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INTRODUCTION

High-grade gliomas such as anaplastic astrocytoma [World 
Health Organization (WHO) grade III] and glioblastoma mul-
tiforme (GBM, WHO grade IV) are the most common and agg-
ressive brain tumors in adults. Composed of a heterogeneous 
mixture of poorly differentiated neoplastic astrocytes, high-grade 
glioma preferentially occurs in the cerebral hemispheres. Despite 
intensive basic and clinical studies and the development of var-
ious therapeutic modalities, the average survival of patients with 
GBM post-diagnosis remains less than 15 months, and most 
GBM patients eventually experience tumor relapse and out-
growth within 7 months of initial radiation therapy [1-4]. Thus, 
owing to its poor prognosis and difficult management, devel-
opment and translation of new anti-glioma therapeutic appro-
aches into the clinic are urgently needed. 

Identifying the cellular origin of glioma provides the oppor-
tunity to improve the understanding of this disease. Although 
oncogenic transformation of differentiated glial cells is gener-
ally thought to represent glioma initiation, this hypothesis has 
not been thoroughly investigated through basic or clinical stud-
ies. Moreover, although astrocytoma possesses some morpho-
logical features of cells that are similar to those of mature as-
trocytes, the origin of cancer is not always reflected in the ap-
pearance of its most common cellular component. Mature glial 
cells divide in the adult brain, suggesting that they are suscep-
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tible to neoplastic transformation. However, another prolifer-
ative population of cells (called neural stem cells) has been dis-
covered in the adult brain of mouse and human, indicating that 
they are much more vulnerable to oncogenic transformation 
[5,6]. Thus, the classic hypothesis of glioma initiation must be 
reevaluated to obtain additional insight into the origin of glio-
ma. In this review, we discuss the role of brain tumor stem cells 
(BTSCs, also known brain tumor-initiating cells), which are 
currently thought to be a major cause of brain tumor initiation 
and recurrence [7,8].

BRAIN TUMOR STEM CELL 
MICROENVIRONMENTS 

Various adult stem cells localize within protective and sup-
porting microenvironments (also known as niches) that are 
composed of a number of differentiated cells [9]. These dif-
ferentiated cells are known to participate in direct cell-cell con-
tacts and provide paracrine factors, such as growth factors or 
cytokines, to primarily sustain stem cell traits in a relatively 
quiescent state. For instance, neural stem cells and BTSCs ex-
ist within a vascular niche in which endothelial cells regulate 
stem cell self-renewal [10-13]. Thus, it is widely assumed that 
BTSCs arise from neural stem or progenitor cells that are ac-
quired through various genetic and epigenetic alterations, 
enabling them to undergo neoplastic transformation and es-
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cape from vascular niche control [14-16]. Alternatively, un-
controlled proliferation and transformation of neural stem 
cells may occur by deregulation of external signaling factors 
within the vascular niche [17]. Therefore, if BTSCs depend 
on aberrant microenvironments, these niche microenviron-
ments may represent targets for cancer treatment (Fig. 1).

Nitric oxide synthases (NOS) are a family of enzymes that 
produce nitric oxide (NO) from their substrate, L-arginine. 
NO regulates many physiological processes through the NO/
cyclic guanosine monophosphate (cGMP) pathway and pro-
tein S-nitrosylation [18]. For NO signaling, NO diffuses to 
cells in which it binds to its cytoplasmic receptor, soluble gua-
nylyl cyclase (sGC) that generates cGMP from GTP and sub-
sequently activates several downstream molecules, such as 
cGMP-dependent protein kinase (PKG). The endothelial iso-
form of NOS (eNOS) is elevated in various cancer types [19], 
including human gliomas, where its expression is correlated with 
glioma grade [20]. Increased eNOS activity in glioma is ob-
served in tumor endothelial cells [20]. Additionally, constitutive 
NOSs (nNOS and eNOS) are up-regulated, while inducible 
NOS (iNOS) are down-regulated in primary brain tumors [21]. 

It is also known that NO exerts paradoxical effects on a cell; 
it can confer resistance to apoptosis and enhance proliferation, 
but also can be toxic by inducing DNA damage responses and 
inhibiting electron transport [22,23]. Apoptosis resistance and 
proliferation enhancement are attributable to cNOS, which is 
found in excess in high-grade tumors, while the toxicity ap-
pears to be regulated by micromolar levels of NO induced by 
iNOS, which is most often associated with a host immune res-
ponse. Recent studies have shown that NO produced in en-
dothelial cells stimulates self-renewal of BTSCs that are en-
riched and interact with the vasculature by activating NOTCH 
signaling [20,24]. However, the specific roles of NO and NOS 
in controlling BTSCs in the vascular niche has not been fully 
established. 

The inhibitor of differentiation (ID) family includes 4 mem-
bers of the helix-loop-helix (HLH) proteins (ID1-4) that lack 
a DNA-binding domain, interact with basic HLH (bHLH) 
transcriptional factors, and function as negative regulators of 
differentiation during development [25]. ID proteins pro-
mote cell proliferation by suppressing cell-cycle-negative reg-
ulators, such as p21WAF1/Cip1 and p16INK4a [26,27]. ID1 and ID3 

Fig.	1. Two microenvironments of brain tumor stem cells: vascular and hypoxic niches regulated by various signaling modes. 
BTSC: brain tumor stem cell, HIF: hypoxia-inducible factor, EC: endothelial cell.
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are required for tumor angiogenesis and secondary breast tu-
mor re-initiation in lung metastasis [28,29]. Loss of ID1 and 
ID3 results in severe defects during vascular development in 
embryonic mouse brains with massive hemorrhage [30]. Over-
expression of ID proteins leads to transdifferentiation of fi-
broblasts into neural stem-like cells, presumably due to its pro-
minent role in governing neural stem cell fate [31]. ID proteins 
are also involved in controlling the self-renewal activity of in-
duced pluripotent stem cells (iPSCs) in combination with re-
programing factors such as OCT3/4, SOX2, and NANOG [32]. 
Thus, ID proteins may be involved in regulating the vascular 
niche and stem cell self-renewal. We recently showed that 
ID4 induces the genesis of BTSCs through NOTCH-depen-
dent dedifferentiation of Ink4a/Arf-deficient mouse astrocytes 
[33], while epidermal growth factor receptor signaling induces 
genesis of BTSCs and angiogenesis through ID1/ID3-depen-
dent activation of cytokines, such as interleukin (IL)-6, IL-8, 
and GRO1 [34]. Transforming growth factor-β signaling in-
duces expression of ID1 and ID3 to regulate the tumor-initi-
ating capacity of BTSCs [35]. Thus, understanding the precise 
roles of ID proteins may facilitate the development of effective 
BTSC-targeting therapeutic agents. 

Increasing evidence suggests that embryonic stem cells (ES-
Cs) are exposed to low oxygen levels (hypoxic microenviron-
ment) due to the absence of vasculature in early embryos [36] 
and that adult stem cells are localized in specific niches char-
acterized by a hypoxic microenvironment [37]. Because stem 
cells are the only cell type that is not replaced during the entire 
life span of animal, it is likely that the hypoxic niche protects 
stem cells from harmful damage induced by oxygen or other 
reactive oxygen species (ROS) [38]. A number of studies in 
culture have demonstrated a direct relationship between oxy-
gen levels and stem cell proliferation, differentiation, and sur-
vival [39]. Hypoxia leads to several changes in gene expres-
sion triggered by a group of transcription factors known as 
hypoxia-inducible factors (HIFs). These factors belong to the 
bHLH and PER-ARNT-SIM families and are composed of 2 
subunits: alpha subunits (HIF-1α, -2α, or -3α) are variable 
and oxygen sensitive, but rapidly stabilized in response to 
low oxygen levels; HIF-1β, also known as aryl hydrocarbon 
receptor nuclear translocator, is constant and constitutively 
expressed [40,41]. When a cell is exposed to low oxygen con-
ditions, the α subunit is stabilized and binds to the β subunit; 
the resulting complex translocates into the nucleus. There, the 
complex activates transcription of specific genes by recogniz-
ing promoter regions known as hypoxia-responsible elements. 
Increased HIF-regulated genes mediate a number of changes 
at both cellular and systemic levels. The relationship of hy-
poxia with tumor progression has been reported in clinical 
studies in which patients with hypoxic tumor showed a signif-

icantly poor clinical outcome [42,43]. Hypoxia correlates with 
increased tumor invasion and metastasis, as well as higher re-
sistance to radiotherapy and chemotherapy [44]. This is due 
in part to hypoxia-dependent expression of drug-resistance 
genes [45], selection of apoptosis-resistant clones [46], and 
disruption of DNA repair mechanisms [47]. As shown in Fig. 1, 
cancer stem cells (CSCs) are also located in low-oxygen re-
gions, a key feature of the stem cell microenvironment. Hy-
poxia may regulate stem cell localization and maintenance by 
inducing expression of paracrine factors in an HIF-dependent 
manner. Therefore, hypoxia may maintain the undifferentiat-
ed state of CSCs and thus contribute to cancer growth, inva-
sion, and metastasis. Surprisingly, BTSCs preferentially locate 
near the tumor vasculature and interact with tumor-associat-
ed endothelial cells [10]. Although this observation may par-
tially contradict the hypoxic niche hypothesis of CSCs, in vi-
tro co-culture experiments showed that paracrine factors 
secreted by endothelial cells promote CSC growth, self-re-
newal, and proliferation. Given that CSCs require both vas-
culature and hypoxia, the role of endothelial cells within the 
CSCs niche may be independent of their vascular function, 
such as supplying oxygen. Indeed, this assumption is support-
ed by the presence of endothelial precursors without vascular 
functionality near tumor cells and the abnormality of tumor-
associated blood vessels that give rise to hypoxic or anoxic re-
gions in solid tumors.

REPROGRAMING OF BRAIN TUMOR 
CELLS INTO BRAIN TUMOR STEM CELLS 

A recent seminal study demonstrated that 4 transcription 
factors (known as reprogramming factors), OCT3/4, SOX2, c-
Myc, and Klf4, convert embryonic and adult fibroblasts to plu-
ripotent cells, known as iPSCs [48]. This is a proof of principle 
that pluripotent stem cells can be generated from somatic cells 
through the combination of a small number of factors that re-
wind the clock of unipotent cells and convert them to a state re-
sembling ESCs. 

Interestingly, these reprogramming factors also appear to be 
up-regulated, either alone or together, in the CSCs of various 
solid tumors, including brain tumor [49,50]. The current CSC 
hypothesis involves the existence of a small population of tu-
mor cells possessing unique self-renewal and tumor-initiating 
capabilities, which differs from other tumor cells [51]. In sup-
port of this hypothesis, CSCs have been identified in different 
cancer types, such as GBM, breast cancer, prostate cancer, colon 
cancer, and leukemia [52-57]. Numerous BTSC markers exist, 
including CD133, CD15, and A2B5 membrane markers [58,59], 
Nestin filament marker [60,61], Musashi-1 RNA-binding pro-
tein [62], and OCT3/4, SOX2, ID1, ID3, ID4, IRF7, and BMI1 
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transcription factors [34,63-65]. 
Two of these reprogramming factors, OCT3/4 and SOX2, 

show increased expression levels in patients with glioma. Ex-
pression of OCT3/4, a well-known regulator of self-renewal 
and differentiation in ESCs, is reactivated during conversion of 
normal cells into neoplastic cells [66]. Similarly, several recent 
studies have suggested that adult stem cells expressing the 
OCT3/4 gene initiate the carcinogenic process [67,68]. More-
over, some recent studies have demonstrated that OCT3/4 is 
overexpressed in various human malignancies, including gli-
omas, bladder carcinoma, lung adenocarcinoma, ovarian car-

cinoma, and testis tumors [63,69]. Indeed, overexpression of 
OCT3/4 can lead to epithelial dysplasias by blocking differ-
entiation of progenitor cells [70]. Increased SOX2 expression 
has been reported in a growing list of tumors, including GBM, 
medulloblastoma, breast cancer, prostate cancer, and lung can-
cer [71-73]. SOX2 expression in brain tumors is not surpris-
ing, because SOX2 is mainly expressed in neural stem and pro-
genitor cells of normal brain [74]. In BTSCs and GBM patient 
samples, hypomethylation of the SOX2 promoter directly cor-
relates with its expression levels [75]. Additionally, GBM has 
the SOX2 gene amplification (~10%) and overexpression (>80%) 

Fig.	3. Targeting brain tumor stem cells. NO: nitric oxide, HIF: hypoxia-inducible factor, ROS: reactive oxygen species, BTSC: brain 
tumor stem cell.
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[70]. Moreover, knockdown of SOX2 decreases the prolifera-
tion and tumorigenicity of GBM [76]. Ectopic expression of 
SOX2 allows glioma cells to acquire self-renewal and aggres-
sive tumor-initiating abilities as well as resistance to chemother-
apy by inducing the expression of multidrug resistance genes, 
including ABCC3 and ABCC6 [64]. Thus, as shown in Fig. 2, 
alterations in the expression of 1 or more reprograming fac-
tors may trigger the conversion of a given differentiated cancer 
cell into a malignant cell with self-renewal, aberrant differenti-
ation, and tumor-initiating abilities, as well as resistance to cur-
rent standard therapy. It is also possible that the tumor micro-
environment leads to genetic and epigenetic changes that activate 
reprograming factors, thereby giving rise to the conversion of 
glioma cells into BTSCs. 

CONCLUSION

Most conventional cancer therapies are directed to target ra-
pidly dividing cells, which represent most of the tumor cell 
population. However, in many cases, these therapies fail to elim-
inate the stem-like cell fraction of the tumor, leading to tumor 
relapse and selection of more aggressive, therapy-refractory 
cancer cells. Development of therapeutic modalities specifi-
cally targeting BTSCs appear to be necessary in order to achieve 
complete tumor remission and prevent tumor recurrence af-
ter the therapy. The use of patient-derived tumor spheroids or 
the more aggressive, therapy-resistant tumor cells are valuable 
for identifying varying properties of BTSCs through trans-
criptomes and proteomics analyses. Several strategies can be 
used to develop molecular tailored therapeutic agents and se-
lectively eliminate BTSCs, which are highly resistant to radio-
therapy and chemotherapy (Fig. 3): 1) self-renewal inhibitors 
or differentiation inducers that target various external or in-
ternal stemness signaling cues, such as the WNT, SHH, and 
NOTCH pathways; 2) BTSC niche and microenvironment 
disruptors, such as inhibitors of VEGF, NO, and HIF signal-
ing; 3) inhibitors of ABC transporters (multidrug resistance 
proteins) that increase the efficacy of conventional chemother-
apeutic agents; and 4) radiotherapy sensitizers, such as ROS 
generator and checkpoint blocker. Therefore, based on our 
current understanding of BTSC biology, development of 
novel therapies specifically targeting BTSCs may be effective 
for treating essentially incurable malignant tumors in the cen-
tral nervous system. 
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