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Virtual photons in the ground state of a dissipative
system
Simone De Liberato 1

Much of the novel physics predicted to be observable in the ultrastrong light–matter coupling

regime rests on the hybridisation between states with different numbers of excitations,

leading to a population of virtual photons in the system’s ground state. In this article,

exploiting an exact diagonalisation approach, we derive both analytical and numerical results

for the population of virtual photons in presence of arbitrary losses. Specialising our results to

the case of Lorentzian resonances we then show that the virtual photon population is only

quantitatively affected by losses, even when those become the dominant energy scale. Our

results demonstrate most of the ultrastrong-coupling phenomenology can be observed in

loss-dominated systems which are not even in the standard strong coupling regime. We thus

open the possibility to investigate ultrastrong-coupling physics to platforms that were pre-

viously considered unsuitable due to their large losses.
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The study of the interaction between light and matter has
been one of the cornerstones in the development of
quantum mechanics. In most cases the light–matter cou-

pling is weak enough to be intuitively described in terms of the
emission and absorption of photons, while the matter system
jumps between two of its quantised eigenstates. When the reso-
nant coupling of an optically active transition with a mode of the
electromagnetic field is larger than the losses determining their
respective linewidths, it becomes possible to spectroscopically
resolve the splitting due to the interaction. The system is then said
to be in the strong light–matter coupling regime. Contrary to the
weak coupling case, here the interaction between light and matter
cannot be described in terms of emission and absorption of
photons, but it is necessary to consider the dressed light–matter
excitations of the coupled system. Finally, if the coupling becomes
even larger, comparable with the bare frequencies of the excita-
tions, we enter a third regime, called ultrastrong coupling. Such a
regime, described1 and achieved2 for the first time using inter-
subband polaritons, has since been studied both theoretically and
experimentally in a variety of different systems3–17. Interest in
this novel regime has been fuelled by its rich phenomenology,
including quantum phase transitions18–20, modification of energy
transport21, 22 and optical properties23–27, and the possibility to
use it to influence chemical and thermodynamic processes28–32.

The relevant dimensionless parameter in a perturbative treat-
ment of the light–matter interaction is the ratio between the
coupling and the bare excitation frequencies. In the ultrastrong-
coupling regime such a parameter becomes non-negligible, with
values larger than one recently achieved33. Higher-order pertur-
bative effects due to the antiresonant terms in the Hamiltonian,
which do not conserve the number of excitations, are then able to
hybridise states with different numbers of excitations. Such an
hybridisation is at the origin of much of the ultrastrong-coupling
phenomenology25–27 and one of its most striking consequences is
that the ground state Gj i becomes a squeezed vacuum state
containing a finite population of virtual photons. Those photons
are said to be virtual because the ground state cannot radiate.
Their presence can be however directly revealed when the system
parameters are non-adiabatically modulated in time, transmuting
virtual photons into real ones34–45, a process which presents
strong analogies with the dynamical Casimir effect46–50 and with
the Hawking radiation51–53. Non-adiabatic modulation of the
parameters of a light–matter coupled system has been experi-
mentally achieved in dielectric systems by modifying the dipole
density with a femtosecond laser pulse54, and in superconducting
circuits by applying an external flux bias55, 56. Another promising
proposal in this direction is the use of the superconducting to
classical transition to alter the resonator response57.

While the best way to correctly model losses in the ultrastrong-
coupling regime has been object of much attention58–60, their
impact on the structure of the ground state and on the presence
of virtual photons has been for the moment almost totally
neglected. One of the reasons is that interest in ultrastrong cou-
pling has historically emerged from the study of strongly coupled
systems. Its achievement is usually demonstrated by fitting the
resonant splitting of the coupled resonances to measure the
coupling strength. Any system in which ultrastrong coupling has
been demonstrated was thus a fortiori also in the strong coupling
regime. But in this situation the loss rate is the smallest frequency
scale of the problem, and perturbative methods that neglect its
impact on the structure of the ground state are totally justified.
Nevertheless strong and ultrastrong coupling depend on different
figures of merit, and they are thus a priori independent regimes.
Systems in the ultrastrong but not in the strong coupling regime
could still have large couplings, as well as large losses, both
comparable with the bare frequency of the optical transition. The

ground state of the system would then also hybridise with its
environment, modifying its structure. A thorough investigation of
the effect of the losses on the virtual photon population in those
systems then becomes necessary to ascertain whether ultrastrong-
coupling phenomenology can still be observed or if it is com-
pletely quenched by the effect of the environment.

In this article we calculate through a non-perturbative proce-
dure the virtual photon population in presence of arbitrary losses.
Specialising our results to the case of Lorentzian light and matter
resonances we prove that losses do have an impact on the virtual
photon population, but only a quantitative one. Even in presence
of dominant losses a sizeable fraction of virtual photons remains.
Ultrastrong-coupling phenomena can thus be observed in sys-
tems with very large couplings, in which losses have impeached
the observation of strong coupling for intrinsic, or technological
reasons. Prime examples could be graphene single and bilayers in
which, notwithstanding different theoretical calculations pre-
dicting very large dipoles16, 17, strong coupling has not yet been
achieved. Another example are hybrid quantum systems which
were recently highlighted as ideal platforms for some quantum
vacuum emission scheme34. These have only very recently61

achieved strong coupling, as they are characterised by large los-
ses62, 63.

Results
Analytical expression for the virtual photon population. The
quantity of interest for us will be the photonic population in the
ground state Gj i of the coupled light, matter and environment
fields. In our treatment this quantity is also the measure of the
hybridisation between states with different numbers of excita-
tions. Due to the regime we are interested in, with all the para-
meters a priori of the same order, a perturbative approach would
be unreliable and we are thus obliged to perform a non-
perturbative calculation. In a light–matter coupled system energy
can be lost through different channels. Photons can escape out of
the system, or they can be absorbed by the matter excitation and
their energy non-radiatively dissipated. The general theory we
developed, detailed in the Supplementary Note 4, shows that in
the considered parameter range the ground state photonic
population essentially depends on the total amount of losses,
regardless of their origin. Without loss of generality in the main
body of the paper we will thus consider the case of losses due to
absorption in a dielectric medium, which allows to obtain ana-
lytically intuitive results in terms of the complex dielectric
function. In this case, considering an homogeneous dissipative
dielectric with complex dielectric function ϵ(ω), we show in the
Methods section that the number of ground-state virtual photons
in the mode k is given by

Nk ¼
X
j

Im
Ω2

j � c2k2

4πc3k2
dΩj

dk
iπ � 2 log Ωj

� �� �" #
� 1
2
; ð1Þ

where the Ωj are the solution of the dispersion equation

ϵðωÞω2 � c2k2 ¼ 0; ð2Þ

located in the first quadrant of the complex plane. The quan-
tity Nk also represents the number of photons with wavevector k
emitted upon an instantaneous switch-off of the interaction1:
after the switch-off the ground state would be the standard, empty
vacuum and all the virtual photons would be free to radiate.
Notice that this identification remains valid in presence of losses
because without light–matter coupling there can be no absorption
and all the virtual photons in the ground state are emitted.
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Numerical results for Lorentzian resonances. In order to
explore the physical content of Eq. (1) we apply it to a medium
described by a dissipative Lorentz dielectric function

ϵL ωð Þ ¼ 1þ ω2
c

ω2
0 � ω2 � iγLω

; ð3Þ

which is a medium containing a single, dispersionless optically
active resonance of frequency ω0, coupling strength ωc and
linewidth γL. It is well known that the spectrum of a medium
described by Eq. (3) consists of two polaritonic branches, whose
real frequencies cross or anticross accordingly to whether the
system is in the weak (γL> 2ωc) or in the strong (γL> 2ωc)
coupling regime, as shown in Fig. 1. With the appropriate choice
of parameters, such a model can be used to describe, at least
qualitatively, all linear dielectric condensed matter systems in
which strong and ultrastrong coupling have been achieved to
date. For historical reasons2 the threshold of ultrastrong coupling
is usually assumed to be ωc ≥ 0.2ω0. The poles of the dielectric

function in Eq. (3), Ω0 ¼ �iγL ±
ffiffiffiffiffiffiffiffiffiffiffi
4ω2

0�γ2L
p
2 , corresponding to the

complex frequencies of the lossy matter resonance, have a real
component only for γL<γmax ¼ 2ω0. For γL> γmax the resonance
thus becomes overdamped, the resonant frequency ill defined,
and the analytic properties which allow to derive Eq. (1) do not
apply anymore. Normally this is a sign that the dissipative

Lorentz model is not adapted to describe the system under
investigation and in the following we will thus take γmax as the
largest physically meaningful value of the damping.

In Fig. 2a we plot the number of virtual photons Nk in the
resonant mode ck=ω0 as a function of the light–matter coupling
strength ωc. We recognise the expected, initially quadratic
dependency over the coupling coefficient ωc

1. Different lines
relate to different values of γL ranging from 0 (thin blue line) to
γmax (dotted red line). We see that, while losses do have a clear
effect upon Nk, even in the case of an overdamped oscillator the
virtual photon population is only diminished by roughly 25%
when compared with the nondissipative case.

The results in the case in which also a photonic linewidth γP is
present, obtained from the general approach developed in the
Supplementary Note 4, can be found in the Supplementary Fig. 1.
Those results show that also in this more general case our
conclusions remain valid. A sizeable virtual photon population in
fact remains, reduced at most by 50% when γL= γP= γmax and the
light and matter resonances are both overdamped. Moreover from
Supplementary Fig. 1 we can see that in the considered parameter
range Nk essentially depends on the total linewidth
γL + γP. The results in Fig. 2a thus generalise to this more general
case if one considers the total linewidth instead that the matter one.

As the coupling ωc is varied from 0 to ω0 we expect the system,
at least for the small and intermediate values of γL, to transition
from the weak to the strong coupling regime. Still no
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Fig. 1 Eigenmodes of the Lorentz model. a Dispersion of the two polaritonic branches from the Lorentz model in Eq. (3), for ωc= 0.5ω0 and γL= 0 (thin blue
lines), 0.5ω0 (solid cyan lines), ω0 (dash-dotted green lines), 1.5ω0 (dashed magenta lines) and 2ω0 (dotted red lines). The transition between the strong
coupling regime presenting an anticrossing (blue and cyan lines) and the weak one in which the polaritonic modes cross (magenta and red lines), with the
green line at the edge between the two, is cleary visible. b Trajectories drawn by the eigenfrequencies in the complex plane, at resonance ck=ω0, when
varying γL. Coloured squares, triangles, dots, diamonds and circles mark the increasing values of γL used in a
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Fig. 2 Virtual photons in the resonant Lorentz model. a Number of photons in the resonant mode ck=ω0 as a function of the coupling for γL= 0 (thin blue
line), 0.5ω0 (solid cyan line), ω0 (dash-dotted green line), 1.5ω0 (dashed magenta line) and 2ω0 (dotted red line), that is the maximal physical value for the
model we are considering. We see that going from the undamped to the overdamped regime, the number of virtual photons only diminishes of roughly the
25%. b Trajectory drawn by the eigenfrequencies in the complex plane, for ck=ω0 and γL=ω0, while varying ωc. The black symbols in a, b correspond to
the same values of ωc. No visible discontinuity is present in the virtual photon population passing from the weak to the strong coupling regime
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discontinuity is observed in Nk showing that strong coupling has
no direct effect on the virtual photon population. This can be
confirmed from Fig. 2b where we plot the trajectory of the two
complex polaritonic eigenfrequencies in the complex plane for γL
=ω0, as ωc is varied, identifying with different symbols specific
values marked in Fig. 2a. We can clearly see a transition from the
weak to the strong coupling regime as the two eigenfrequencies
transition from having different loss rates but similar frequencies
to the opposite case.

Numerical results for strongly detuned systems. We verified
that losses, even when larger than the light–matter coupling, have
only a limited effect on the virtual population of the resonant
photonic mode ck=ω0. In order to ascertain if this also remains
true out-of-resonance, in Fig. 3a we plot Nk as a function of ck

ω0
over four orders of magnitude for a coupling ωc= 0.5ω0 and
values of the dissipation covering all the range between 0 and
γmax. We verify again that dissipation does not have any quali-
tative impact, and also its quantitative effect is negligible for a plot
over multiple orders of magnitude of the wavevector. More
important, we do not see any sign of resonant enhancement of
virtual photon population. This can be understood from the fact
that the mixing of the vacuum state with states containing pho-
tonic excitations is due to the antiresonant terms of the Hamil-
tonian, and thus no resonance condition should be expected.
Performing a perturbative development in inverse powers of k
(now justified as we are interested in extremal values of k) from of
the dissipationless version of Eq. (1) we can find the asymptotic
behaviours

Nk!0 ¼ ω2
c

4ck
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

c

p ; Nk!1 ¼ ω0ω2
c

4c3k3
; ð4Þ

plotted as black lines in Fig. 3a. Those results are consistent with
the perturbative calculation in the dispersionless case58, predict-
ing a larger squeezing for red-detuned resonators. They offer a
first proof to a very recent conjecture by Roberto Merlin, linking
the dynamical Casimir effect to the problem of orthogonality
catastrophes, and predicting the presence of an infrared diver-
gence in the number of generated low-energy photons64. In
Fig. 3b we plot instead Ek ¼ �hckNk, that is the photonic energy
per mode, showing that it is also a monotonously decreasing

function of the photonic wavevector k, saturating at Emax ¼
�hω2

c

4
ffiffiffiffiffiffiffiffiffiffi
ω2
0þω2

c

p for very red-detuned photons.

In summary, we demonstrated that the population of virtual
photons present in the ground state of an ultrastrongly coupled

system is solid against dissipation. Those results show that
ultrastrong-coupling physics can be observed in losses-dominated
systems, in which strong coupling is not achievable.

Methods
Calculation of virtual photon population. In order to derive the formula in Eq.
(1) we can start by Huttner and Barnett’s diagonalisation method65, which
extended Hopfield’s approach66 to the case of a dispersive–dissipative dielectric.
For sake of clarity we consider an homogeneous isotropic dielectric medium,
although the extension to the inhomogeneous case does not present any funda-
mental issue67. The derivation, detailed in the Supplementary Note 1, starts from
an Hamiltonian describing the electromagnetic field coupled to an optically active
transition. The latter is coupled to a reservoir of harmonic oscillators which act as a
bath in which energy can be dissipated. Introducing annihilation operators Ĉ k;ωð Þ
for excitations of wavevector k and frequency ω, obeying bosonic commutation
relations

Ĉ k;ωð Þ; Ĉy k′;ω′ð Þ� � ¼ δ k � k′ð Þδ ω� ω′ð Þ; ð5Þ

and using a method originally due to Fano68, such an Hamiltonian can be put in
the diagonal form

Ĥ ¼
X
k

Z1

0

dω �hω Ĉy k;ωð ÞĈ k;ωð Þ: ð6Þ

The linear transformation used to diagonalise the system can then be inverted,
allowing us to express the photonic operators as linear combinations of the Ĉðk;ωÞ
as

â kð Þ ¼
Z1

0

dω ~α�0;kðωÞĈ k;ωð Þ � ~β0;k ωð ÞĈy �k;ωð Þ
h i

; ð7Þ

with

~α0;k ωð Þ ¼
ffiffiffiffiffiffi
ω2
c

ck

r
ωþ ck

2

� �
ζðωÞ

ϵ�ðωÞω2 � c2k2
; ð8Þ

~β0;kðωÞ ¼
ffiffiffiffiffiffi
ω2
c

ck

r
ω� ck

2

� �
ζðωÞ

ϵ�ðωÞω2 � c2k2
;

where the complex dielectric function is

ϵ ωð Þ ¼ 1þ ω2
c

2ω

Z1

�1
dω′

ζ ω′ð Þj j2
ω′ ω′� ω� i0þð Þ ; ð9Þ

and the functional form of ζ(ω) can be found in the Supplementary Note 1.
Exploiting the definition of ground state Ĉ k;ωð Þ Gj i ¼ 0, we can calculate the
number of virtual photons with wavevector k as

Nk ¼ Gh jây kð Þâ kð Þ Gj i ¼
Z1

0

dω ~β0;kðωÞ
		 		2¼

Z1

0

dω
ω� kcð Þ2
2πkc

Im ϵðωÞ½ �ω2

ϵ ωð Þω2 � c2k2j j2 ;

ð10Þ

ck/�0 ck/�0

E
k
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Fig. 3 Virtual photons in the detuned Lorentz model. a Number of virtual photons in the ground state as a function of the photonic wavevector for ωc=
0.5ω0 and different values of the losses. The black dashed and dash-dotted lines are the small and large k expansions. b Photonic energy per mode
Ek ¼ �hckNk as a function of the photonic wavevector for ωc= 0.5ω0 and different values of the losses. In both images γL= 0 (thin blue line), 0.5ω0 (solid
cyan line), ω0 (dash-dotted green line), 1.5ω0 (dashed magenta line) and 2ω0 (dotted red line)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01504-5

4 NATURE COMMUNICATIONS |8:  1465 |DOI: 10.1038/s41467-017-01504-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


where Im denotes the imaginary part, and we use Eq. (9) and the
Sokhotski–Plemelj theorem to write

Im ϵ ωð Þ½ � ¼ ω2
cπ ζðωÞj j2
2ω2

: ð11Þ

Comparing Eq. (7) to Eq. (10) we can verify that the ground state virtual photon
population is the square of the mixing coefficient between annihilation and
creation operators. The quantity in Eq. (10) is thus a general measure of the
hybridisation between states with different numbers of excitations, which is the key
ingredient of most ultrastrong-coupling phenomenology25–27.

As detailed below, the expression in Eq. (10) can be calculated through an
integral in the complex plane leading to the result in Eq. (1). Note that the
parameter ωc, which quantifies the light–matter coupling, can be arbitrarily large.
Our approach in fact takes into account the diamagnetic A2 term, forbidding the
onset of superradiant phase transitions in polarisable media69, 70. In order to verify
our results, in the Supplementary Note 2 we compare the dissipationless limit of
Eq. (1) to the formula obtained using the original Hopfield theory valid for
nondissipative systems, showing that the two results coincide. Moreover in the
Supplementary Note 3 we explicitly prove that Eq. (3) is in the form of the
dielectric function in Eq. (9), and we can thus consistently apply it to Eq. (1).

Calculation of the integral in the complex plane. The total number of photons in
the mode k from Eq. (10) can be calculated by noticing that the dielectric function
calculated at a complex frequency Ω satisfies the relation65

ϵðΩÞ ¼ ϵ�ð�Ω�Þ; ð12Þ

and thus if Ωj is a solution of Eq. (2) so are �Ωj;Ω�
j and �Ω�

j . Integrating over a
keyhole contour in the complex plane, and developing the burdensome algebra
paying attention to chose the principal values of Ωj to have the brach cut on the
positive real axis, we arrive at

Nk ¼
R1
0
dω ω�ckð Þ2

2πck
Im ϵðωÞ½ �ω2

ϵðωÞω2�c2k2j j2

¼ P
j

Im
Ω2

j �c2k2

4πc3k2
dΩj

dk iπ � 2 logðΩjÞ
� �h i

� Re Ωj

2c2k
dΩj

dk

h in o
;

ð13Þ

where the sum is only over the solutions in the first quadrant. Using the sum rule65

X
j

Re
Ωj

k

dΩj

dk


 �
¼ c2; ð14Þ

we then arrive to the final result in Eq. (1).

Data availability. The data that support the findings of this study are available
from the author upon request.
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