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Inferring neutral biodiversity 
parameters using environmental 
DNA data sets
Guilhem Sommeria-Klein1, Lucie Zinger1, Pierre Taberlet2, Eric Coissac2 & Jérôme Chave1

The DNA present in the environment is a unique and increasingly exploited source of information for 
conducting fast and standardized biodiversity assessments for any type of organisms. The datasets 
resulting from these surveys are however rarely compared to the quantitative predictions of biodiversity 
models. In this study, we simulate neutral taxa-abundance datasets, and artificially noise them by 
simulating noise terms typical of DNA-based biodiversity surveys. The resulting noised taxa abundances 
are used to assess whether the two parameters of Hubbell’s neutral theory of biodiversity can still be 
estimated. We find that parameters can be inferred provided that PCR noise on taxa abundances does 
not exceed a certain threshold. However, inference is seriously biased by the presence of artifactual 
taxa. The uneven contribution of organisms to environmental DNA owing to size differences and 
barcode copy number variability does not impede neutral parameter inference, provided that the 
number of sequence reads used for inference is smaller than the number of effectively sampled 
individuals. Hence, estimating neutral parameters from DNA-based taxa abundance patterns is possible 
but requires some caution. In studies that include empirical noise assessments, our comprehensive 
simulation benchmark provides objective criteria to evaluate the robustness of neutral parameter 
inference.

The observation of biodiversity patterns such as the diversity, relative abundance and spatial distribution of 
organisms underpins much of ecological theory1–3. Yet empirical measurements of these patterns are noisy. In all 
cases, some taxa are counted more effectively than others, and error is generated by misidentification. A major 
question is whether this noise is significant enough to undermine comparisons between empirical measurements 
and models4,5. This issue has recently taken on new significance following the advent of DNA-based biodiver-
sity exploration methods, which are developing fast and hold the promise of rapid, repeatable and comprehen-
sive biodiversity measurements6,7. Yet they are also less direct than classic biodiversity surveys and entail poorly 
assessed noise sources. In this study, we ask how the parameter estimates of Hubbell’s neutral theory, one of the 
most prominent quantitative biodiversity models of the last decade3,8,9, are affected by noise in taxa-abundance 
datasets. We focus on the type of noise generated in DNA-based surveys, and specifically in DNA metabarcoding 
surveys (see below)6, currently the most popular method for environmental DNA analysis. Nevertheless, our 
results can apply more generally.

DNA metabarcoding is a multi-taxa extension of the DNA-based identification of single specimen from tissue 
samples using a universal DNA-barcode sequence10. It consists in amplifying a short DNA barcode by PCR from 
the DNA extracted from an environmental sample (e.g. soil, water, bulk sample of organisms), and sequencing 
the product by high-throughput sequencing. This method is not restricted to the detection of known taxa and 
hence allows for comprehensive biodiversity measurement. DNA metabarcoding was initially developed to study 
bacterial communities11–14, but has since been extended to many other groups including archaea15 and eukaryotic 
clades (e.g. plants, earthworms, insects, fungi16–19). It is hence now possible to study patterns of diversity across all 
domains of life20,21. However, DNA metabarcoding observations have seldom been compared to the predictions 
of biodiversity models3,22.

Over the past decade, the neutral theory of biodiversity has represented a significant advance in interpret-
ing empirical biodiversity patterns within an ecological guild3,8,9. Hubbell’s neutral model is simple, easily gen-
erates biodiversity patterns, allows for exact maximum-likelihood parameter inference from taxa-abundance 
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distributions, and neutral predictions on taxa-abundance distributions compare well with empirical surveys23–25. 
In Hubbell’s model, sites vacated by the death of an individual are replaced by the offspring of local individuals 
or by immigrants. Birth, death and immigration all occur irrespective of the taxon the organism belongs to (neu-
trality hypothesis). Immigrants are drawn from a much larger (regional) pool of individuals, and the addition of 
new taxa in the regional pool is made possible by (rare) speciation events. Hubbell’s model has two parameters: θ 
describes the taxon diversity of the regional pool, and m is the immigration rate from the regional pool into the 
sampled community (see Supplementary Note 1).

The predictions of Hubbell’s neutral model have so far been primarily compared to integrative patterns 
obtained for macroorganisms using classic census data, such as the abundance distribution of tropical forest 
trees3. Some studies have also applied neutral models to environmental DNA data to interpret the composition of 
microbial communities. Sloan et al.26,27 and Woodcock et al.28 developed a continuous approximation to Hubbell’s 
model adapted to large-sized bacterial populations. They focused on estimating the rate of immigration into the 
local community independently of assumptions on the regional pool of taxa, by comparing taxa occurrence in 
multiple samples26,29–32 or by measuring the turnover of taxa over time33. The composition of many microbial 
communities was found to be compatible with stochastic immigration of taxa of equivalent fitness from a regional 
pool, at odds with the classic assumption that deterministic niche sorting explains the assemblage of microbial 
communities34,35. Another approach is to simultaneously estimate the diversity and immigration parameters by 
fitting the taxa-abundance distribution, as it has been commonly done for classic censuses of macroorganisms. 
Dumbrell et al.36 and Lee et al.37 did so on fungal and bacterial DNA data using maximum-likelihood parame-
ter inference based on the exact Etienne sampling formulas23,38,39, while Harris et al.40 followed an approximate 
Bayesian approach inspired by the field of machine learning.

Most DNA-based studies comparing empirical abundance patterns to the predictions of neutral models 
have been limited by the poor detectability of rare taxa owing to the methods used (Sanger sequencing, DGGE, 
t-RFLP, ARISA). High-throughput sequencing now allows for improved sampling and provides better quality 
data. Nevertheless, metabarcoding data are not directly comparable with classic census data owing to both exper-
imental and biological factors. First, both PCR amplification and sequencing produce artifacts. During the PCR 
amplification, DNA polymerase makes mistakes when replicating DNA strands, at a rate that depends on enzyme 
types. DNA strands suffer further damage during the high-temperature denaturation step41–43. Furthermore, 
Illumina sequencing generates between 10−3 and 10−2 errors per base pair44. Clustering algorithms are used to 
cluster the reads displaying errors with respect to the original sequence into a single Molecular Operational 
Taxonomic Unit (MOTU)45–47. While these approaches strongly reduce the number of artifacts in the data, they 
do not exclude artifactual MOTUs that are more difficult to detect (e.g. chimerical fragments, highly degraded 
sequences). Second, unbalanced PCR amplification and sequencing among taxa distorts the relative abundances 
of MOTUs48–51. Third, relative abundances are further biased by noise sources inherent to the use of DNA bar-
codes, such as the strong variability of the barcode copy number among taxa52,53. This problem is even more seri-
ous for multicellular organisms because the read count should also depend on cell abundance. Abundances are 
further biased by the variable rate of DNA release into the environment through excreted, sloughed or decaying 
material54–56.

In this paper, we conduct simulations to address how the sources of uncertainty mentioned above may 
distort parameter estimates in Hubbell’s neutral theory, and we discuss the conceptual differences between 
individual-based and environmental DNA approaches to the measurement of biodiversity. We ask the following 
questions: (1) what is the effect of artifactual MOTUs and abundance noise on estimating the neutral diversity 
parameter? (2) Can we use the same approach for multicellular as for unicellular organisms? (3) What are the 
effects of the different noise sources on neutral parameter inference when accounting for dispersal limitation?

Methods
Sampling from Hubbell’s neutral model. We generated samples of J individuals following the stationary 
taxa-abundance distribution of Hubbell’s neutral model. The immigration from the regional pool of diversity 
parameter θ into the sampled community can be either characterized by the immigration rate m or by the normal-
ized immigration parameter = −

−
I J( 1)m

m1
 that does not depend on the sample size J and is thus invariant by 

sampling. If m ≪  1, I is approximated by the product Jm, noted NTm in Sloan et al.26,27.
We first assumed no dispersal limitation (i.e. m =  1). We generated a sample by running J times the follow-

ing algorithm parameterized by θ: at step j, draw individual j +  1 from a new taxon with probability θ/(j +  θ), 
or draw one of the j individuals already present and add an individual j +  1 of the same taxon. This algorithm, 
due to Hoppe57, partitions J individuals into a random number T of taxa according to the Ewens distribution of 
parameter θ 58.

We then generated samples from a dispersal-limited neutral community using the two-step procedure pro-
vided in Etienne23 which partitions J individuals into a random number T of taxa. First, we run J times Hoppe’s 
algorithm as described above but with parameter I, so as to partition the J individuals into A immigrating ances-
tors. Second, we run A times the algorithm with parameter θ, so as to partition the A immigrating ancestor into 
T taxa, thus taking into account the taxa-abundance distribution in the regional pool. Finally, we assign the J 
individuals to the taxonomic identity of their immigrating ancestor.

We generated samples of J =  105 individuals. We explored a realistic range of parameter values: θ in [1, 500] 
and m in [0.001, 1].

Simulating noise in DNA sequence reads: experimental noise. We simulated the DNA metabar-
coding procedure by sampling N sequence reads from the relative taxa abundances of the neutral model, possibly 
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after modifying the relative abundances according to simulated noise sources (see below). We present the results 
obtained for the value N =  104, a typical number of Illumina sequence reads for one environmental sample.

In order to test the effect of misidentification bias on neutral parameter inference, we added artifactual 
MOTUs to the data, while keeping the number of reads constant. We assumed that each true MOTU with a read 
abundance r generates a random number of artifactual MOTUs, drawn from a multinomial distribution with 
weight r. We added either singletons, or MOTUs with larger read abundances. We obtained an example of artifac-
tual MOTUs with realistic abundance structure from a benchmark experiment (see below and Supplementary 
Methods). Drawing on these empirical data, we simulated read abundances in the following way: each artifactual 
MOTU was assumed to have an abundance of 1 read if r <  50, or an abundance x if r ≥  50, where x lies between 1 
and r/50 with a probability density =p x( )

r x
1

log( /50)
.

Molecular experimental procedures introduce biases also in read abundances, because the efficiency of PCR 
amplification and sequencing is variable across MOTUs. For instance, PCR amplification is less efficient if PCR 
priming sites differ from the primer sequence48, or if the barcode sequence is too long or GC-rich50. As a result, 
the read abundance distribution of MOTUs is noised with respect to the DNA barcode abundance distribution in 
the sample. We assumed that the noise takes the form of a lognormally distributed multiplicative noise on relative 
abundances, with mean 1 and log standard deviation σlog. This choice is parsimonious because this noise is pre-
dominantly due to PCR50, and the multiplicative amplification of DNA strands by PCR generates a multiplicative 
noise on abundances. This multiplicative noise can be further assumed to result from the product of random 
independent variables and thus to be lognormally distributed by virtue of the central limit theorem. We tested 
the effect of noise intensity σlog on neutral parameter inference. For completeness, we also tested the effect of an 
additive Gaussian noise of standard deviation σadd on MOTUs relative abundances, for different σadd values. This 
type of noise can be regarded as simulating the noise generated in the sequencing step.

To illustrate our modelling choices with empirical data, we produced a benchmark dataset obtained by mixing 
the DNA of 16 plant species in known quantities. The experiment and its results are detailed in the Supplementary 
Methods. After following standard data curation protocols, we found that the dataset contained 33% of artifactual 
MOTUs and displayed a lognormally distributed multiplicative noise on relative abundances of log standard devi-
ation σlog =  1.2. We reported these values on the figures as examples of realistic noise intensities.

Simulating noise in DNA sequence reads: ‘biological’ noise. Irrespective of experimental noise, var-
iability in the number of barcode copies per individual may cause bias in the interpretation of read abundances. 
For bacteria (16S rDNA) or protists (18S rDNA), barcode copy number variability in nuclear DNA is an impor-
tant contribution to abundance noise52,53: Kembel et al.52 found that the barcode copy number of the 16S rDNA 
gene follows a zero-truncated Poisson distribution of parameter λ =  4 across a range of bacterial clades. For 
multicellular eukaryotes, organellic barcodes are typically used, and they similarly display variable copy numbers 
per cell across taxa and tissue types. To assess this issue, we tested how a zero-truncated Poisson-distributed mul-
tiplicative noise affects neutral parameter inference, for various values of the parameter λ. The intensity of this 
noise is measured by the coefficient of variation (i.e., standard deviation over mean) of the zero-truncated Poisson 
distribution. Since it reaches a maximum at λ =  1.8, noise intensity is maximal for this value.

For multicellular organisms, the variability in the number of barcode copies per individual is further amplified 
because the number of cells may vary vastly across individuals, owing to body-size differences. We simulated size 
differences between individuals following a simple and generic approach. As in O’Dwyer et al.59, we assumed that 
all individuals, irrespective of the taxon they belong to, grow in size over time at a constant rate g from an initial 
number of cells n0 at birth, and die at a constant rate d. The stationary probability density pind(n) of having a num-
ber n of cells for a randomly chosen individual is given by the solution of the von Foerster equation59: 

= − −p n n n( ) exp( ( ))ind
d
g

d
g 0  (see Supplementary Note 2). We used this distribution to draw a number n of cells 

between n0 and infinity for each individual, and modified the MOTUs relative abundances accordingly. Note that 
we simulated size differences between individuals and not between taxa, which would have been akin to simulat-
ing a multiplicative noise on taxa abundances as above. We tested the effect on neutral parameter inference for a 
range of values of + 1g

dn0
, the ratio of the mean cell number + ng

d 0 divided by the initial cell number n0. Noise 
intensity is measured by the coefficient of variation + n1/(1 )d

g 0  of the probability density pind(n). It is bounded by 
1 for 

 1g
dn0

, which corresponds to the case of taxa spanning large ranges of body sizes, such as trees or 
vertebrates.

Organisms may be entirely contained in the environmental sample if they are sufficiently small, or when DNA 
is extracted from a mixture of directly sampled live organisms, such as insects from a light trap (bulk samples)18. 
However, in most cases, only small fractions of these organisms are sampled (e.g. roots, pollen, seeds, spores, 
faeces, and different secretion types), or even only extracellular DNA resulting from cell death and subsequent 
destruction of cell structure6,60. Thus, the abundance distribution of environmental DNA also depends on the 
kinetics of DNA release and degradation in the environment. We assumed that this dynamics is fast with respect 
to changes in community composition, so that the ‘stock’ of environmental DNA is in a steady state. Under this 
assumption, the rate of DNA release through the death of organisms is roughly proportional to the total num-
ber of cells of the currently living individuals. In addition, the rate of environmental DNA release by a living 
organism reflects its metabolic rate and we assumed it to scale as the power 3/4 of body mass (or cell number), as 
predicted by the metabolic theory of ecology61. DNA degradation rate was assumed uniform across individuals. 
Even though we focus here on multicellular organisms, unicellular organisms do excrete DNA material and differ 
in metabolic rates as well.

Based on the assumptions of the previous paragraph, we simulated the abundance distribution of environ-
mental DNA as follows. We (1) generated a neutral sample of individuals, (2) assigned a number of cells n 
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between n0 and infinity to each individual as above, (3) counted a first contribution dn of each individual to the 
stock of environmental DNA, with d the death rate, (4) and counted a second contribution r0n3/4 of each individ-
ual to the stock of environmental DNA, with r0 the rate of DNA release for a hypothetical one-cell individual. 
Thus, environmental DNA abundance per individual is proportional to +n nr

d
3/40  rather than n. We tested the 

effect on neutral parameter inference by varying r
d
0 , the parameter controlling the relative contribution of living 

and dead organisms to environmental DNA.

Estimating the neutral model parameters from the taxa-abundance distribution. We estimated 
the parameters of Hubbell’s neutral model by maximum-likelihood inference from the simulated taxa-abundance 
distribution for a number of simulated noise sources. To test the influence of noise, we compared the estimated 
parameter values θ̂ and Î  with the values of θ and I used to generate the initial samples of individuals. For each set 
of parameters and noise intensity, we generated 100 simulated samples. We reported the mean and standard devi-
ation of the relative biases θ θ θ−ˆ( )/  and Î Ilog ( / )10  over the 100 realizations.

In the absence of dispersal limitation, the Ewens distribution permits the inference of θ by likelihood maximi-
zation. The maximum-likelihood estimator of θ, hereafter referred to as the Ewens estimator, is implicitly given 
by θ θ= ∑ +=

− ˆ ˆT j/( )j
J

0
1  as a function of the number T of taxa and the number J of individuals58. In the 

dispersal-limited case, the Etienne distribution provides an exact likelihood expression for the simultaneous 
inference of θ and I23, as implemented in the software Tetame62. As noted previously in the literature, the likeli-
hood landscape of the Etienne formula often displays two local maxima25,63. To find the true parameter values, we 
first estimated θ using the Ewens estimator, and selected the local maximum with the θ estimate closest to the 
value yielded by the Ewens estimator. Prior to these analyses, we tested the performances of both estimators on 
unbiased neutral data depending on parameter values and sample size (see Supplementary Note 3).

In typical environmental DNA data, the number J of individuals in the sample is unknown. As already done 
in previous studies37, we used the number of sequence reads as an effective number of individuals. This is possible 
owing to a mathematical property of the Ewens and Etienne distributions: both distributions are invariant by 
sampling without replacement24, hence maximum-likelihood inference yields the same results on any random 
sample from the community, and on any random subsample from an initial sample (up to a possible bias in 
the estimator). As a consequence, read abundances can be used for neutral parameter inference, as long as the 
reads can be regarded as forming a subsample without replacement of the initial individuals. This assumption is 
however not always verified in empirical data (see Discussion). The invariance property of Etienne distribution 
only holds if the distribution is expressed as a function of I, therefore we used here the immigration parameter I 
instead of m for the purpose of inference. In the following, m always refers to the value in the initial sample of J 
individuals.

In the absence of dispersal limitation, θ can also be estimated from the slope of the ranked log-abundance 
curve, a method that has the advantage of being independent of J. Indeed, the logarithm of E[Pi], the expected 
relative abundance of the ith most abundant taxon, is given by64: log(E[Pi]) =  − logθ −  ilog(1 +  1/θ). For simulated 
abundance noise, we estimated θ using this method in addition to Ewens estimator. We restricted the linear 
regression to the linear domain of the ranked log-abundance curve. We also compared the performance of both 
inference methods in the absence of simulated noise for samples of 102, 103, 104 and 105 sequence reads and for 
initial samples of individuals of different sizes (see Supplementary Note 4).

Results
We first included artifactual MOTUs in a simulated sample and tested the effect on estimating the diversity 
parameter θ of the neutral model without dispersal limitation. The relative bias θ θ θ−ˆ( )/  increased with the pro-
portion of artifactual MOTUs, first linearly and then faster than linearly (Fig. 1a,b). It did not depend on the ini-
tial θ value or on the read abundance of the introduced artifactual MOTUs. The standard deviation of θ̂ was not 
modified by the presence of artifactual MOTUs.

Next, we simulated PCR noise, modelled as a lognormally distributed multiplicative noise with log standard 
deviation σlog. This noise had no effect on the inference of the θ parameter below a threshold σlog,th. For σlog >  σlog,th, 
θ was underestimated. The value of σlog,th decreased with increasing θ but remained of the order of 1 for θ between 
1 and 500 (σlog,th ≈  5 for θ =  1 and σlog,th ≈  0.5 for θ =  500; see Fig. 1c,d). We also applied an additive Gaussian noise 
of standard deviation σadd to the relative abundances. This type of noise introduced a bias in θ̂ for values of σadd at 
least one order of magnitude larger than the relative abundance of the least abundant MOTUs (Supplementary 
Fig. S1). Neither type of noise affected the standard deviation of θ̂ (Fig. 1, Supplementary Fig. S1). These results 
held both in maximum-likelihood inference and when using linear regression on the ranked log-abundance.

We then simulated the variability in barcode copy number by applying a multiplicative noise distributed 
according to a zero-truncated Poisson distribution. This type of noise had no effect on θ inference, even for the 
maximum noise intensity at λ =  1.8 (Fig. 1e,f). We accounted for body size differences by assuming a steadily 
growing cell number n over the course of an individual’s life, and by varying the ratio + 1g

dn0
 of the mean number 

of cells + ng
d 0 divided by the initial number of cells n0. We found that this ratio had no effect on the mean and 

standard deviation of θ̂, even at large values (Fig. 1g,h). We also tested the effect of assigning an environmental 
DNA mass proportional to +n nr

d
3/40  to individuals (where n is the cell number) to reflect the joint effect of 

mortality (n term) and cellular turnover (n3/4 term, proportional to metabolic rate). We did not find any effect on 
θ inference even for large values of r

d
0  (Supplementary Fig. S1).

Finally, we replicated the analysis in the presence of dispersal limitation (i.e. assuming that m <  1). We found 
that the dispersal-limited maximum-likelihood estimator can be strongly biased even in the absence of simulated 
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Figure 1. Neutral parameter inference without dispersal limitation. Left panels: mean MOTU rank- 
abundance distributions over 100 realizations for θ =  20 in a 104-read sample, without (dashed blue line) and 
with (black line) simulated noise: (a) 30% artifactual MOTUs added (as measured in benchmark dataset),  
(c) multiplicative lognormal noise of log standard deviation σlog =  1.2 (as measured in benchmark dataset),  
(e) multiplicative zero-truncated Poisson noise simulating barcode copy number variability (Poisson parameter 
λ =  4; cf. Kembel et al.52), and (g) size structure among individuals, for a ratio = 1,000g

dn0
 (mean body mass 

over birth mass). Right panels: mean and standard deviation over 100 realizations of the relative bias on the  
θ estimate in a 104-read sample, for θ =  1 (green), θ =  20 (black) and θ =  500 (red), as a function of (b) the  
proportion of artifactual MOTUs (dashed blue line underlines the linear dependence), (d) the lognormal noise 
intensity σlog, (f) the Poisson parameter λ, and (h) the ratio g

dn0
.
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noise when dispersal limitation is too strong or too weak, especially for large θ values (see Supplementary Note 3). 
Therefore, we limited ourselves to parameter values that could be well estimated in the absence of simulated noise. 
Provided that the immigration rate was large enough (m >  0.1), the relative bias θ θ θ−ˆ( )/  depended on the pro-
portion of artifactual MOTUs similarly to the m =  1 case. For lower values of m, the dependence of θ θ θ−ˆ( )/  on 
the proportion of artifactual MOTUs was even stronger (Fig. 2a,b). The relative bias ˆ /I I( )log10  on the normalized 
immigration parameter increased linearly with the proportion of artifactual MOTUs. Applying a lognormal mul-
tiplicative noise of log standard deviation σlog on MOTUs relative abundances did not bias the estimation of (θ, I) 
below a noise threshold σlog,th identical to the one found without dispersal limitation. The threshold σlog,th 
decreased only slightly with decreasing m value. Above σlog,th, θ was underestimated and I overestimated 
(Fig. 2c,d). Applying an additive Gaussian noise of standard deviation σadd to the relative abundances biased the 
parameter estimates when σadd was larger than the relative abundance of the least abundant MOTUs 
(Supplementary Fig. S2). A multiplicative noise distributed according to a zero-truncated Poisson had no influ-
ence on the parameter estimates (Fig. 2e,f), and likewise an exponentially distributed number of cells still had no 
effect on parameter inference in the dispersal-limited case (Fig. 2g,h, Supplementary Fig. S2).

Discussion
Although they provide an unparalleled amount of information, biodiversity studies based on environmental DNA 
also have limitations. One of them is that the abundance of sequence reads corresponding to a given molecular 
taxonomic unit does not necessarily reflect the true population abundance of the corresponding taxon. Our anal-
ysis offers a quantitative assessment of the importance of this issue in attempting to relate environmental DNA 
datasets with theoretical model predictions.

Our goal was to assess when amplicon-based DNA read abundance data can offer biological insights into 
Hubbell’s neutral theory’s predictions. We selected Hubbell’s model over other models predicting taxa-abundance 
distributions because it incorporates a number of key features for any biodiversity model such as demographic 
stochasticity and dispersal limitation65. Estimating the parameters θ and m of the neutral model is useful in inter-
preting biodiversity patterns even if the community is not governed by purely neutral mechanisms62. Indeed, θ 
is closely related to Fisher’s biodiversity index, and is an unbiased index of biodiversity, while m quantifies how 
the local sample is connected to its surroundings. We simulated taxa abundance datasets from a neutral model 
and ‘noised’ them using a range of plausible noise types and intensities. We showed that the parameters θ and I 
could still be reliably estimated by maximum likelihood inference from the simulated sequence reads, provided 
that artifactual MOTUs are rare, and that lognormal noise on relative read abundances is below a log standard 
deviation threshold that depends on θ. We also showed that under our modelling assumptions, neutral inference 
is unbiased for assemblages of multicellular organisms and for variable barcode copy numbers. Finally we found 
that the noise terms had a similar effect on parameter inference when fitting the one-parameter version of the 
model (without dispersal limitation) and when fitting Hubbell’s dispersal-limited model.

One of the major differences between environmental DNA surveys and classic biodiversity surveys is that the 
number of sampled individuals is usually not measured. Yet, most biodiversity measures assume the knowledge 
of the organisms’ sample size. To solve this problem, we assumed in our simulations that the number of reads is 
several times smaller than the number of effectively sampled individuals: N =  104 sequence reads for J =  105 initial 
individuals. Under this assumption, sequence reads may be seen as a random subsample of the individuals, and 
because the maximum-likelihood approach of the neutral theory relies on sampling formulas that are invariant 
under subsampling, it follows that the inference on reads is unbiased (see Supplementary Note 4). Generating a 
larger number of individuals did not alter our results but was computationally prohibitive with our algorithm.

The assumption that the number of sampled individuals exceeds that of sequence reads is reasonable for 
prokaryotes66 and microorganisms in general, but is unrealistic for larger organisms. One empirical method to 
test whether the sequencing data meet the requirement for neutral maximum-likelihood inference is to take a 
smaller subsample of reads and check that the parameter estimates are unchanged. If not, one should decrease 
sample size until stability is achieved (see Supplementary Note 4). If environmental DNA data do not consist in 
a discrete number of reads, as is the case in t-RFLP and ARISA, an arbitrarily set sample size may be used37. The 
number of individuals can also be estimated empirically, as in Woodcock et al.28 or Dumbrell et al.36. In the neu-
tral model without dispersal limitation, a more straightforward approach is to infer θ from the slope of the ranked 
log-abundance distribution, but this requires an arbitrary delimitation of the linear domain of the curve, and it is 
reliable only if the read sample is large enough and contains a large enough taxonomic diversity. A general rule is 
that the sampling scheme should be suited to the size and spatial density of the target organisms: for large organ-
isms, multiple spatially distributed environmental samples should be pooled so as to sample a sufficiently large 
number of individuals. For instance, capturing the abundance distribution of plant taxa from soil DNA samples 
requires pooling a sufficient number of soil samples over a sufficiently large area.

When accounting for dispersal limitation, a single sample of sequence reads does not always provide enough 
information to reliably infer both θ and I from the taxa-abundance distribution, even in the absence of additional 
noise source. The maximum-likelihood estimator may be strongly biased when the immigration rate into the 
local community is either too low or too high, and increasingly so for larger θ □ □ □ □ □ □  (see Supplementary 
Note 3). Since these biases decrease with larger read sample size, the number of sequence reads should be as large 
as possible, as long as it does not preclude using the sequence reads for parameter inference (see previous para-
graph). Moreover, in order to avoid bias in the case of weak dispersal limitation, the Ewens estimator should be 
favoured whenever it yields a higher likelihood value than the dispersal-limited estimator.

In practice, environmental DNA studies often sample the same regional species pool in different locations, 
which allows for more robust multi-sample maximum-likelihood inference38,39. It should be noted however that 
exact maximum-likelihood inference can be computationally prohibitive in the dispersal-limited case for larger 
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Figure 2. Neutral parameter inference in the presence of dispersal limitation. We simulated a 104-read 
sample and computed the mean and standard deviation over 100 realizations of θ θ θ−ˆ( )/  and Î Ilog ( / )10 . 
Results are plotted for θ =  20 and for m =  1 (black), m =  0.1 (green), m =  0.01 (blue) and m =  0.001 (red). Panels 
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g,h: variation with body size ratio g
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numbers of reads than we used in this study or in the case of a multi-sample approach with large read samples37. 
Continuous approximations drawing on the work of Sloan et al.26,27 and Woodcock et al.28 might then be pre-
ferred, such as the Bayesian formulation of Harris et al.40.

Our analysis reveals that the presence of artifactual MOTUs is the most detrimental to neutral parameter 
inference. Bioinformatics methods aiming at limiting the number of artifactual MOTUs should be carefully 
applied to the sequencing data before any attempt at estimating biodiversity indices45–47. However, these meth-
ods do not guarantee a complete filtering of artifactual MOTUs from empirical datasets. In particular, chimeric 
sequences formed at the PCR stage may be misconstrued as MOTUs. Because these sequences are generated by 
rare PCR replication errors, they should be predominantly represented by few reads. Thus one strategy for remov-
ing artifactual MOTUs consists in ignoring all MOTUs below an empirically set abundance threshold. However, 
in doing so, we lose the information on the relationship between the number of reads and the number of MOTUs. 
Hence we suggest that a more satisfactory method to mitigate this problem is to take a sufficiently small subsam-
ple of the sequence reads so as to trim out the artifactual MOTUs.

The presence of artifactual MOTUs in our simulated taxa assemblages manifests itself by a break in the slope 
of the ranked log-abundance curve (Fig. 1a, see also Fig. S3 in Supplementary Methods). Thus, the adequate 
subsample size for an empirical dataset may be chosen so as to trim out the MOTUs with abundances below an 
observed break in the ranked log-abundance curve. Another finding of our study is that for the same proportion 
of artifactual MOTUs, the θ estimate has a similar relative bias across θ values and the I estimate a similar relative 
bias across I values. Therefore, if artifactual MOTUs cannot be entirely excluded in an environmental DNA data-
set, conclusions should be based on ratios of neutral parameter estimates among samples rather than on absolute 
values.

We modelled PCR noise using a lognormally distributed multiplicative noise term. We found a threshold 
noise value beyond which the inference of the neutral parameters becomes biased. This threshold was found to be 
lower for larger θ values. For instance, the empirical noise intensity σ log =  1.2 measured on our benchmark dataset 
was near or below the threshold σlog,th for θ values up to ca. θ =  20, while for larger θ values, it was responsible 
for a moderate underestimation of θ (20% for θ =  500) and for a serious overestimation of I. Nevertheless, our 
benchmark dataset was here used for illustrative purposes, and noise intensity may differ in other datasets. In 
metabarcoding studies, noise intensity likely depends on the barcode, taxonomic group and wet laboratory pro-
tocol. Therefore we strongly advise to include at least one benchmark dataset as part of any environmental DNA 
study to quantify noise intensity. Empirical noise assessments can then be compared to our simulation results.

We also simulated a Gaussian additive noise on abundance data and found that it had a disproportionate effect 
on the least abundant MOTUs, thus distorting the taxa-abundance distribution: parameter inference was biased 
if the standard deviation of the noise was larger than the abundance of the least abundant MOTUs. Here again, it 
is possible to correct for this type of noise in empirical datasets by subsampling the sequence reads. Additive noise 
can be considered to model the abundance noise generated by the sequencing step or by a single PCR cycle, while 
the succession of several PCR cycles produces a multiplicative abundance noise.

Another potential bias is due to the indirect relationship between the number of DNA barcode sequences in 
the sample and the number of sampled individuals. In particular, in the case of multicellular individuals, some of 
them may contribute disproportionately more than others. Given the variability and complexity of the associated 
noise structure, we chose to follow a modelling approach retaining as much generality as possible. We size-biased 
our samples by assuming that DNA availability in the environment is proportional to body mass, or to the turn-
over of body mass (i.e. the metabolic rate). We found that neutral parameter estimates are not modified by size 
structure in the community, irrespective of how strongly structured the community is, which is an interesting 
and general result.

Our approach to accounting for body size is directly inspired from the size-structured neutral model of 
O’Dwyer et al.59. This model integrates the growth of individuals into a neutral population dynamics without 
dispersal limitation, and may offer analytical predictions for the neutral “Species Biomass Distribution” (SBD) 
while accounting for the dependence of birth, death and growth rates on the size of individuals. When individ-
uals grow in body size at a constant rate and neither birth nor death rates depend on size, this model predicts 
the same SBD as obtained analytically under our assumption of independent exponentially distributed sizes (see 
Supplementary Note 2). Our choice of a rate of environmental DNA release scaling with the 3/4th power of body 
mass is motivated by a prediction of the metabolic theory of ecology, which relates metabolic rate to body mass 
in one of the few general laws of ecology61.

Even though our modelling approach derives from theoretical considerations, it is also supported by some 
empirical evidence: it has been shown that the rate of DNA detection in the environment is biased by the size of 
organisms54–56, and the fact that DNA abundance should scale non-linearly with body mass has been experimen-
tally verified in fishes55. Nevertheless, the noise introduced by size structure, fragments of organisms and extra-
cellular DNA certainly has a far more complicated structure than we simulated. For instance, rates of DNA release 
into the environment and of DNA degradation both depend on taxa and on local conditions, and fluctuate tem-
porally60,67,68. Moreover, the uneven spatial distribution of environmental DNA may prevent properly sampling 
the taxa-abundance distribution in the community, especially if whole pieces of living or decaying multicellular 
organisms are contained in the environmental sample. Pooling multiple spatially distributed samples should help 
average out local heterogeneity.

In this study, we considered that departure of the number of DNA barcode reads from the real taxon abun-
dance is sources of bias. However, these sources of bias may be generally seen as the accumulation of mutations 
during replication. In ecology, the only type of replication taken into consideration is demography, but DNA 
metabarcoding data are also the result of cellular and PCR replication processes. Since the assumptions of the 
neutral theory are generic and apply to any collection of replicating, mutating, and potentially dispersing entities, 
we could replace individual organisms by DNA barcodes as our basic replicating entities, and reinterpret the 
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neutral parameters accordingly. As a consequence, we expect the taxa-abundance structure predicted by neutral 
theory to be robust as long as the DNA barcodes do not differ too much in their replicating, mutating and dis-
persing abilities.

This study demonstrates that inferring the parameters of Hubbell’s neutral model from the taxa-abundance 
distribution is possible even in noised biodiversity datasets. We tested this hypothesis for a range of biologically 
plausible noise terms on simulated metabarcoding data, and we provide guidance for neutral parameter inference 
from such data. Our results indicate that whether an environmental DNA dataset really reflects the sampled com-
munity depends on noise intensity. They also suggest that this question can be answered by computing simple 
metrics on a benchmark dataset and comparing them to our simulations. The only way to quantify the noise level 
is to conduct careful benchmarking experiments, which will depend on the exact sampling and analysis protocol.
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