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Abstract

An elevated level of lipoprotein(a) [Lp(a)] is a genetically regulated, independent, causal risk 

factor for cardiovascular disease. However, the extensive variability in Lp(a) levels between 

individuals and population groups cannot be fully explained by genetic factors, emphasizing a 

potential role for non-genetic factors. In this review, we provide an overview of current evidence 

on non-genetic factors influencing Lp(a) levels with a particular focus on diet, physical activity, 

hormones and certain pathological conditions. Findings from randomized controlled clinical 

trials show that diets lower in saturated fats modestly influence Lp(a) levels and often in the 

opposing direction to LDL cholesterol. Results from studies on physical activity/exercise have 

been inconsistent, ranging from no to minimal or moderate change in Lp(a) levels, potentially 

modulated by age and the type, intensity, and duration of exercise modality. Hormone replacement 

therapy (HRT) in postmenopausal women lowers Lp(a) levels with oral being more effective than 

transdermal estradiol; the type of HRT, dose of estrogen and addition of progestogen do not 

modify the Lp(a)-lowering effect of HRT. Kidney diseases result in marked elevations in Lp(a) 

levels, albeit dependent on disease stages, dialysis modalities and apolipoprotein(a) phenotypes. 

In contrast, Lp(a) levels are reduced in liver diseases in parallel with the disease progression, 

although population studies have yielded conflicting results on the associations between Lp(a) 

levels and nonalcoholic fatty liver disease. Overall, current evidence supports a role for diet, 

hormones and related conditions, and liver and kidney diseases in modifying Lp(a) levels.
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1. Introduction

It is well established that elevated Lp(a) levels are an independent casual risk factor 

for cardiovascular diseases (CVD), including coronary artery disease (CAD), myocardial 

infarction (MI), and aortic valve stenosis [1]. This is discussed in detail by Arsenault and 

Kamstrup in another review of this series [2]. In addition, recent studies indicated a role 

also in heart failure [3]. Lp(a) levels are strongly determined through genetic variants in the 

LPA gene, particularly by a size polymorphism in apolipoprotein(a) [apo(a)] as reviewed 

by Coassin and Kronenberg [4]. The present review will focus on the roles of non-genetic 

factors such as diet and physical activity (PA) and the influence by sex and hormones (Fig. 

1). We will also summarize evidence on pathological conditions that modify Lp(a) levels, 

including kidney and liver diseases, emphasizing the magnitude and directionality of their 

effects as pertinent to cardiovascular risk as well as the apo(a) size polymorphism (for a 

summary, see Box 1).

2. Non-genetic factors and Lp(a) levels

2.1. Diet

One of the first human clinical trial evidence that diet may modulate Lp(a) concentration 

was reported by Hornstra et al. [5] who observed a 10% reduction in Lp(a) concentration 

with a palm-oil enriched diet compared to a control Dutch diet. In further support of an 

impact of fat quality, a 23% increase in Lp(a) concentration was seen in response to a 

high oleic-acid diet with ~10% compared to a diet with 19% of calories from saturated 

fatty acids (SFA) [6]. Notably, LDL-C levels decreased by 17%. Replacement of SFA with 

trans-monounsaturated fatty acids resulted in an even higher increase (73%) in Lp(a) level. 

Further, compared to a control high-SFA diet, diets lower in SFA and proportionately higher 

in monounsaturated fatty acids (MUFA) or polyunsaturated fatty acids (PUFA) tended to 

increase Lp(a) but the change was not significant [6].

The two DELTA (Dietary Effects on Lipoproteins and Thrombogenic Activity) trials were 

the first randomized multicenter dietary studies in participants with differing metabolic 

profiles [7,8]. The DELTA 1 trial recruited healthy participants and demonstrated that 

lowering dietary SFA intake from 16% to 5% of calories with a proportionate increase 

in complex carbohydrate (CHO) increased Lp(a) levels by ~15% [7]. The DELTA 2 

study undertaken in participants with a high-risk metabolic profile showed that isocaloric 

replacement of SFA with complex CHO or MUFA increased Lp(a) levels by 20% and 

11%, respectively [8]. In both DELTA trials, as expected, LDL-C was reduced by 7–11%. 

Collectively these two DELTA trials demonstrated opposite changes in Lp(a) and LDL-C 

in response to dietary SFA replacement [7,8]. Other studies have reported similar findings 

replacing SFA with MUFA, PUFA, or a combination of MUFA and PUFA [9–11].

A large randomized crossover feeding trial in adults with prehypertension or stage 1 

hypertension (The Omni Heart Trial) tested differences in Lp(a) responses to DASH 

(Dietary Approaches to Stop Hypertension)-style diets differing in macronutrient content 

(either rich in CHO, protein, or unsaturated fat) and analyzed the responses by race [12]. All 

three diets increased Lp(a) level by ~8–18% compared to baseline after six weeks; however, 
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the diets rich in unsaturated fats increased Lp(a) less than diets rich in CHO or protein and 

greater changes were observed in Black participants than in White participants [12]. In this 

cohort, LDL-C was reduced by 12–14 mg/dL across all three test diets [13].

A few studies have examined the effect of low-fat, high-CHO (LFHC) diets compared 

to high-fat, low-CHO (HFLC) diets on Lp(a). Compared to a HFLC diet, a LFHC diet 

increased Lp(a) levels by ~12% and lowered LDL-C by ~7 mg/dL [14]. This study also 

showed increases in oxidized phospholipids (OxPL) per apolipoprotein (apo)B or apo(a) 

with the LFHC diets [14]. Diet-induced changes in Lp(a) concentration were strongly 

correlated with changes in OxPL per apoB. Lp(a) is the primary carrier of circulating OxPL 

and as the OxPL content is hypothesized to mediate its atherogenicity further studies on the 

impact of diet are warranted [15,16]. The topic on OxPLs carried on Lp(a) is discussed in 

detail by Koschinsky and Boffa in this review series [17].

In a recent randomized feeding trial, after an initial 10–14% weight loss, three maintenance 

diets containing 20% protein and differing 3-fold in CHO and SFA as a proportion of 

energy were consumed for 20 weeks [18]. While Lp(a) levels decreased by ~15% in the 

low-CHO/high SFA group, no changes were observed in the moderate-CHO and high-CHO 

groups [18]. Collectively, there is strong documentation that short-term dietary interventions 

to reduce SFA intake result in an increase in Lp(a) levels of 9–23%, while at the same time 

decreasing LDL-C levels by 7–17%, depending on the type of replacement strategy and 

cohort characteristics.

The question whether fasting versus nonfasting conditions would impact Lp(a) levels was 

recently addressed and similar Lp(a) concentrations under both conditions were reported 

[19]. A larger dietary change in the Lp(a) concentration was reported in a n = 1 case study 

of a male physician with a very high Lp(a) level who undertook changes in dietary CHO 

consumption [20]. Lp(a) levels varied considerably depending on the diet regimen, with a 

decrease during a very-low CHO ketogenic diet followed by an increase in the Lp(a) level 

after two weeks of a very high-CHO (400 g/day) diet, again being reduced after three weeks 

of restarting the very-low CHO ketogenic diet [20]. These observations are in line with 

the notion that substitution of SFA with unsaturated fat, but not with CHO, is a preferable 

regimen in terms of Lp(a) levels [12]. The rapid onset of these changes indicates a flexible 

regulation of Lp(a) levels in response to diet modulation.

On the other hand, some studies have not found an increase in Lp(a) levels with a 

reduction of dietary SFA. For example, a 12-week intervention with a Mediterranean-style 

low-glycemic-load diet with reduced energy intake from CHO and fat, replaced by protein, 

lowered Lp(a) concentration by ~50% in women with the metabolic syndrome (MetS) [21]. 

Furthermore, a randomized crossover controlled feeding trial among overweight and obese 

participants found a modest but significant decrease in Lp(a) levels when a low-fat diet (24% 

total fat; 7% SFA) was compared to an average American diet (AAD) (34% total fat; 13% 

SFA) [22]. More recently, a 6-week randomized crossover controlled feeding study among 

at risk individuals reported an ~11% reduction in Lp(a) levels with a PUFA-enriched diet, 

while no change in Lp(a) levels was seen with a MUFA-enriched diet [23]. The contrasting 

observations in these trials versus the other trials with regard to Lp(a) responses to SFA 
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reduction (a decrease versus an increase) need to be further explored, although differences 

in Lp(a) measurement methodology, test diets or cohort characteristics might contribute. 

Notably, as the vertical auto profile (VAP) method uses an ultracentrifugation technique and 

relies on Lp(a) cholesterol rather than quantification of Lp(a) concentrations, a potential 

overlap of the Lp(a) fraction with other lipoprotein fractions cannot be excluded using this 

approach [22–25].

Beyond macronutrient changes, the potential effects on Lp(a) levels by diets enriched with 

nuts (walnuts [26], pecans [27] or almonds [28–31]) have been explored. While a modest 

reduction in levels (6–15%) was seen in randomized trials using diets enriched with walnuts 

(41–56 g/day) [26] or pecans (72 g/day) [27], studies on almond-enriched diets report 

inconsistent findings [28–31]. Further studies are needed to establish a role in particular for 

almonds with regard to dietary modulation of Lp(a) levels.

Regarding the role of alcohol consumption in Lp(a) level, an analysis of a large European 

American sample found no association between alcohol consumption and Lp(a) level [32], 

while a large study in middle-aged Chinese individuals reported a slight decrease in Lp(a) 

levels in male heavy drinkers compared with abstainers [33]. In intervention studies using 

red wine, no change in patients with carotid atherosclerosis [34] or a decrease in men at high 

risk for CVD have been reported for Lp(a) levels [35].

As the present format does not permit an in-depth analysis of the impact of nutrients on 

Lp(a), a more detailed summary that included a tabulation of such studies was recently 

published [36]. However, in summary, although the evidence from randomized controlled 

clinical trials during the last three decades on the dietary modulation of Lp(a) level is not 

fully consistent, an increasing body of evidence indicates that reductions in dietary SFA 

intake result in an increase in Lp(a) levels. The SFA replacement choice (CHO, MUFA, 

PUFA, or protein) and certain food/drink types (and the amount) in the diet beyond its 

macronutrient composition may also contribute to modulate Lp(a) levels. Notably, a dietary 

SFA reduction consistently decreased LDL-C, resulting in an opposite pattern compared to 

Lp(a) (Fig. 2). As proinflammatory and proatherogenic OxPLs may shuttle between Lp(a) 

and LDL-C particles, the diet-induced opposing changes in OxPLs’ plasma carriers merit 

further investigation and will help adopt precision nutrition approaches to reduce CVD risk.

2.2. Physical activity, exercise, and cardiorespiratory fitness

A potential role of PA and exercise in the modulation of Lp(a) levels has attracted interest. 

An early report of a Lp(a) decrease of ~22% in healthy young- and middle-aged men after 

an 8-day cross-country skiing regimen (equivalent to a 10 h of heavy PA/day) [37] indeed 

suggested an impact of PA. However, these results have been challenging to confirm as 

several studies have failed to find an association between Lp (a) levels and PA level or 

cardiorespiratory fitness [38–41]. Moreover, Lp(a) levels did not differ significantly between 

male athletes and sedentary controls [42–44]. Also, a prospective data in postmenopausal 

women did not find any influence of exercise alone on Lp(a) levels [45].

Neither has any significant impact by PA on Lp(a) levels been documented in short- or 

long-term interventional and prospective studies [46–49]. Thus, while an intensive 4-year 
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individualized risk reduction program, recommending a healthy diet, increased PA and 

an individualized endurance training program in men and women with CAD improved 

the overall lipid profile, reduced body weight, increased exercise capacity and reduced 

dietary fat intake, there was no change in the Lp(a) concentration [48]. More recently, 

although an 8-month study to increase PA in middle-aged men and women with one or 

more traditional CVD risk factors reduced LDL-C, and increased HDL-C and proprotein 

convertase subtilisin/kexin type 9 (PCSK9) levels, the mean Lp(a) concentration was not 

significantly affected [50].

In contrast, some observational studies in younger populations report an association between 

PA and Lp(a) levels. Among Finnish children and young-adults (9–24 years old), Lp(a) 

levels were inversely correlated with leisure time PA with a dose-response manner [51]. 

Also, in young children and adolescents with type 1 diabetes mellitus, physical fitness was 

inversely associated with Lp(a) levels [52]. Furthermore, in younger men (23–33 years old), 

Lp(a) levels were higher and positively associated with the maximum aerobic capacity in 

long-distance runners and body builders with regular prolonged high-level exercise training 

compared to sedentary men [53]. In previously sedentary younger men and women (median 

age: <40 years), an intensive 9-month long-distance running exercise training program 

significantly increased Lp(a) levels with a nearly 2-fold increase in both men and women 

who completed a half-marathon [54].

Among men and women with type 1 and type 2 diabetes mellitus, Lp (a) concentration 

decreased (−13%) among those with higher baseline values (>30 mg/dL) after a 3-month 

individualized aerobic exercise program [55]. The change in Lp(a) levels was inversely 

correlated with baseline levels. Similarly, a small study in obese men and women with 

type 2 diabetes mellitus reported a significant decrease in Lp(a) levels following a 12-week 

low-intensity resistance training [56].

In summary, most of the available evidence suggests that PA, intensive exercise training, 

increases in exercise or cardiorespiratory fitness have no or minimal impact on Lp(a) 

concentration, while significantly influencing concentrations of other lipids and lipoproteins. 

However, results of some studies, particularly those in younger or diabetic populations, 

deviate from this and suggest a possible Lp(a)-modulating effect by a prolonged high-level 

exercise training, aerobic exercise or low-intensity resistance training. Nevertheless, the 

magnitude of exercise-induced changes in Lp(a) levels has generally been modest and 

any impact related to major genetic regulators of Lp(a) concentration such as the apo(a) 

size polymorphism has not been addressed. Additionally, the lack of a control group 

in some studies [54–56] may raise concerns about the quality of data as studies have 

suggested presence of a modest intra-individual temporal variability in mean Lp(a) levels 

[57]. Therefore, more studies with appropriate control groups are needed taking potential 

confounders such as apo(a) sizes and assay methodology into account.
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3. Sex-specific differences and hormones

3.1. Sex-specific differences

While many studies across population groups (Blacks and Whites [58], Hungarians 

[59], Germans, Ghanaians, and Sans [60], Caucasians [61], Tibetans, Koreans, Chinese, 

Nigerians, and Belgians [62], Blacks in the Seychelles [63] or Italians [64]) have found no 

sex-specific differences in Lp(a) levels, some studies report higher Lp(a) levels in females 

than males. Thus, among children and adolescents, Lp(a) levels were significantly higher in 

girls than in boys for both Blacks and Whites [65] as well as for Arabs [66]. Another study 

reported higher Lp(a) levels in women than in men for Europeans [63] and Japanese [67], 

but not for Blacks in the Seychelles [63]. Addressing the potential influence of CAD familial 

predisposition on such findings, Barra et al. [68] demonstrated no significant difference in 

Lp(a) levels between healthy teenage brothers and sisters with a positive parental history of 

premature MI. In Europeans with CAD, a 2-fold higher Lp(a) level was observed in women 

compared to men after adjusting for covariates; this sex-specific difference was not seen 

in those without CAD [69]. Another study in a multiethnic familial hypercholesterolemia 

(FH) cohort reported higher Lp(a) levels in women than in men with CVD, but not in those 

without CVD [70]. Also in FH, higher Lp(a) levels were reported among CVD-susceptible 

versus CVD-resistant women with FH [71]. The topic on Lp(a) and FH is discussed in detail 

by Chemello et al. in this Lp(a) review series [72]. In a longitudinal report, Lp(a) levels were 

significantly higher in women than in men at baseline, however, the association between 

elevated Lp(a) levels and 10-year first fatal/non-fatal CVD was significant in men but not 

in women [73]. In a large population study of Europeans, including Finns, female sex was 

associated with increased Lp (a) levels [74]. The studied genetic variants, as well as age, 

sex, and renal function, explained nearly 72% of the observed population differences in 

Lp(a) [74]. Among Europeans, Lp(a) levels were higher in women than in men regardless of 

type 2 diabetes mellitus status [75]. A further adjustment for Lp(a) levels had no impact on 

the HR for CVD mortality comparing men versus women without type 2 diabetes mellitus; 

however, among those with type 2 diabetes mellitus, the adjustment resulted in an increased 

risk in men and a decreased risk in women for CVD mortality [75]. In a recent large study 

of middle-aged >460,000 UK Biobank participants, Lp(a) levels were somewhat elevated in 

women than in men and in individuals who had established CVD at the time of enrollment 

[76]. While Lp(a) level predicted incident CVD in both men and women without any 

interaction, it was a stronger risk factor for CVD among those without diabetes mellitus 

than with diabetes mellitus [76]. More details on the relationship between Lp(a), diabetes 

mellitus, and CVD risk are provided by Lamina et al. of this Lp(a) review series [77].

Taken together, while some evidence indicates higher Lp(a) levels in females than in 

males, more studies are needed to establish any sex-specific differences in Lp(a) levels 

and relevance to CVD risk. Potential confounding effects by factors such as race/ethnicity, 

apo(a) size distribution, menopausal and disease status and Lp(a) measurement method 

should be carefully considered. Particularly, an impact of menopause on Lp(a) levels as 

contributory to the age-dependent relative difference between middle-aged to older men and 

women should be considered.
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3.2. Hormones

3.2.1. Sex hormones—Among healthy men, Lp(a) levels were not associated with 

endogenous testosterone, free testosterone, or sex-hormone binding globulin (SHBG) [78–

80]. However, contradictory results have been reported in two studies for the association 

between Lp(a) levels and dehydroepiandrosterone sulfate ester (DHEA-S) [78,80], one of 

the most abundant endogenous androgen steroids. Among men with CAD, Lp(a) levels were 

significantly negatively associated with free testosterone, but not with DHEA-S [81]. In 

healthy postmenopausal women, inconsistent findings have been reported for the association 

for Lp(a) with endogenous DHEA-S or testosterone [82,83].

Exogenously administered androgens and estrogens impact Lp(a) levels. Administration of 

testosterone significantly reduced Lp(a) levels in healthy men [79,84–86], but not in healthy 

postmenopausal women [87], hypogonadal men [88] or oophorectomized women [89]. 

Significant reductions in Lp(a) levels were observed in perimenopausal women treated with 

DHEA (18%) [90], in postmenopausal osteoporotic women [91] or premenopausal women 

with endometriosis [92], both cases treated with stanozolol (a synthetic anabolic steroid), or 

in men undergoing hemodialysis treated with another anabolic steroid, nandrolone decanoate 

(>50% reduction at 6 months) [93]. Among male body builders, the administration of 

anabolic androgen steroids was associated with a lower prevalence of elevated Lp(a) levels 

[94] and a significant reduction in Lp(a) levels [95,96].

A large number of studies in postmenopausal women have evaluated the effects of 

estrogen treatment on lipids. Lp(a) levels were significantly reduced following treatments 

with norethisterone [97], estrogen-progestogen therapy [98], tamoxifen [99] or hormone 

replacement therapy (HRT) [100,101]. Lp(a) levels were significantly lower in women 

receiving HRT versus not receiving HRT in the Women Twins Study [38] and in the 

Women’s Health Study [102]. A meta-analysis of studies conducted during 1966–2004 

quantifying the effect of HRT in postmenopausal women documented an average of 25% 

reduction in Lp(a) levels [103]. In Japanese women, Lp(a) levels were significantly higher 

in postmenopausal than in pre- or perimenopausal women and HRT reduced Lp(a) by 

~19% which was retained for four years [104]. Treatment with tibolone, a synthetic steroid 

with weak estrogenic, progestogenic, and androgenic activity, for a year in postmenopausal 

women resulted in a 28% reduction in Lp(a) levels [105].

A meta-analysis based on 24 randomized controlled trials demonstrated that both HRT 

(mean relative difference: −20.4%) and tibolone (−25.3%) reduced Lp(a) concentrations in 

postmenopausal women [106]. Although the effect was statistically significant only for HRT 

compared to placebo or no treatment groups, there was no significant difference between 

HRT and tibolone regarding Lp(a) levels. Oral estrogen resulted in a greater reduction in 

Lp(a) concentrations than transdermal estrogen, whereas there was no significant difference 

comparing continuous versus cyclic HRT, conventional with low-dose estrogen, or estrogen 

monotherapy with estrogen combined with progestogen [106]. This meta-analysis concluded 

that HRT significantly reduces Lp(a) concentrations with oral being more effective than 

transdermal estradiol and that the type of HRT, dose of estrogen and addition of progestogen 

do not modify the Lp(a)-lowering effect of HRT [106].

Enkhmaa and Berglund Page 7

Atherosclerosis. Author manuscript; available in PMC 2022 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2.2. Thyroid hormones—Lp(a) levels are decreased in hyperthyroidism and 

increased in hypothyroidism [107]. The use of eprotirome, a liver-selective TH (thyroid 

hormone) analog, resulted in a dose-dependent reduction in Lp(a) concentrations (−45–

55%) in statin-treated patients [108]. A similar dose-response relationship between Lp(a) 

reduction and eprotirome was observed in other randomized double-blind placebo-controlled 

trials in patients with FH [109] or with primary hypercholesterolemia [110]. Bonde et 

al. reported that both eprotirome and hyperthyroidism reduced concentrations of Lp(a), 

PCSK9, plasma cholesterol in all lipoprotein fractions, apoB and apoA-I, while cholesterol 

synthesis was stable [111]. TH-induced reductions in PCSK9 levels likely contributed to the 

lower LDL-C and Lp(a) levels in hyperthyroidism. However, significant side effects such 

as increases in liver enzymes and cartilage side effects in animals have been seen with 

eprotirome, limiting its clinical use [112]. More details on the relationship between Lp(a) 

and PCSK9 and its inhibition are provided by Chemello et al. of this Lp(a) review series 

[72].

In hypothyroidism, Lp(a) levels decreased with a 6-month levothyroxine treatment (mean ± 

SD: 28 ± 19 mg/dL versus 18 ± 11 mg/dL) in women with primary hypothyroidism (n = 12) 

[113]; however, levels remained elevated compared to controls (14 ± 4 mg/dL) (n = 11). In 

a retrospective analysis, a small increase in Lp(a) concentrations was seen after injections of 

recombinant human thyrotropin on a background of a stable levothyroxine dose in thyroid 

cancer patients who had undergone total thyroidectomy [114]. Case-control studies have 

found higher Lp(a) levels in patients with Hashimoto thyroiditis [115] or hypothyroidism 

[116] compared to healthy controls.

A recent systematic review and meta-analysis of 166 studies (23 randomized and 143 

nonrandomized) conducted during 1970–2018 evaluated the impact of therapy for overt 

and subclinical hyper- and hypo-thyroidism on blood lipids [107]. Treatment of overt 

hyperthyroidism resulted in significant increases in Lp(a) by 4.18 mg/dL (95% CI: 1.65, 

6.71)., TC, LDL-C, HDL-C, apoA and apoB concentrations without affecting triglycerides 

[107]. In contrast, no effect on lipid parameters was seen during treatment for subclinical 

hyperthyroidism. Levothyroxine in overt hypothyroidism significantly decreased Lp(a) by 

−5.6 mg/dL (95% CI:−9.06,−2.14) and induced moderate to large reductions in TC, LDL-

C, HDL-C, triglycerides, apoA1, and apoB concentrations. Levothyroxine in subclinical 

hypothyroidism showed similar changes but with a smaller magnitude. A recent study 

reported elevated Lp(a) levels in patients with overt (n = 280) or subclinical (n = 272) 

hypothyroidism compared to healthy controls (n = 270) [117].

3.2.3. Growth hormones—Growth hormone (GH) replacement therapy increases 

Lp(a) levels. Among adults with adult-onset pituitary insufficiency, Lp(a) levels increased 

markedly during GH treatment and were about twice as high compared with pre-treatment 

levels [118]. Among adults with postoperative GH deficiency, recombinant human GH 

treatment increased significantly Lp(a) levels at 12 months posttreatment, independently of 

baseline Lp(a) levels and apo(a) isoforms [119]. More recently, a prospective observational 

study demonstrated that a GH replacement therapy in men with GH deficiency resulted in a 

significant increase in Lp(a) levels (mean: from 27.4 nmol/L to 34.3 nmol/L) [120]. There 
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were no correlations between baseline Lp(a) levels (or the increase) and concentrations of 

TH or insulin-like growth factor-1 [120].

4. Pathologies that modify Lp(a) concentrations

4.1. Kidney diseases

The role of kidney diseases in impacting Lp(a) levels has been the subject of many studies. 

The effects have varied depending on the specific condition and disease stage, the amount of 

proteinuria, or treatment modalities. In patients with severe chronic kidney disease (CKD), i. 

e., end-stage renal disease (ESRD), Dieplinger et al. observed higher Lp (a) levels compared 

with healthy controls despite similar apo(a) isoforms distribution in both groups [121]. In 

a diverse group of CKD patients, Milionis et al. found significantly elevated Lp(a) levels 

in patients with mild to moderate chronic renal failure (CRF) and patients treated with 

hemodialysis (HD) or continuous ambulatory peritoneal dialysis (CAPD) compared with 

controls, a finding not explained by the apo(a) size variability [122]. In another study among 

CRF patients, Lp(a) levels were twice as high as in healthy controls and were influenced 

by nutritional status [123]. Addressing a void regarding the changes in Lp (a) levels in 

early stages of kidney impairment, Kronenberg et al. conducted a detailed assessment of 

the relationship between Lp(a) levels, apo(a) sizes, and kidney function in 227 patients 

with non-nephrotic kidney disease (NNKD) with various stages of kidney impairment [124]. 

The results confirmed higher Lp(a) levels in patients with NNKD compared with healthy 

controls. Of note, the median Lp(a) levels increased as the kidney function impaired (11.0 at 

GFR >90, 18.4 at GFR 45–90 and 24.4 mg/dL at GFR <45 mL/min/1.73 m2). These findings 

suggested that Lp(a) levels begin to increase even in early stages of kidney impairment 

[124,125] and showed an inverse association between Lp(a) levels and kidney function 

[125,126].

A common finding among CKD patients has been that the increase in Lp(a) levels varies 

across apo(a) sizes as only patients with large size apo (a) isoforms exhibited a 2- to 4-fold 

higher Lp(a) level compared with controls [121] (Fig. 3). When compared with apo(a) 

phenotype-matched controls, the significant association between Lp(a) levels and kidney 

function was seen in patients with large apo(a) isoforms, but not in patients with small 

isoforms [124]. Thus, median Lp(a) levels in patients with large apo(a) isoforms were 6.2 

mg/dL at GFR >90, 14.2 mg/dL at GFR 45–90, and 18.0 mg/dL at GFR <45 mL/min/1.73 

m2, all of which were markedly elevated compared with the median level of 4.4 mg/dL 

in controls. Other studies have shown that the Lp(a) response was dependent on apo(a) 

sizes also during dialysis treatment. Apo(a) size specific increases in Lp(a) levels were seen 

among patients with NNKD or ESRD patients treated with HD [121,126,127]. Thus, Lp(a) 

levels were higher in HD patients compared with healthy controls (13.6 versus 9.2 mg/dL) 

as was the prevalence of a high Lp(a) level (23% versus 12%), despite a similar distribution 

of apo(a) isoforms in both groups [127]. Again, this rise in Lp(a) level in HD patients 

versus controls was limited to large apo (a) isoform group only (14 versus 8 mg/dL) and 

was associated with heightened inflammation [127]. More details on the association of Lp(a) 

with inflammation are provided by Dzobo et al. of this Lp(a) review series [128].
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While the findings for HD have been consistent, some variability is reported for CAPD. 

In a large multicenter study of ESRD patients, Kronenberg et al. reported elevated Lp(a) 

levels in CAPD patients compared to HD patients (34.6 versus 23.4 mg/dL), while both 

were significantly higher compared to those of healthy controls (18.4 mg/dL) [126]. The 

higher Lp(a) levels in both patient groups (versus controls) were not explained by apo(a) 

size variability as all three groups had a similar frequency of small apo(a) isoforms. Lp(a) 

levels were significantly elevated for the large apo(a) isoforms in both patient groups (HD 

and CAPD) compared with controls [126]. Of note, CAPD patients had significantly higher 

Lp(a) levels than did the HD patients for large apo(a) isoforms (26.1 versus 17.2 mg/dL) 

[126]. However, an increase in Lp(a) levels for patients with small apo(a) isoforms also 

been reported among CAPD patients. Thus, in contrast to HD, CAPD has been associated 

with elevated Lp(a) levels regardless of apo(a) sizes [122]. Furthermore, a study in children 

treated with peritoneal dialysis reported higher Lp(a) levels compared to matched controls, 

but no apo(a) size data was available [129]. On the other hand, some studies have found 

no relationship between Lp(a) levels, GFR and/or apo(a) isoforms. For example, in the 

Modification of Diet in Renal Disease Study enrolled 804 patients with CKD (stages 3–4 

with a GFR range of 13–55 mL/min/1.73 m2), Lp(a) level was not associated with GFR 

[130]. Among kidney donors whose GFR was reduced by ~36% at 1 year post donation 

versus before donation, Lp(a) was not changed [131].

The higher Lp(a) level in CKD patients seen in many reports has stimulated studies of 

underlying mechanisms. In vivo turnover studies using stable isotopes in HD patients 

suggested that a reduced catabolic rate of Lp(a)-apoB and apo(a) was responsible for 

the Lp(a) elevation in CKD [132]. Given the differential increase in Lp(a) depending on 

apo(a) sizes, this finding brings up the interesting possibility that CKD might affect Lp(a) 

catabolism differently depending on apo(a) size properties. Thus, metabolic studies under 

CKD conditions taking apo(a) size into account could offer valuable insights into Lp(a) 

metabolic properties.

In contrast to CKD conditions, pronounced increases in Lp(a) levels occur in all apo(a) size 

groups in patients with nephrotic syndrome (NS) [125,133–135]. Wanner et al. demonstrated 

that Lp(a) levels were increased in patients with NS (diabetic and non-diabetic) compared 

with controls across the apo(a) size range [134]. Moreover, a large decrease in Lp(a) 

levels was seen in non-diabetic NS patients following remission of the syndrome with 

immunosuppressive therapy [134]. Similarly, Kronenberg et al. reported ~5-fold elevated 

Lp(a) levels in patients with non-diabetic NS compared with controls [135]. While the 

increase was partly explained by a different distribution of apo(a) size phenotypes in the 

patient group versus the control group, both small (40–75%) and large (100–500%) apo(a) 

isoforms were associated with significantly elevated Lp(a) levels in the patient group. Others 

have also found significantly higher Lp(a) levels in patients with NS (severe proteinuria) or 

chronic glomerulonephritis (moderate proteinuria) compared with healthy controls [136] and 

a decrease in Lp(a) levels with the remission of the syndrome [137]. Shedding light into 

mechanisms underlying the increased Lp(a) level in NS patients, a turnover study by van der 

Velden et al. [138] showed that while the fractional catabolic rate of Lp(a) was comparable 

between NS patients and controls, the absolute synthesis rate of Lp(a) correlated with Lp(a) 

concentration in all participants. These data suggest a role for an increased synthesis, rather 
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than a decreased catabolism, as a cause for elevated Lp(a) levels in NS. It has been proposed 

that in NS and probably also in CAPD, patients lose a significant amount of proteins by 

urine and dialysate, respectively, that the increased synthesis of Lp(a) might be a result of a 

counteraction to keep up the oncotic pressure and/or viscosity of blood [136,138,139] (Fig. 

3).

Renal transplantation results in significant reductions in Lp(a) levels consistent with the 

acquired nature of the Lp(a) abnormality [125,139]. Prospective studies with variable 

follow-up periods have shown substantial decreases in Lp(a) levels [140–143]. The decrease 

was observed only in patients with large apo(a) isoforms [140] or linked to a reduced 

expression of large apo(a) isoforms [141]. Rosas et al., observed a rapid decline in Lp(a) 

levels after renal transplantation reaching a 35% reduction at 2 weeks [143]. Each reduction 

of 50% in creatinine was associated with ~11% reduction in Lp(a) levels. Among patients 

with a relapse and worsening kidney function, a marked increase of the large isoform-

associated Lp(a) levels was noted [141]. Consistent with the reports of higher Lp(a) levels 

in CAPD compared to HD, Kerschdorfer et al. found a large decrease post transplantation 

in CAPD-versus HD-treated patients [142]. Similarly, a larger decrease was seen among 

patients with higher Lp(a) levels before renal transplantation or patients with large apo(a) 

isoforms [142]. In contrast, variable results regarding Lp(a) have been observed in cross-

sectional studies [144–149].

The influence of immunosuppressive therapies on Lp(a) levels in renal transplant recipients 

has also been explored. Higher Lp(a) levels have been reported in recipients treated with 

cyclosporin versus azathioprine or prednisolone [150–152] independently of apo(a) size 

variability [150], while others have found no evidence for a role of immunosuppressive 

therapy [140,142,146,149,153,154]. A retrospective analysis showed that young (<35 years 

old) renal transplant recipients with small apo(a) isoforms had a significantly shorter long-

term graft survival compared with those with large apo(a) isoforms, independent of the 

number of HLA mismatches, sex, or immunosuppressive therapy [155]. Overall, whether 

the reduction in Lp(a) levels after renal transplantation is influenced by immunosuppressive 

therapies remains to be seen [139,156].

In summary, there is strong evidence to support a role of the kidney in impacting Lp(a) 

levels. Both the increase in Lp(a) levels in CKD and the decrease in Lp(a) levels after renal 

transplantation are likely related to the degree of kidney function impairment. In contrast, 

the increase in Lp(a) levels in NS appears to result from an increased production in response 

to proteinuria [139]. The potential roles of additional factors in influencing Lp(a) in CKD 

remain to be determined.

4.2. Liver diseases

As the concentration of Lp(a) is primarily regulated by the hepatic apo(a) synthetic rate, 

liver diseases have the potential to influence Lp(a) levels. In general, hepatocellular damage 

is associated with reduced Lp (a) levels, where the decrease in levels is in parallel 

with the disease progression [157–159]. Patients with liver cirrhosis [160] and hepatitis 

[157,161,162] exhibited lower Lp(a) levels compared to healthy controls. Geiss et al. [162] 

observed a 41% reduction in Lp(a) level, independent of apo(a) isoform size, in patients 
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with acute hepatitis A, B and C (HCV). Lp(a) levels were significantly lower in HCV core 

protein-positive patients compared to core-negative cases [163]. A significant increase in 

Lp(a) levels was seen in chronic active HCV patients with a complete response to a 6-month 

interferon treatment [157]. Also in patients with chronic HCV (81% cirrhotic), where the 

majority (93%) achieved a sustained virological response with a 24-week direct acting 

antiviral treatment, Lp(a) levels rose by ~2-fold [164].

Studies in patients with nonalcoholic steatohepatitis (NASH) or non-alcoholic fatty liver 

disease (NAFLD) have shown variable results with regard to Lp(a). A study on NASH 

showed similar Lp(a) levels to those of healthy controls [165]. Several recent Asian 

population studies have reported on the association between Lp(a) levels and different stages 

of NAFLD. Among Korean adults, Lp(a) levels decreased with the severity of NAFLD and 

the prevalence of NAFLD decreased with the Lp(a) tertiles [166]. The inverse association 

between Lp(a) levels and NAFLD remained significant after multivariate adjustment, but 

was attenuated when taking insulin resistance into account [166]. A large cross-sectional 

study in Korean adults confirmed an inverse association of Lp(a) levels with NAFLD 

with significantly lower levels in the NAFLD group versus the control group [167]. The 

odds ratio for NAFLD was the lowest in the top Lp(a) quartile [167]. Among Japanese 

patients with biopsy-confirmed NAFLD, Lp(a) levels were lower in patients with advanced 

fibrosis and an inverse association between the advanced fibrosis, NASH and Lp(a) levels 

remained significant in multivariate models [168]. In contrast, in Chinese patients with 

NAFLD, concentrations of Lp(a) and liver enzymes increased with the disease severity 

[169]. The odds ratio of Lp(a) levels for NASH was 1.61 and a combination of Lp(a) and 

liver enzymes improved the prediction for NASH [169]. Among Malaysians, a recent cross-

sectional study in a high CVD risk cohort (patients with obstructive sleep apnea) found 

3.5-fold higher Lp(a) levels in patients with NAFLD compared with those without NAFLD 

[170]. A stepwise increase in Lp(a) levels as well as in carotid intima media thickness 

was observed with a worsening clinical condition [170]. The differences underlying these 

heterogenous associations between Lp(a) levels and NAFLD across population groups need 

to be elucidated in future studies using standardized measurement methodology as well as 

potential impact from accompanying metabolic conditions, age, gender and genetics.

5. Conclusions

The current evidence on non-genetic influences on Lp(a) concentration indicates a potential 

role for diet, hormones and liver and kidney diseases (Box 1). In particular, strong consistent 

evidence suggests an impact on Lp(a) concentration by reducing dietary saturated fat 

intake, sex hormones and hormone replacement therapies and kidney diseases and treatment 

modalities (Table 1). In contrast, more data is needed to firmly establish any potential 

role for PA/exercise and certain liver diseases in influencing Lp(a) concentration. The use 

of wellstandardized assay methods for Lp(a) measurement is of paramount importance 

for studying non-genetic influences on Lp(a) as discussed by a further review of this 

series [171]. Additional factors of consideration include large sufficiently powered sample 

sizes and potential confounders, including but not limited to, race/ethnicity, metabolic 

status and genetic variability. Research to elucidate mechanisms underlying the changes 

in Lp(a) concentration and the modulation of Lp(a) properties beyond its plasma level will 
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help improve our understanding of non-genetic influences on Lp(a). Finally, the clinical 

significance of the changes in Lp(a) concentration and its risk mediating properties due to 

non-genetic factors, including lifestyle interventions, remains to be seen.
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Key points box 1

Non-genetic influences on Lp(a) concentrations.

• While Lp(a) is under strong genetic regulation, a number of other factors, 

including some clinical conditions, influence levels.

• Replacement of dietary saturated fat with protein, carbohydrates or 

unsaturated fat increases Lp(a) levels in the order of 10–15%.

• Modulation of physical activity has not been shown to consistently affect 

Lp(a) levels.

• In contrast to endogenous sex hormone levels, under non-pregnant conditions, 

exogenously administered androgens and estrogens impact Lp (a) levels.

• Both hyper- and hypothyroid conditions modestly impact Lp(a) levels.

• Lp(a) levels increase in chronic kidney disease and nephrotic syndrome – in 

the former, the increase is primarily limited to Lp(a) with larger size apo(a) 

isoforms. Baseline Lp(a) levels are largely restored after renal transplantation.

• Lp(a) levels are associated with hepatocellular damage – a decrease is seen in 

relation to disease progression. Whether Lp(a) is influenced by non-alcoholic 

fatty liver disease remains to be clarified.

Enkhmaa and Berglund Page 23

Atherosclerosis. Author manuscript; available in PMC 2022 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Non-genetic factors influencing plasma Lp(a) levels.

Although plasma Lp(a) levels are mostly genetically determined, some evidence suggests 

that non-genetic factors may also influence Lp(a) levels. These include lifestyle factors such 

as diet. In particular, reduction in dietary saturated fat intake and exercise (A), hormones 

and associated conditions such as menopause (B) and chronic conditions such as liver and 

kidney diseases that impact synthesis and catabolism of Lp(a) (C). Other factors with a 

potential to influence Lp (a) levels remain to be identified (D).

Enkhmaa and Berglund Page 24

Atherosclerosis. Author manuscript; available in PMC 2022 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Opposite effects of reducing dietary saturated fat intake on Lp(a) and LDL-C concentrations 

and modulation of their risk mediating properties as well as impact by other factors.

Reduction in dietary saturated fatty acid (SFA) intake can increase Lp(a) concentrations 

while inducing a consistent clinically meaningful reduction in LDL-C concentrations (A). 

Although the impact of dietary SFA reduction on LDL-C and its properties is well studied, 

limited data is available on its impact on Lp (a)s unique properties such as oxidized 

phospholipids (OxPLs) concentration or subspecies composition and any modulatory role 

by the apo(a) size polymorphism (B). Whether the responses to dietary SFA reduction in 

Lp(a) concentrations and properties would differ by an individual’s racial/ethnic background 

or metabolic burden and SFA replacement regimens or other food components in the diet 

remain to be established (C).
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Fig. 3. 
Differences underlying increased Lp(a) levels in chronic kidney disease versus nephrotic 

syndrome in relation to homeostasis and genetically determined apolipoprotein(a) sizes.

Kidney diseases influence Lp(a) levels. In patients with chronic kidney disease (upper 

panel), Lp(a) catabolism is decreased, resulting in apo(a)-phenotype specific increases in 

Lp(a) levels. Thus, the increase is largely due to increases in the large apo(a) isoform 

associated levels. In contrast, in patients with nephrotic syndrome (lower panel), Lp(a) 

synthesis is increased, resulting in simultaneous increases for both large and small apo(a) 

size associated levels.

Enkhmaa and Berglund Page 26

Atherosclerosis. Author manuscript; available in PMC 2022 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Enkhmaa and Berglund Page 27

Ta
b

le
 1

A
 b

ro
ad

 s
um

m
ar

y 
of

 n
on

-g
en

et
ic

 f
ac

to
rs

 th
at

 m
ay

 in
fl

ue
nc

e 
L

p(
a)

 c
on

ce
nt

ra
tio

ns
 d

es
cr

ib
ed

 in
 th

is
 r

ev
ie

w
 a

rt
ic

le
.

In
te

rv
en

ti
on

s 
an

d 
co

nd
it

io
ns

A
ss

oc
ia

ti
on

 w
it

h 
L

p(
a)

 c
on

ce
nt

ra
ti

on
 [

R
ef

er
en

ce
]

1
D

ie
t

a.
 R

ep
la

ce
m

en
t o

f 
di

et
ar

y 
sa

tu
ra

te
d 

fa
ts

 w
ith

 c
ar

bo
hy

dr
at

e 
or

 
un

sa
tu

ra
te

d 
fa

ts
~8

–2
0%

 in
cr

ea
se

 [
7–

12
,3

6]

b.
 L

ow
-c

ar
bo

hy
dr

at
e,

 h
ig

h-
sa

tu
ra

te
d 

fa
t d

ie
t

~1
5%

 d
ec

re
as

e 
[1

8,
36

]

c.
 D

ie
ts

 e
nr

ic
he

d 
w

ith
 w

al
nu

ts
 o

r 
pe

ca
ns

~6
–1

5%
 d

ec
re

as
e 

[2
6,

27
,3

6]

d.
 A

lc
oh

ol
 c

on
su

m
pt

io
n

N
o 

as
so

ci
at

io
n 

or
 m

in
or

 d
ec

re
as

e 
[3

2–
35

]

2
P

hy
si

ca
l a

ct
iv

it
y 

an
d 

&
 e

xe
rc

is
e

N
o 

or
 m

in
im

al
 a

ss
oc

ia
tio

n 
[4

6–
50

]

3
Se

x,
 h

or
m

on
es

 a
nd

 a
ss

oc
ia

te
d 

co
nd

it
io

ns

a.
 S

ex
N

o 
as

so
ci

at
io

n 
or

 h
ig

he
r 

le
ve

ls
 in

 f
em

al
es

 th
an

 m
al

es
 [

61
–6

3,
67

,7
3–

76
]

b.
 S

ex
 h

or
m

on
es

 (
en

do
ge

no
us

)
N

o 
or

 m
in

or
 a

ss
oc

ia
tio

n 
[7

8–
83

]

c.
 P

os
tm

en
op

au
sa

l h
or

m
on

e 
re

pl
ac

em
en

t t
he

ra
py

 (
H

R
T

)
~2

0–
25

%
 d

ec
re

as
e;

 a
 g

re
at

er
 d

ec
re

as
e 

w
ith

 o
ra

l v
s 

tr
an

sd
er

m
al

 e
st

ro
ge

n;
 n

o 
di

ff
er

en
ce

 b
et

w
ee

n 
co

nt
in

uo
us

 v
s 

cy
cl

ic
 

H
R

T
 [

10
3,

10
6]

d.
 H

yp
er

th
yr

oi
di

sm
D

ec
re

as
ed

 L
p(

a)
; t

re
at

m
en

t o
f 

ov
er

t h
yp

er
th

yr
oi

di
sm

 in
cr

ea
se

d 
L

p(
a)

 b
y 

20
–2

5%
 [

10
7,

11
1]

e.
 H

yp
ot

hy
ro

id
is

m
E

le
va

te
d 

L
p(

a)
; t

re
at

m
en

t o
f 

ov
er

t a
nd

 s
ub

cl
in

ic
al

 h
yp

ot
hy

ro
id

is
m

 d
ec

re
as

ed
 L

p(
a)

 b
y 

5–
20

%
 [

10
7,

11
3,

11
6,

11
7]

f.
 G

ro
w

th
 h

or
m

on
e 

re
pl

ac
em

en
t t

he
ra

py
~2

5–
10

0%
 in

cr
ea

se
 [

11
8–

12
0]

4
C

hr
on

ic
 k

id
ne

y 
di

se
as

e

a.
 C

hr
on

ic
 k

id
ne

y 
di

se
as

e 
an

d 
he

m
od

ia
ly

si
s

E
le

va
te

d 
L

p(
a)

; a
n 

in
ve

rs
e 

as
so

ci
at

io
n 

w
ith

 k
id

ne
y 

fu
nc

tio
n;

 a
 2

–4
-f

ol
d 

hi
gh

er
 le

ve
l o

nl
y 

in
 p

at
ie

nt
s 

w
ith

 la
rg

e 
si

ze
 a

po
(a

) 
vs

 c
on

tr
ol

s 
[1

21
,1

22
,1

24
–1

27
]

b.
 C

on
tin

uo
us

 a
m

bu
la

to
ry

 p
er

ito
ne

al
 d

ia
ly

si
s

~2
-f

ol
d 

el
ev

at
ed

 v
s 

co
nt

ro
ls

 [
12

2,
12

6]

c.
 N

ep
hr

ot
ic

 s
yn

dr
om

e
~3

–5
-f

ol
d 

in
cr

ea
se

 c
om

pa
re

d 
to

 c
on

tr
ol

s 
[1

25
,1

33
–1

35
]

d.
 K

id
ne

y 
tr

an
sp

la
nt

at
io

n
Si

gn
if

ic
an

t r
ed

uc
tio

n;
 n

ea
r 

no
rm

al
iz

at
io

n 
[1

25
,1

39
–1

43
]

5
L

iv
er

 d
is

ea
se

a.
 H

ep
at

oc
el

lu
la

r 
da

m
ag

e
D

ec
re

as
ed

 in
 p

ar
al

le
l w

ith
 th

e 
di

se
as

e 
pr

og
re

ss
io

n;
 >

40
%

 r
ed

uc
tio

n 
in

 h
ep

at
iti

s;
 a

 2
-f

ol
d 

in
cr

ea
se

 w
ith

 a
nt

iv
ir

al
 tr

ea
tm

en
t 

[1
57

–1
64

]

b.
 N

on
-a

lc
oh

ol
ic

 f
at

ty
 li

ve
r 

di
se

as
e

In
co

ns
is

te
nt

 a
ss

oc
ia

tio
n 

ac
ro

ss
 p

op
ul

at
io

n 
gr

ou
ps

 [
16

6–
17

0]

Atherosclerosis. Author manuscript; available in PMC 2022 October 10.


	Abstract
	Introduction
	Non-genetic factors and Lp(a) levels
	Diet
	Physical activity, exercise, and cardiorespiratory fitness

	Sex-specific differences and hormones
	Sex-specific differences
	Hormones
	Sex hormones
	Thyroid hormones
	Growth hormones


	Pathologies that modify Lp(a) concentrations
	Kidney diseases
	Liver diseases

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Table 1

