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Abstract: Microtubules (MTs) are of importance to fiber development. The Xklp2 (TPX2) proteins as
a class of microtubule-associated proteins (MAPs) play a key role in plant growth and development by
regulating the dynamic changes of microtubules (MTs). However, the mechanism underlying this is
unknown. The interactions between TPX2 proteins and tubulin protein, which are the main structural
components, have not been studied in fiber development of upland cotton. Therefore, a genome-wide
analysis of the TPX2 family was firstly performed in Gossypium hirsutum L. This study identified
41 GhTPX2 sequences in the assembled G. hirsutum genome by a series of bioinformatic methods.
Generally, this gene family is phylogenetically grouped into six subfamilies, and 41 G. hirsutum TPX2
genes (GhTPX2s) are distributed across 21 chromosomes. A heatmap of the TPX2 gene family showed
that homologous GhTPX2 genes, GhWDLA2/7 and GhWDLA4/9, have large differences in expression
levels between two upland cotton recombinant inbred lines (69307 and 69362) that are different
in fiber quality at 15 and 20 days post anthesis. The relative data indicate that these four genes
are down-regulated under oryzalin, which causes microtubule depolymerization, as determined
via qRT-PCR. A subcellular localization experiment suggested that GhWDLA2 and GhWDLA7 are
localized to the microtubule cytoskeleton, and GhWDLA4 and GhWDLA9 are only localized to the
nucleus. However, only GhWDLA7 between GhWDLA2 and GhWDLA7 interacted with GhTUA2 in
the yeast two-hybrid assay. These results lay the foundation for further function study of the TPX2
gene family.

Keywords: upland cotton; Xklp2 (TPX2) gene family; gene expression; MAP; protein interactions

1. Introduction

Cotton is a principal source of natural fibers, and cotton fiber development can be divided into four
overlapping stages: Initiation, elongation, secondary wall deposition, and maturation [1]. Fiber cells
which are single-celled trichomes without cell division, provide an excellent biological model for
studying cell elongation and synthesis of secondary cell walls [2]. The microtubule cytoskeleton plays
an essential role in fiber development [3]. The arrangement of the cortical microtubules is associated
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with elongation and synthesis of secondary cell walls of fiber cells [4]. Microtubules (MTs) are mainly
formed by heterodimers of α-tubulin and β-tubulin concatenated end-to-end [5,6]. γ-tubulin is not
a major structural component of microtubules, but can mediate microtubule nucleation at microtubule
organizing centers [7]. Tubulins are involved in the regulation of microtubule assembly and function,
and a reduction of α-tubulin can disrupt the microtubule structure and further cause abnormal cell
expansion [8]. Six α-tubulin genes (TUA), nine β-tubulin genes (TUB), and two γ-tubulin genes have
been discovered in Arabidopsis [9–11]. A study of overexpression of GhTUA9 in fission yeast [3]
showed that GhTUA9 was involved in fiber elongation.

Microtubule-associated proteins (MAPs), which bind to MTs, are involved in MT functions by
regulating microtubule dynamics, organization, and the establishment of polarity, wall construction,
signal transduction and so on [9,12–15]. The orientation and dynamic changes in MTs are controlled by
the interaction between MTs and MAPs. These proteins, such as MAP18, MAP20, MAP65, and MAP70,
suggest that MAPs mediate dynamic changes in microtubule arrays, the material transportation,
and the interaction between MTs and other structures in plant growth and development [14,16–21].
MAP18 regulates cortical microtubule organization by destabilizing associated microtubules to
modulate polar cell growth in vegetative tissues [22]. These critical biological roles indicate that MAPs
are worthy of studying in plants. IQ67 DOMAIN5 (IQD5), as a class of plant-specific MAPs, regulates
MT dynamics that affect MT organization and subsequent cell shape formation in Arabidopsis [23].

The Xklp2 (TPX2) proteins that belong to the MAPs participate in the formation and development
of MTs [24]. TPX2 proteins bind Aurora kinases to regulate spindle formation by the N-terminal Aurora
binding domains, and bind microtubules affect cell division by the C terminus [24]. TPX2 proteins
which contain a highly conserved domain (Pfam:PF06886) are conserved in higher plants. Some TPX2
proteins have been reported, such as TPX2, MAP20, and WDL in plants [25]. The over-expression of
the EgMAP20 gene in Arabidopsis results in organ twisting. EgMAP20 and EgWDL3 were localized to
the microtubule cytoskeleton [26]. During the period of transition of elongation and secondary wall
synthesis, the rate of fiber elongation decreases rapidly [27,28]. During this period, the MTs shift from
transverse to oblique and helical orientations, indicating that MTs play a key role in this process [29,30].
When the growth rate of fiber cell elongation decreases, the orientation of MTs change [31]. However,
the cotton TPX2 genes and the relationship between TPX2 proteins and tubulin are less known,
and this gene family is less understood in cotton (Gossypium hirsutum L). In our study, the authors
analyzed phylogeny relationships, gene structures, chromosomal locations, expression patterns, and
preliminary functional analysis. Further, the authors preliminarily illustrated the relationship between
GhTPX2 proteins and GhTubulins. The information about the GhTPX2 gene family may be useful for
further studies.

2. Materials and Methods

2.1. Plant Material and Abiotic Stress Treatments

Two upland cotton genotypes 69307 with longer and stronger cotton fiber and 69362 with short
and weaker cotton fiber were cultivated under standard field conditions (10 rows, each 8 m long and
0.8 m) in Zhengzhou, China [32,33]. Cotton fibers at 5, 10, 15, 20, 25, and 30 days post anthesis (DPA)
were collected from bolls for extraction of RNA. Cotton bolls were harvested at 0 DPA for ovule culture
in vitro, surface sterilized with 75% (v/v) ethanol for 10 min, and immersed into 95% (v/v) ethanol for
5 s, then flamed briefly using an alcohol lamp. The ovules were cultured on a BT medium [34]. Ovules
were transferred to the medium containing 10 µM oryzalin for 8 days after 10 days of cultivation.
This study used 0.1% (v/v) dimethyl sulfoxide (DMSO) as the solvent control. MTs in cultured ovule
fibers were observed by confocal microscopy, and cotton fibers were collected from ovules for RNA
extraction. Nicotiana benthamiana plants were grown in the greenhouse with a 16 h light/8 h dark cycle
at 22 ◦C, and 60% relative humidity light intensity of 100 120 µmol·m−2

· S−1.
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2.2. Identification and Sequence Retrieval of TPX2 Genes

This study identified the plant TPX2 (PF06886) gene family members using the hidden Markov
model profile of the HMMER3.0 program [35] using the published genomes of the following seven
species: Arabidopsis thaliana [36], Theobroma cacao [37], Populus trichocarpa [38], Gossypium hirsutum [39],
and Gossypium raimondii [40], Gossypium barbadense [39], and Gossypium arboretum [41]. The Blastp
program with AtTPX2 sequences as the query was used (e-value of 10−5), and SMART (http://smart.
embl-heidelberg.de/) database were used to remove the redundant sequences. These GhTPX2 genes
were named following a similar nomenclature approach [42].

2.3. Phylogenetic Tree Construction

The plant TPX2 sequences containing seven plant species, A. thaliana, T. cacao, P. trichocarpa,
G. hirsutum, G. raimondii, G. barbadense, and G. arboreum, were aligned using the ClustalW program.
A neighbor-joining (NJ) phylogenetic tree was constructed using the MEGA6.06 program [43] with
1000 bootstrap replicates.

2.4. Gene Expression Analysis

The RNA-seq data of seven different tissues (root, stem, leaf, flower, ovule, seed, and fiber) from
G. hirsutum TM-1 was downloaded from NCBI Gene Expression repository (https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA248163/). The RNA-sequencing data for various stages of fiber development
from two upland cotton lines 69307 and 69362 (10, 15, 20, 25, 30 DPA) were downloaded from the NCBI
Gene Expression repository (http://www.ncbi.nlm.nih.gov/bioproject/PRJNA508480) [32]. The SRA
data was converted to a fastq format using the SRA Toolkit with the –split-3 parameter. The reference
genome sequences for G. hirsutum were downloaded (https://www.cottongen.org/) [39], and were
used to construct libraries with the Bowtie2 program [44]. The fastq data were inspected using the
FastQC program and mapped to the G. hirsutum genomes with the default parameters of the TopHat2
program [45]. The FPKM values of TPX2 genes were calculated using the Cufflinks program [46],
with BAM files sourced from TopHat2 and the parameters, –library-type and fr-unstranded (Table S3).
The gene expression data (FPKM) were divided by the mean of all the values, then were normalized
with the log2 (FPKM+1) method to calculate the expression levels. Gene expression patterns between
different fiber developments were visualized with heat maps using the R (3.3.0) software package
(https://CRAN.R-project.org/package=pheatmap).

2.5. Gene Structure Conserved Motifs Analysis and Chromosomal Localization

This study obtained the structural information of the GFF3 files of TPX2 genes. Exons and
introns of G. hirsutum TPX2 family genes were predicted using Gene Structure Display Server2.0
(http://gsds.cbi.pku.edu.cn/) [47]. The online program MEME (http://meme-suite.org/) was used to
identify the conserved motifs in TPX2 genes with the following parameters: 15 motifs and a motif
width of 6–50 amino acids [48]. The chromosomal distribution of the TPX2 genes was confirmed based
on genome annotations. Mapchart 2.2 software was used to visualize the distribution of the TPX2
genes on the G. hirsutum chromosomes [49].

2.6. RNA Isolation and the qRT-PCR Analysis

The total RNA was extracted from the cotton fiber using the RNA simple Total RNA Kit (BioTeke,
Beijing, China). The quality of RNA was detected using a NanoDrop 2000 spectrophotometer.
All samples were stored in liquid nitrogen and maintained at –80 ◦C. Then, using the RNA as the
template, every sample contained 1 µg RNA. Following this, the cDNA was reverse transcribed using
a First Strand cDNA Synthesis Kit (Takara Biotechnology Co, Ltd., Dalian, China). The gene-specific
primers used for qRT-PCR were designed with a primer database (http://biodb.swu.edu.cn/qprimerdb).
(Table S4). The authors used the GhHistone3 gene as an internal control, and a total volume of 20 µL
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that contained 0.4 µL of each primer (10 µM), 2 µL cDNA, 10 µL SYBR Premix Ex Taq (2×), and ddH2O
to make up the volume used to perform qRT-PCR with three biological and technological replicates on
a LightCycler480 system (Roche) using SYBR Premix Ex Taq (Takara). The reaction parameters were
as follows: 95 ◦C for 5 min, 40 cycles of 95 ◦C for 10 s, 60 ◦C for 10 s, and 72 ◦C for 10 s, followed by
a melt carve from 60 to 95 ◦C, which was executed in a 96-well plate. The gene relative expression
levels were calculated using the 2−44Ct method [50].

2.7. Subcellular Localization of TPX2 Proteins

The coding sequence (CDS) of GhWDLA2, GhWDLA4, GhWDLA7, and GhWDLA9 were amplified.
Then recombinant plasmids (GhWDLA4-GFP, GhWDLA9–GFP, GhWDLA7-GFP, and GhWDLA2-GFP)
were generated using In-fusion cloning technology, and transformed into Agrobacterium (GV3101).
A confocal microscope (OLYMP-USFV1200) with excitation at 514 nm, and scanning at 520–555 nm
was used to observe three-week-old tobacco leaf epidermal cells, 48 to 72 h after infiltration [51].

2.8. Gene Duplication and Selection Pressure

This study used an all-versus-all BLASTp search (e-value < 10−5) to detect orthologous and
paralogous gene pairs using the MCScan program [52,53]. The circos program [54] was used to
visualize the circular maps of the gene pairs. The genes that were separated by five or fewer genes
in 100-kb chromosome fragment were regarded as tandem duplicated genes [55]. Non-synonymous
Substitution Rate/Synonymous Substitution Rate (Ka/Ks) of selected homologous genes were calculated
using the PAL2NAL web server (http://www.bork.embl.de/pal2nal#RunP2N).

2.9. Yeast Two-Hybrid (Y2H) Assay

The Y2H system [56] was used to detect the interactions between TPX2 proteins and tubulin
proteins. Generally, the open reading frame (ORFs) of GhWDLA4, GhWDLA9, GhWDLA7, and GhWDLA2
were constructed into a prey vector, pGADT7. The coding sequence of TUA2 and TUA9 which were
preferentially expressed in fiber, were constructed into a bait vector, pGBKT7. The constructed vectors
in the appropriate combinations were transformed into yeast cells. The transformed yeast cells were
transferred to the quadruple dropout medium: SD/–Ade/–His/–Leu/–Trp supplemented with X-a-Gal
and Aureobasidin A (QDO) to detect the pair-wise interactions.

3. Results

3.1. Identification of TPX2 Genes in the G. hirsutum Genome

A total of 170 TPX2 protein sequences from seven species were identified (Additional File 1) after
removing redundancy sequences. This study identified 41 genes whose protein sequences have TPX2
(PF06886) domains from G. hirsutum. Among the 41 GhTPX2 genes, 20 genes were from the At genome
and 21 genes were from the Dt genome. Further, 41 genes were identified from G. barbadense, 21 genes
from G. aboreum, and 21 genes from G. raimondii. The number of tetraploid TPX2 cotton genes is
approximately twice as many as diploid cotton genes, which suggests that there is no TPX2 cotton
gene loss after ployploidization. The coding lengths of G. hirsutum, G. aboreum, and G. raimondii of
TPX2 genes ranged from 450 to 2466 bp. The encoded protein sequences of TPX2 proteins ranged from
149 to 821 amino acids. Except for GhWDLC1, GaWDLB2, and GrWDLC5, the predicted isoelectric
point (pI) of all TPX2 proteins were more than seven. This indicates that cotton TPX2 proteins are rich
in basic amino acids (Table S1).

3.2. Bioinformatic Analysis of Plant TPX2 Family Proteins

In total, 170 TPX2 genes were confirmed in the genomes of G. hirsutum, G. barbadense, G. arboreum,
G. raimondii, T. cacao, P. trichocarpa, and A. thaliana. A multiple alignment analysis was performed
using the neighbor-joining method. A phylogenetic tree was constructed to study the evolutionary
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relationships (Figure 1, Additional file 2). The TPX2 protein sequences were clustered into six main
groups which were similar to previous studies [26]. According to a previous study, Clades 1–3 were
separately named MAP20 (Clade1), MAP20L (Clade2), and TPX2 (Clade3) [57–59]. As clades 4–6 mainly
contain WDL proteins, the number of cotton family members is higher than AtPTX2. Therefore, the
authors named these clades WDLA (Clade4), WDLB (Clade5), and WDLC (Clade6) to distinguish the
different subfamilies. All these sequences have the TPX2 domain, which can interact with microtubules,
and influence microtubule dynamics or assist with different microtubule functions [24]. The WDLB
subgroup (Clade 4) has the largest number of members. The MAP20 subgroup (Clade 1) has the
fewest members. Notably, among these seven species, every species contains six subfamily numbers
(Clade1–6).
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3.3. Gene Structure Conserved Motifs Analysis

This study analyzed the exons and introns arrangement to further investigate the phylogenetic
relationships among different members of the TPX2 gene family. The TPX2 family has different gene
lengths in the subfamilies. The gene length of GhMAP20_1 is the shortest (1700 bp), and the gene length
of GhWDLC6 is the longest (6700 bp). There was a considerable difference in the exon-intron structure
between different groups. Most of the genes had six to nine exons and some genes had 19 exons
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(Figure 2). The MEME program was used to identify 20 conserved motifs (Figure 2). Motif 1 and 2
compose the TPX2 domain. Every GhTPX2 member has motif 1 and 2. Motif 12 has a copper fist DNA
binding domain. All subfamily (clade 4) members except GhWDLA2 and GhWDLA7 contain motif12.
Some GhTPX2 genes have different motif structures, however, most homologous GhTPX2 genes
have the same motif structure, such as TPX2_1/TPX2_3, GhWDLA2/GhWDLA7, GhWDLA4/GhWDLA9,
and GhMAP20_1/GhMAP20_2. Most members from the same subfamily have similar motif features,
exon-intron structure, and gene length, supporting the close evolutionary relationships.
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GhTPX2 family: (a) A neighbor-joining phylogenetic tree created using the MEGA6 program: (b) Gene
structure analysis of GhTPX2 genes, and (c) conversed protein motifs.

3.4. Chromosomal Location, Gene Duplication, and Selection Pressure

Among 41 GhTPX2 genes, 20 and 21 genes are localized to the 11 chromosomes from At subgenome
and 12 chromosomes from Dt subgenome, respectively. Almost, all of TPX2 are located on the proximate
or the distal ends of the chromosomes (Figure 3). Among the 21 chromosomes, most chromosomes
have one or two TPX2 genes. However, chromosomes A03 and D02 have four genes. It can be inferred
that genetic variation existed in the progress of evolution, evidenced by this unbalanced distribution of
the GhTPX2 genes on the chromosomes. During the gene family evolution, tandem duplication and
segmental duplication contributed to the generation of the gene family to some extent [60]. Our data
showed that all members of TPX2 genes expanded only by segmental duplication (Table S2). This result
suggests that segmental duplication played a key role in the evolutionary progress of the TPX2 gene
family. Circular maps were used to visualize the syntenic relationships among G. arboretum, G. raimondii,
and G. hirsutum (Figure 4). The Ka:Ks ratio were used to assess whether homologous genes were
under positive selection pressure (Ka:Ks > 1) or purifying selection pressure (Ka:Ks < 1). Therefore,
PAL2NAL was used to calculate the Ka:Ks ratio of the TPX2 gene family. The ratios for TPX2 genes
were lower than one, which indicates that purified selection was crucial to these homologous gene
pairs (Table S2).
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3.5. Expression Analysis of TPX2 Family Genes in Cotton

To understand the specific functions of TPX2 genes in fiber development, this study performed
the expression patterns analyses. Firstly, the RNA-sequencing data that were downloaded were used



Genes 2019, 10, 508 8 of 16

to detect the expression profiles of 41 TPX2 genes in different tissues (root, stem, leaf, flower, ovule, and
fiber) using a heatmap that was generated using the R (3.3.0) software package. As shown in Figure 5a,
GhWDLA4, GhWDLA6, GhWDLA9, GhWDLA7, GhWDLA2, GhWDLB1, GhWDLB9, and GhWDLB4 had
higher expression levels in fibers relative to the other tissues. Secondly, a transcriptome analysis of
the TPX2 genes was performed using the RNA-seq data for different stages of fiber development for
G. hirsutum (69307 and 69362). The expression patterns of genes provide distinct clues to functional
divergence. A heatmap was used to display the TPX2 gene expression patterns during different fiber
developments for 69307 and 69362 (Figure 5b). The analysis revealed that most of the genes from the
WDLA and WDLB subfamilies had high expression levels. Among them, only GhWDLA4, GhWDLA9,
GhWDLA7, and GhWDLA2 had obvious differences at different stages of fiber development, and they
were all highly expressed at 20 DPA, which was a critical time for fiber strength in 69307 compared to
69362. The expression levels of the four genes at 20 DPA were approximately double at 15 DPA and 25
DPA in 69307. However, this phenomenon was not observed in 69362. The data suggest that these
genes have a high expression level at 20 DPA in 69307. This study also analyzed the expression level of
tubulin genes, which were described previously [3,61]. A heat map showed that GhTUA2, 4, 9, and 10
had a high expression level in 69307 at 20 DPA compared to 69362. This implies that these genes may
also be related to secondary cell wall biosynthesis (Figure 5c).
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The expression levels of GhWDLA4, GhWDLA9, GhWDLA7, and GhWDLA2 in different fiber
developments for 69307 and 69362 were detected using qRT-PCR. As shown in Figure 6, the relative
expression data showed that the expression levels of GhWDLA2, GhWDLA7, GhWDLA4, and GhWALA9
were the highest at 20 DPA in 69307 and 69362.
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3.6. Expression Profiles of TPX2 Genes under Abiotic Stresses

As shown in Figure 8a, most fiber microtubules grown in BT medium containing oryzalin
were destroyed. Oryzalin is a kind of microtubule-disrupting agents that cause microtubule
depolymerization [62]. The expression of the four genes after microtubule depolymerization was
further tested. The relative expression data suggest that treatment with oryzalin results in a different
degree of reduction in the expression levels of the four genes (Figure 7b).
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are shown against the reference gene GhHistone3. The error bars represent the standard deviations of
three experiments.
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3.7. Subcellular Localization of TPX2 Proteins

Considering the structure and expression patterns of these genes, this study performed the
subcellular localization of selected TPX2 proteins in G. hirsutum. The green fluorescent protein
(GFP)-tagged TPX2 proteins were temporarily expressed in tobacco leaf epidermal cells, and
visualized by a confocal laser-scanning microscope. As shown in Figure 6a,b, GFP-GhWDLA4,
and GFP-GhWDLA9 were only located in the nucleus. The net-like structures throughout the leaf
epidermal cell indicate that GFP-GhWDLA2 and, GFP-GhWDLA7 are exclusively distributed along
the MT cytoskeleton (Figure 8c,d).
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3.8. Interactions Between TPX2 Proteins and Tubulins

As α-tubulin and β-tubulin are the principle components of microtubules, and Xklp2 (TPX2)
proteins are a kind of microtubule-associated protein. These two genes that are specifically localized to
the microtubule cytoskeleton were examined to determine if they could interact with tubulins (GhTUA2,
9,) which were found to be preferentially expressed in fibers at 20 DPA for 69307 using a pair-wise
interaction in the Y2H assay. As shown in Figure 9, yeast cells containing pGADT7::GhWDLA7 and
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pGBKT7::GhTUA2 produced blue coloration on the medium: SD/–Ade/–His/–Leu/–Trp supplemented
with X-a-Gal and Aureobasidin A. This indicates that this combination interacts.
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4. Discussion

The Xklp2 (TPX2) proteins that belong to the microtubule-associated family of proteins can interact
with microtubules to regulate microtubule dynamics or assist with different microtubule functions [26].
Microtubule-associated proteins (MAPs) specifically bind to the MT cytoskeleton to regulate their
dynamic changes and be involved in MT functions [63]. As a class of MAPs, Xklp (TPX2) proteins
considerably affect plant growth and development [39]. Although the whole-genome sequences of
upland cotton were determined, a genome-wide analysis of TPX2 gene family had not been performed
in cotton [39]. Our study identified 41 GhTPX2 genes in the AD1 genomes, 41 GbTPX2 genes in AD2
genomes, 21 GaTPX2 genes in A genomes, and 21GrTPX2 genes in the D genomes. These results
suggest that the loss of TPX2 genes did not occur in allotetraploid G. hirsutum, which is not consistent
with the higher rate of gene loss in allotetraploids [64,65]. This result may indicate that TPX2 genes
are conserved. According to the AtTPX2 genes, 170 genes from seven different species are divided
into six subfamilies which is similar to the previous classification in Arabidopsis [26]. Every species
contains six subfamily genes for further identifying the conservation. The similar arrangements of
exons, introns, and motifs in the same family further prove the correctness of the TPX2 classifications.
Most genes have six exons but some genes have more than six exons, which suggest that TPX2 genes
may have different regulatory mechanisms (Figure 2).
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The expression profiling in six different tissues show that GhWDLA4, GhWDLA6, GhWDLA9,
GhWDLA7, GhWDLA2, GhWDLB1, GhWDLB9, and GhWDLB4 have higher expression levels in fibers
relative to the other tissues, which suggests that these genes are preferentially expressed in fiber and
may potentially function in fiber development (Figure 4a). The expression levels in different fiber
developments suggest that GhWDLA4, GhWDLA9, GhWDLA7, and GhWDLA2 are highly expressed at
20 DPA, especially in 69307. Fibers rapidly elongate during 5–20 DPA and during the late stage of
fiber elongation. The onset of secondary cell wall biosynthesis occurs approximately from 16–21 DPA,
depending on the cotton species and the environment [66]. Further, 18–21 DPA is key for cell wall
remodeling and synthesis of the winding layer [67,68]. Therefore, these genes were regarded as highly
expressed genes in 69307 at 20 DPA, an important time for fiber secondary wall synthesis. Consequently,
it is assumed that these genes may be involved cell secondary wall synthesis to influence fiber strength
by the interaction with MTs (Figure 4b).

According to qRT-PCR, GhWDLA2 and GhWDLA7 expression reached the highest level at 20 DPA
in 69307. GhWDLA4 and GhWALA9 had low expression levels, but still reached the highest level at
20 DPA in 69307. This is generally consistent with RAN-seq data. However, the expression levels of
GhWDLA4 and GhWALA9 were not completely consistent with RNA-seq data. The difference may
be induced by various factors. These four genes were all from of GhWDLA (clade 4), which suggest
that this subfamily may play a critical role in fiber development. The relative expression levels of
these four genes are down-regulated after microtubule depolymerization, which might further suggest
an interaction between these genes and microtubules (Figure 8). TPX2 has been shown to localize to
the microtubules in the interphase, and it may decorate other microtubule arrays during the other
stages of plant cell division [26]. Therefore, this study investigated the subcellular localization of these
four genes in epidermal cells of tobacco leaf, and found that homologous GhWDLA4/9 was expressed
in the nucleus and homologous GhWDLA2/7 was specifically localized to the MT cytoskeleton. Thus,
the authors assume that GhWDLA2, and GhWDLA7 genes may be involved in fiber secondary cell wall
synthesis to influence fiber strength by the interaction with MTs. Compared with 69362, GhTUA2,
4, 9, and 10 are highly expressed at 20 DPA in 69307, which is an important time related to fiber
strength with longer and stronger cotton fiber, which indicates that they may be related to fiber strength.
The expression patterns of these genes are similar to GhWDLA2, 4, 7, and 9. Additionally, the related
data indicated that GhTUA2 was expressed until 20 DPA [69]. GhTUA2/9 forms a distinct branch on
the phylogenetic tree and GhTUA9 may affect fiber elongation [3]. Therefore, the Y2H assay with
different combinations between GhWDLA2/7 and GhTUA2/9 was performed. The Y2H assay showed
that GhWDLA7 interacted with GhTUA2, but not with GhTUA9. Our results suggest that GhWDLA7
may be involved in the regulation of fiber strength through interaction with GhTUA2. Although,
GhWDLA2 and, GhWDLA7 are localized to microtubules, only GhWDLA7 interacted with GhTUA2 in
the Y2H assay. This difference may be caused by other reasons. This result indicates that although these
proteins are relatively conserved, the potential regulatory mechanisms of these genes are different.

5. Conclusions

This study performed a genome-wide analysis of the phylogeny of the TPX2 gene family in upland
cotton. The expression patterns in different fiber development stages for two upland cotton lines
(69307 and 69362) that have different fiber quality indicated that GhWDLA2, GhWDLA7, GhWDLA4,
and GhWDLA9 might be involved in fiber cell wall synthesis. Relatively, expression levels after
microtubule depolymerization suggest that these genes are closely related to microtubules. However,
only GhWDLA2, and GhWDLA7 were found to be localized to microtubules through a subcellular
localization experiment. Our Y2H assay and previous studies indicate that GhWDLA7 might play
a functional role in cell wall synthesis by interacting with GhTUA2 to influence microtubules and may
ultimately affect fiber strength. These findings facilitate further investigations in the fiber development
of G. hirsutum.
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