CFD simulation models [14] and scaled models [15,16] were used to simulate the 
temperature and humidity environment. But such simulation methods cannot be used in real-time forecasting. Toward the effective 
governance of utility tunnels, a comprehensive monitoring system framework was proposed for the real-time analysis of temperature 
and humidity indicators [17], based on which tunnel managers could take preventive and corrective ventilation control measures. 
However, the best time and duration of ventilation control cannot be accurately estimated simply depending on human experience, 
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which may lead to poor ventilation effects and energy waste. Given the characteristics of time-varying, hysteresis and nonlinearity of 
ventilation system [18], the ventilation control approach of utility tunnels should build on the accurate forecasting of the changing 
trend of temperature and humidity environment. Such an approach is determined by many factors, such as internal temperature and 
humidity conditions, external temperature and humidity conditions, and ventilation states. To date, however, little attention has been 
paid to the accurate forecasting and the dynamic ventilation control approach for the temperature and humidity environment of urban 
utility tunnels. 

Recurrent neural network (RNN) is a classical deep learning model. It processes sequence input data cyclically through a basic 
neural network cell [19]. Long short-term memory (LSTM) model is a special variation of RNN, proposed to solve the problems of 
gradient vanishing and exploding in traditional RNN structure during the long-sequence training process [20,21]. Therefore, 
LSTM-RNN is able to mine rules from distant past sequence data. Through model training, it can accurately forecast the changing trend 
of data [22]. Since the analyzed data in this study is sequential with long-range dependencies, a LSTM-RNN based architecture is suited 
for the temperature and relative humidity forecasting problem of utility tunnels. 

Against the aforementioned background, this paper proposes a novel approach for the intelligent ventilation control of the tem-
perature and humidity environment inside urban utility tunnels using a LSTM-RNN based real-time and dynamic forecasting archi-
tecture. This paper is structured as follows. Section 2 lists the requirements for the intelligent control of temperature and humidity 
environment in utility tunnels. Section 3 explains in detail the methodology of the proposed approach, which is then illustrated by an 
empirical case study in a city located in Guizhou Province, China in Section 4. It is hoped that the proposed approach will provide a 
good reference for addressing the issues of utility tunnel indoor atmosphere hazards and operational risks, facilitating the healthy and 
energy-saving indoor environment control, and achieving the safe and sustainable operation of urban utility tunnels. 

2. Requirements of temperature and humidity environment control in utility tunnels 

2.1. Influencing factors of temperature and humidity environment in utility tunnels 

Air temperature inside utility tunnels is mainly influenced by the heat sources inside and outside the tunnel, such as external air, 
surrounding soil, tunnel structure, high-energy pipelines (e.g., high-voltage electricity cables and heating pipelines as often accom-
modated in a typical utility tunnel shown in Fig. 1), etc. Relative humidity rise inside utility tunnels is often caused by the water vapor 
from external air or internal water evaporation. The principal influencing factors of the temperature and humidity environment in 
utility tunnels are summarized and analyzed in Table 1. 

It can be seen from Table 1 that the influencing factors of temperature and humidity environment in utility tunnels can be broadly 
grouped into two types based on the manageability. For such factors as utility services (including cables and pipelines), related 
equipment and surrounding soil, they are hard, if not impossible, to manage or control once utility tunnels are implemented. In 
comparison, the control of temperature and humidity environment are more likely to be achieved by optimizing the exchange of 
internal and external air, i.e., ventilation, contingent upon the external and internal temperature and humidity environment. 

2.2. Ventilation system of utility tunnels 

In general, a utility tunnel is separated into several fire compartments [23], and both ends of a fire compartment are blocked by fire 
partition walls and fire doors to form a relatively separate enclosed space. The common forms of utility tunnel ventilation system 
involve natural air intake and mechanical exhaust [7] as shown in Fig. 2. External air enters from a natural air inlet shaft at one end of a 
fire compartment into the tunnel space, flows under the thermal pressure and wind pressure, and is exhausted by mechanical exhaust 
fans from an air outlet shaft at the other end. 

Fig. 1. A typical cross section of a utility tunnel.  
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2.3. Control strategies for utility tunnel ventilation 

The starting time and duration of ventilation operation have great influence on the temperature and humidity environment inside 
utility tunnels. Improper ventilation strategies may even worsen the environment or cause energy waste. This is particularly true 
during winter and summer when temperature difference inside and outside utility tunnels is generally large. In winter, external cold air 
introduced into tunnels by ventilation system can lead to a rapid drop in temperature, which increases the risk of frost crack of 
pipelines due to thermal expansion and cold contraction. In summer, ventilation system intakes saturated hot air into tunnels, causing 
severe condensation of vapor on the surface of pipelines, equipment and concrete structure (see Fig. 3), which will accelerate corrosion 
and microbe growth inside utility tunnels. 

Base on the aforementioned analysis, some basic control strategies for utility tunnel ventilation system can be obtained as follows. 
These strategies should also be integrated into the forecasting architecture and the ventilation control approach to be proposed in this 
study.  

(1) Internal and external temperature and humidity conditions should be considered. 

Table 1 
Influencing factors of temperature and humidity environment in utility tunnels.   

Influencing factors Influencing mechanisms 

Temperature External air temperature Heat convection due to temperature difference between internal and external air 
High-voltage cables Heat radiation from electricity cables 
Heating pipelines Heat radiation from heating pipelines 
Surrounding soil Heat conduction due to temperature difference between tunnel structure and surrounding soil 
Ventilation Accelerated heat convection rate due to ventilation 
Equipment Heat radiation from equipment operation 

Relative humidity Internal air temperature Accelerated internal water evaporation rate due to high temperature 
External air humidity Water vapor exchange due to relative humidity difference between internal and external air 
Air pressure Increased relative humidity due to decreased air pressure 
Water leakage Increased water evaporation from water leakage 
Ventilation Accelerated rates of water vapor exchange and water evaporation  

Fig. 2. Schematic diagram of utility tunnel ventilation system.  

Fig. 3. Condensation phenomenon inside utility tunnels in summer.  
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(2) The effectiveness of ventilation should be pre-estimated before starting the fans.  
(3) The starting time and duration of ventilation operation should be forecasted accurately. 

2.4. Early warning thresholds of temperature and humidity environment in utility tunnels 

Toward the effective ventilation control in utility tunnels, early warning thresholds of temperature and humidity environment 
should be determined beforehand. In this study, the early warning thresholds are categorized into conventional thresholds and comfort 
thresholds. The conventional thresholds satisfy the requirements of utility safe operation during the period without person entry, while 
the comfort thresholds address the needs of human comfort when there are people in tunnels. According to Chinese standards and 
specifications, the temperature range of a conventional threshold is 5–40 ◦C, and the relative humidity should not exceed 65% [24]. 
The temperature range of a comfort threshold is 15–30 ◦C, and relative humidity should be within the range of 30–60% [25]. 

According to the highest value in the prediction sequence in the follow-up case scenario and the aforementioned thresholds, this 
paper identifies three warning levels and the corresponding control measures as listed in Table 2. Under the first level warning, we 
should pay more attention to the monitoring data, but do not necessarily need to take measures. Under the second level warning, 
ventilation feasibility should be assessed to send the right signals to start the fans. Under the third level warning, the de-humidification 
measures must be taken immediately, and patrol personnel should be sent to the corresponding sections to find out the causes and 
check potential safety hazards such as short circuit and corrosion. 

3. Methodology 

3.1. Long short-term memory 

The LSTM cell is mainly composed of input gate, forget gate and output gate (see Fig. 4). These gates have the following functions:  

(1) The input gate i decides how much new information from the current input xt is to be added to the current cellular state ct based 
on the previous hidden state ht-1 by Eqs. (1) and (2): 

it = sigmoid(Wi · xt +Ui · ht− 1 + bi)= σ(̂it) (1)  

at = tanh(Wc · xt +Ui · ht− 1 + bc)= tanh(ât) (2)    

(2) The forget gate f decides what information of the previous cellular state ct-1 is to be deleted, and how the previous cellular state 
ct-1 is updated to the current cellular state ct by Eqs. (3) and (4): 

ft = sigmoid
(
Wf · xt +Uf · ht− 1 + bf

)
= σ( f̂ t) (3)  

ct = ft ⊙ ct− 1 + it ⊙ at (4)    

(3) The output gate o decides how the current cellular state ct influences the current output hidden state ht by Eqs. (5) and (6): 

ot = sigmoid(Wo · xt +Uo · ht− 1 + bo)= σ(ôt) (5)  

ht = ot · tanh(ct) (6)  

where W*, U*, b* are the weight matrixes of gates, the weight matrixes of hidden states, and the biases of gates; at describes the cellular 
state under the current input; t represents the current time step; ⊙ is an element-wise multiplier and σ represents the sigmoid activation 
function. 

Table 2 
Warning level classification.  

Conventional threshold Temperature [◦C] >35 >40 <5 or >45 
Relative humidity [%] >65 >75 >90 

Comfort threshold Temperature [◦C] <15 or >30 <10 or >35 <5 or >40 
Relative humidity [%] >60 or <30 >70 >80 

Warning level I II III  
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3.2. LSTM-RNN based forecasting architecture 

The LSTM-RNN based forecasting architecture proposed for temperature and humidity indicators of utility tunnels includes five 
parts as shown in Fig. 5: input layer, hidden layer, output layer, model training and model prediction.  

(1) The input layer involves data preprocessing and feature engineering. As has been analyzed in Section 2, the raw data input to 
forecast the temperature and humidity inside utility tunnels include the data collecting time and location (e.g., tunnels section 
and fire compartment), external temperature, internal temperature, external relative humidity, internal humidity and the status 
of ventilation fans. Data preprocessing solves the problems such as the disunity of data units, data missing and noise. Feature 
engineering transforms the original raw data into the training dataset and testing dataset for the LSTM-RNN forecasting 

Fig. 4. Basic structure of a LSTM cell.  

Fig. 5. LSTM-RNN based forecasting architecture.  
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architecture. Considering unit inconsistency, the input feature data should be normalized before the model training process. The 
following Eq. (7) is used to scale the data values into [0, 1]. 

x′

t =
xt − xmin

xmax − xmin
(7)  

where x’
t represents the normalized data value at time step t, xt is the original data value before normalization, xmin and xmax are the 

minimum and maximum values of the dataset to be normalized.  

(2) The hidden layer is the core of the architecture. In the proposed architecture, the hidden layer is a recurrent neural network 
composed of multi-layer LSTM, and its super parameters include the number of hidden layers n, the number of hidden variable 
units and time steps L. The parameters of hidden layers n and the number of units reflect the complexity of the model and need 
to be determined according to the model tuning results, while time steps L is related to the analysis requirements and the 
characteristics of data [26].  

(3) The output layer is used to decode the analysis results of the hidden layer and output the decoding results in fixed dimensions. It 
can be fully a connected layer or convolution layer, and the output dimension is determined by the variable dimension to be 
predicted. For this study, the output dimension is two as only temperature and relative humidity are the expected forecasting 
indicators.  

(4) Model training is processed based on the difference between the output results and the actual data (i.e. loss function) of the 
output layer. Back-propagation through time (BPTT) algorithm is used to calculate the partial derivatives of the loss function to 
the model parameters of LSTM cells. According to the partial derivatives, model parameters are updated in each BPTT process 
iteratively by gradient optimizers until convergence. The gradient optimizer adopted in the proposed architecture is the Adam 
optimizer, which can compute adaptive learning rates for different parameters and work well with sparse gradients [27].  

(5) Model prediction process applies the trained model to predict and analyze the changing trend of temperature and humidity 
inside utility tunnels in real-time. The prediction output is a forecasting sequence. To evaluate the performance of proposed 
model, three metrics in Eqs. (8)–(8)–(10)(8)–(10) are used, i.e., the mean absolute error (MAE), the mean square error (MSE) 
and the r-square (R2). 

MAE=
1
n

∑n

i
|Yt − Ft| (8)  

MSE=
1
n

∑n

i
(Yt − Ft)

2 (9)  

R2 = 1 −

∑n

i
(Yt − Ft)

2

∑n

i
(Ft − Ft)

2
(10)  

where Yt, Ft and Ft represent the forecast value, the actual value, and the mean of actual values, respectively. 

Fig. 6. Intelligent control process of temperature and humidity environment.  
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3.3. Intelligent ventilation control approach 

The intelligent ventilation control approach shown in Fig. 6 for temperature and humidity environment inside utility tunnels is 
built based on the prediction sequence and the early warning thresholds. The control approach compares the values of the real-time 
prediction sequence with the early warning thresholds set for the temperature and humidity environment inside utility tunnels. If the 
forecast value is higher than the upper bound of the threshold or is lower than the lower bound, the approach will judge whether 
ventilation can address the temperature and humidity abnormities, and sends the early warning information to operators. The 
feasibility judgment of ventilation is made based on the assumption that the ventilation fans are turned on at the current time, and a 
simulation prediction sequence of temperature and relative humidity in the future can be obtained. If the predicted sequence shows an 
effective result, the ventilation duration can then be calculated and the fans control command will be generated and sent to the 
ventilation system. When the fans are operating, the cooling and de-humidification effects are predicted in real-time until it reaches the 
accepted range. 

4. Experimental case study 

4.1. Brief introduction to the utility tunnel project 

The experimental case study was conducted in a fire compartment section of a utility tunnel project located in Guizhou Province, 
China (see Fig. 7). The compartment section is 200 m in length, contains 10 kV power cables, water supply pipelines, communication 
cable, etc., and has an exhaust fan at the air outlet. A monitoring sensor was installed inside the compartment to collect the tem-
perature and relative humidity data continuously (see Fig. 2). As the fire doors at the two ends normally keep closed, the influence from 
adjacent compartment sections on the air temperature and relative humidity of the experimental compartment section can be ignored. 

4.2. Data preparation 

4.2.1. Raw data 
Raw data included 11,520 samples that were collected from April 1, 2019 at 0:00 to May 10, 2019 at 24:00 with a collecting 

frequency of 5 min. In the experiment, 8640 samples collected in April were used for model training, and 2880 samples in May were 
used for model testing, prediction and performance evaluation. Features in each raw data sample are listed in Table 3. The temperature 
and relative humidity data collected inside the utility tunnel in April (30 days) for model training are shown in Figs. 8 and 9, 
respectively. 

4.2.2. Data preprocessing 
Since this case study only involves one fire compartment without air inlet fans, the fields of Section, Compartment and In_Fan were 

removed from the raw data in the data preprocessing, and the collection time was used as the sequence index. 

4.2.3. Feature engineering 
In this experiment, the prediction process used the data sequence of the first 12 time steps (i.e. 1 h) to forecast the temperature and 

relative humidity values inside the utility tunnel for the next time step. The data input method is called sliding window method. As 
shown in Fig. 10, the feature engineering process includes the following steps.  

① Combine the samples of the first 12 time steps into an input sample. Since each time step contains five features, an input sample 
contains 60 features.  

② The corresponding label vector (expected output value) is the temperature and relative humidity at the 13th time step.  
③ Get a Key/Value pair, e.g., (input_sample, label_vector). 

Fig. 7. Interior environment of the utility tunnel used for experimental case study.  
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④ Then, the input window slides down one item along the time sequence to get the next input sample, that is, taking the value of 
the second to the 13th time steps as an input sample and the 14th time step value as the label vector.  

⑤ In this manner, all datasets are traversed to get the final training dataset and testing dataset. 

4.3. Model tuning 

In this case study, the proposed LSTM-RNN forecasting architecture was operated on Keras, which is a popular deep learning 
framework. The activation function adopted the ReLU function (i.e., f(x) = max (0, x)), which is used to add nonlinear factors to the 
neural network [28]. 

The model tuning process determines the number of LSTM hidden layers n and the number of hidden variable units based on 
comparative analysis. The metric of MAE was used during this process. A smaller the value of MAE indicates a better forecasting 
performance. Model performances under different hidden layers n are listed in Table 4. It is evident that MAE decreased to a low level 
when n is three and four, but increased sharply when n exceeds four. In order to reduce the number of model parameters and improve 
forecasting efficiency, the number of hidden layers n was adopted to be three. 

In a similar fashion, the number of hidden variable units was adopted as 40 based on the comparison results listed in Table 5. As 
such, the number of total model parameters in the forecasting architecture reached 33,362. 

Table 3 
Feature details of raw data.  

Feature annotation (data field) Description Unit or value 

Time Collecting time of samples / 
Section Section number in a utility tunnel / 
Compartment Fire compartment number in a tunnel section / 
Out_Temp Daily average temperature of external environment [◦C] 
Out_Hum Daily average relative humidity of external environment [%] 
In_Temp Monitored temperature inside the utility tunnel [◦C] 
In_Hum Monitored relative humidity inside the utility tunnel [%] 
Ex_Fan Statuses of fans at air outlet 0,1 and - 1 representing stop, start and not installed, respectively 
In_Fan Statuses of fans at air inlet 0,1 and - 1 representing stop, start and not installed, respectively  

Fig. 8. Temperature data inside the utility tunnel for model training (30 days).  

Fig. 9. Relative humidity data inside the utility tunnel for model training (30 days).  
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4.4. Results 

4.4.1. Model training results 
The loss function during the training process used the metric of MSE. One iteration represents a back-propagation process and a 

model update. Fig. 11 shows that the MSE value of the training model gradually converged as the number of iterations increased, 
indicating that the trained model fit well on the training dataset. 

To verify the forecasting performance of trained model on new data, testing dataset samples were input to calculate the prediction 
results. Figs. 12 and 13 show that the prediction curves fit well on testing dataset samples. The values of MSE, MAE, R2 Score were 
calculated and listed in Table 6. MAE and MSE on the testing dataset were close to zero and R2 score was close to 1.0, which all met the 

Fig. 10. Feature engineering process.  

Table 4 
Model performances under different hidden layers.  

Hidden layers (n) MAE 

1 0.218307 
2 0.192067 
3 0.178054 
4 0.177195 
5 0.321515  

Table 5 
Model performances of relative humidity under different units.  

Units Number of model parameters MAE 

10 2342 0.822191 
20 8682 0.481932 
30 19,022 0.363288 
40 33,362 0.313005 
50 51,702 0.312945 
60 74,042 0.311764  
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Fig. 11. Loss function curve.  

Fig. 12. Comparison between temperature prediction results and actual values.  

Fig. 13. Comparison between relative humidity prediction results and actual values.  

Table 6 
Evaluation of the prediction results of test dataset.  

Indicator Temperature (◦C) Relative Humidity (%) 

MAE 0.003413 0.006644 
MSE 0.024410 0.221719 
R2 Score 0.983622 0.994324  
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required prediction accuracies. 

4.4.2. Intelligent ventilation control 

4.4.2.1. Early warning. Fig. 14 shows a prediction sequence of the relative humidity for the experimental section in the next 2 h at the 
time of 18:45, May 21, 2019 without turning on the fans. According to the prediction sequence, the relative humidity would exceed the 
warning limit, i.e., the comfort threshold of 70% at the warning level II, at around 20:10, thus the intelligent ventilation control system 
should send an early warning signal to operators at least 5 min in advance. After receiving the warning signal, utility tunnel operators 
should pay more attention to the monitoring data of relative humility, while getting prepared to start the ventilation fans. When the 
relative humidity value reached the prediction point, a high risk warning would be sent accordingly. Subsequently, de-humidification 
measures must be taken immediately, and patrol personnel should be sent to the corresponding section to find out the causes and check 
the potential safety hazards such as short circuit and corrosion. 

4.4.2.2. Ventilation feasibility assessment. Before the ventilation fans start, the effect on cooling or de-humidification should be 
assessed by the trained LSTM-RNN model. The first step is to assume the fans to be turned on, then integrate the fans status with the 
monitoring value of temperature and relative humidity as a new input sample sequence. Similar to the prediction sequence, a 
simulation curve of temperature or relative humidity can be obtained under the scenario of ventilation. Fig. 15 shows a simulation case 
of turning on the fans, the forecasted changing curve of temperature revealed that turning on the fans at the time of 8:45 could reduce 
the temperature inside the experimental utility tunnel from 31.5 ◦C to 23.6 ◦C, which achieved the temperature control objective. 
Thus, it was recommended that the operators turn on the fans as soon as possible since it had been proved a good time for ventilation 
and cooling. In addition, it can be seen from the figure that the time required for the temperature to reach the control target was about 
45 min, which allowed operators to obtain an estimate of the ventilation duration so as to turn off the fans timely to save energy. 

4.5. Discussions 

Despite the good computational performances in temperature and relative humidity forecasting for utility tunnel indoor atmo-
sphere, it should also be noted that there are some limitations to be addressed in future research. For instance, as the training data 
obtained in this experimental case study was mainly collected in April, deep features might have not been learnt from it. Therefore, it is 
necessary to expand the collection time range of the training data (such as one year). Yet for a long prediction sequence, the window 
sliding method could be called into question in that the prediction errors at each time step can accumulate to a large error. In this sense, 
further research on new methods for the feature engineering process of long-step forecasting is expected. As regards the ventilation 
control approach for urban utility tunnels, other indoor atmosphere indicators, such as methane, hydrogen sulfide and other harmful 
gases, should also be considered, which implies that an integrated control approach is required. In addition, the proposed LSTM-RNN 
based forecasting architecture is only suited for utility tunnel operational indicators with time-series structures, such as temperature 
and relative humidity selected in this study. In general terms, however, the risk warning model needs to incorporate a variety of 
operational indicators into a comprehensive risk index, which means that the risk assessment method and the warning mechanism 
incorporating other data types should be further studied. 

Fig. 14. Early warning of relative humidity inside experimental utility tunnel.  
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5. Conclusion 

In order to achieve the safe, efficient and energy-saving control of temperature and humidity environment inside urban utility 
tunnels, this paper proposed an LSTM-RNN based intelligent forecasting and ventilation control approach. With the aid of an 
experimental case study, the following conclusions can be drawn：  

(1) The proposed LSTM-RNN based architecture can be used to forecast the time series of temperature and humidity in real-time. 
The prediction sequence reflects the changing trend of temperature and humidity, based on which early warning can be 
achieved.  

(2) After model tuning, when the number of hidden layers was three and the number of LSTM hidden variable units was 40, the 
overall efficiency of the LSTM RNN model’s complexity and computational performance reached the highest in the experi-
mental case study. The prediction accuracy on testing datasets of temperature and relative humidity exceeded 98% and 99%, 
respectively. 

(3) The trained LSTM-RNN model can also be used to simulate the ventilation effect under different conditions. When the venti-
lation target cannot be achieved, operators should be reminded to use the fans carefully. When it can be satisfied, the required 
ventilation duration can be estimated and provide instructions to the control system to achieve efficient and energy-saving 
ventilation control. 

Notwithstanding the limitations in training data and indicator selection, the proposed forecasting and ventilation control archi-
tecture sets up a solid methodological foundation for future research to address some of the existing limitations and other issues 
regarding utility tunnel indoor atmosphere hazards and operational risks. 
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