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Abstract

Background

Neutrophil functions have long been regarded as limited to acute inflammation and the

defense against microbes. The role(s) of neutrophils in cancer remain poorly understood.

Neutrophils infiltrate tumors and are key effector cells in the orchestration of inflammatory

responses. Thyroid cancer (TC) is the most recurrent endocrine malignant tumor and is

responsible for 70% of deaths due to endocrine cancers. No studies are so far available on

the role of neutrophils in TC.

Objective

Our purpose was to study the involvement of tumor-associated neutrophils in TC.

Methods

Highly purified human neutrophils (>99%) from healthy donors were stimulated in vitro with

conditioned media derived from TC cell lines TPC1 and 8505c (TC-CMs). Neutrophil func-

tions (e.g., chemotaxis, activation, plasticity, survival, gene expression, and protein release)

were evaluated.

Results

TC-derived soluble factors promoted neutrophil chemotaxis and survival. Neutrophil chemo-

taxis toward a TC-CM was mediated, at least in part, by CXCL8/IL-8, and survival was medi-

ated by granulocyte-macrophage colony-stimulating factor (GM-CSF). In addition, each

TC-CM induced morphological changes and activation of neutrophils (e.g., CD11b and

CD66b upregulation and CD62L shedding) and modified neutrophils’ kinetic properties.

Furthermore, each TC-CM induced production of reactive oxygen species, expression of
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proinflammatory and angiogenic mediators (CXCL8/IL-8, VEGF-A, and TNF-α), and a

release of matrix metalloproteinase 9 (MMP-9). Moreover, in TC patients, tumor-associated

neutrophils correlated with larger tumor size.

Conclusions

TC cell lines produce soluble factors able to “educate” neutrophils toward an activated func-

tional state. These data will advance the understanding of the molecular and cellular mecha-

nisms of innate immunity in TC.

Introduction

Thyroid cancer (TC) is a frequent solid tumor type worldwide and the most recurrent cancer

of the endocrine system [1]. Indeed, TC is responsible for 90% of the endocrine malignant

tumors and 70% of deaths due to endocrine tumors. In the past 5 years, the incidence of TC

has progressively increased [2]. The prognosis of TC patients is highly variable, with small TCs

showing only small possibility of tumor-specific morbidity or mortality, and with anaplastic

TC being one of the most fatal solid tumors [3].

The relation between chronic inflammation and TC has long been described. Indeed, a

combination of immune mediators and cellular effectors has been uncovered in TC and is

related to tumor progression and clinical outcomes [4]. During activation of the MAPK and

NF-κB pathways by oncogenic drivers, such as the RET/PTC rearrangement, RAS, and BRAF,

thyrocytes are induced to produce a number of cytokines and chemokines that sustain tumor

growth and progression [5,6,7]. Moreover, under resting conditions and/or as a consequence

of proinflammatory stimuli, transformed thyrocytes produce and release inflammatory factors

such as CXC chemokines (e.g., CXCL1, CXCL8, CXCL9, and CXCL10), which promote the

recruitment and activation of tumor-infiltrating leukocytes [8,9,10,11].

Among tumor-infiltrating myeloid cells, macrophages are the best-characterized cells

involved in tumor initiation and progression [12,13]. Tumor-associated macrophages (TAMs)

manifest functional characteristics similar to those of alternative (M2) macrophages. In TC,

TAMs show increased density and positively correlate with lymph node metastasis, larger

tumor size, dedifferentiation, capsular invasion, extrathyroid extension, and reduced survival

among the patients [14,15,16,17,18].

Neutrophils (polymorphonuclear leukocytes; PMNs) are well known leading actors in an

acute inflammatory response and in the defense against extracellular microbes [19]. Nonethe-

less, a growing number of lines of evidence is shedding new light on the multiple roles of

PMNs in the immune and inflammatory responses [12,20,21].

Indeed, studies have described the presence of tumor-associated neutrophils (TANs) in

cancer, which correlate with patients’ clinical outcomes [22,23,24,25,26,27,28]. Nevertheless,

their functional roles at the various steps of tumor initiation and progression are still a matter

of debate. For instance, TANs have been associated with genetic instability and neutrophil-

derived cytokines (e.g., OSM, VEGF) or granule proteins (e.g., neutrophil elastase) play many

roles in the promotion of cancer cell proliferation, invasive behavior, and the angiogenic

switch [29,30,31,32,33]. In contrast, antitumor neutrophils were recently proposed that can

kill tumor cells, to stimulate the T- cell–dependent anti-tumoral immunity, and inhibit angio-

genesis have been recently proposed [28,34,35,36]. Therefore, to date, the participation of
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neutrophils in different types of cancer is still controversial and its deciphering remains an

important challenge.

The prognosis of patients with TC remains difficult because of heterogeneity of this pathol-

ogy manifesting distinct clinical and molecular characteristics [37]. The ratio of the periph-

eral-blood neutrophil count to the lymphocyte count (neutrophil-to-lymphocyte ratio; NLR)

has been associated with tumor development and progression [38]. In patients with TC, a

higher NLR correlates with larger tumor volume and higher risk of recurrence but is not effec-

tive at discriminating benign from malignant lesions [39]. Moreover, the NLR does not corre-

late with the risk of occult metastasis or with patients’ survival [40]. Thus, the prognostic

significance of NLR in TC remains uncertain. To our knowledge, there is no information con-

cerning the occurrence, functions, and prognostic significance of TANs in TC.

In this study, for the first time, we investigated the presence of infiltrating neutrophils in

human TC and analyzed the phenotypic and functional characteristics of “tumor-educated”

neutrophils. In particular, we took advantage of an in vitro model to elucidate the functional

interactions between TC cells and human neutrophils. We found that TC cells recruited neu-

trophils and significantly improved their survival. Moreover, TC cells upregulated neutrophils’

proinflammatory activities as well as the expression of factors that can retain the ability to pro-

mote tumor progression. Finally, we found that PMNs infiltrated human TC and correlated

with tumor size, further supporting the potential tumor-promoting role of TANs in TC.

Materials and methods

Cell cultures and preparation of tumor-conditioned media

Human thyroid tumor cell lines TPC1 (papillary thyroid cancer), 8505c (anaplastic thyroid

cancer) and Nthy-ori 3–1 (immortalized thyroid follicular epithelial cell line derived from nor-

mal adult thyroid tissue that has been transfected with a plasmid encoding the SV40 large T

gene) were from ATCC, cultured and maintained in DMEM supplemented with 10% of heat-

inactivated fetal calf serum (FCS; endotoxin level <0.1 EU/ml), 50 U/ml penicillin/streptomy-

cin, and 2 mM L-glutamine (Euroclone, Milan, Italy) at 37˚C in a humidified atmosphere

containing 5% of CO2 and 95% of air. Conditioned media were prepared and used as follows.

Cells were seeded at 10–20% confluence in tissue culture plates. Once the cells reached conflu-

ence of 85–90%, the cell culture medium was replaced with a serum-free fresh medium. After

24 hours, this conditioned medium was harvested, filtered (0.20 μm pore size filter), and stored

at −20˚C. All the cell lines were routinely checked for mycoplasma contamination.

Neutrophil purification and culture

The study protocol involving the use of human blood cells was approved by the Ethical Com-

mittee of the University of Naples Federico II, and written informed consent was obtained

from blood donors according to the principles expressed in the Declaration of Helsinki.

Granulocytes were isolated from buffy coats of healthy donors (HBsAg−, HCV−, and HIV−)

obtained from a leukapheresis unit. Leukocytes were separated from erythrocytes by dextran

sedimentation. Neutrophils were purified by Ficoll-Paque Histopaque1-1077 (Sigma Aldrich,

Milan, Italy) density gradient centrifugation (400 × g for 30 minutes at 22˚C), followed by Per-

coll (Sigma Aldrich, Milan, Italy) (65%) density gradient centrifugation (660 × g for 20 minutes

at 22˚C), as previously described [41]. Finally, neutrophils were isolated from granulocytes (to

reach>99% purity) by positive elimination of all contaminating cells using the EasySep Neu-

trophil Enrichment Kit (StemCell Technologies, Vancouver, Canada) [42].

These cells were>99% neutrophils as evaluated by flow-cytometric analysis with the follow-

ing antibodies: anti-CD3, anti-CD14, anti-CD15, anti-CD11b, anti-CD193 (Miltenyi Biotec,
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Germany), anti-CD62L (L-Selectin) (BD Biosciences, USA), and anti-CD66b (Biolegend, CA,

USA). Samples were analyzed on the MACSQuant Analyzer 10 (Miltenyi Biotec, Germany)

and in the FlowJo software, v.10. Doublets and debris were excluded from the analysis. Data

were expressed as a percentage of positive cells or median fluorescence intensity [43]. Sponta-

neous activation of neutrophils was evaluated by analyzing CD11b and L-selectin expression

by flow-cytometric analysis before and after neutrophil purification; only L-selectin+CD11blow

(nonactivated) neutrophils were chosen for the study (data not shown).

Quantification of soluble factors in culture supernatants or total protein

lysates

CXCL8/IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), and MMP-9

concentrations in cell-free conditioned media or total protein lysates (0.1% Triton X-100)

were assessed in duplicate with commercially available ELISA kits (R&D Systems). MMP-9

levels in total protein lysates were normalized to total protein concentrations as determined by

a Bradford protein assay (Bio-Rad) and expressed in nanograms of protein per milligram of

total protein. A microplate reader (Tecan, Austria, GmbH) was used to determine sample

absorbance at 450 nm. The ELISA sensitivity is 31.1–2.000 pg/ml for CXCL8/IL-8, 15.6–1000

pg/ml for GM-CSF, and 31.3–2000 pg/ml for MMP-9.

Cell migration assay

Migration of neutrophils toward TC-conditioned media (TC-CMs) was evaluated by means

of a 3 μm cell culture inserts in 96-well companion plates (Corning Costar). The companion

plates were loaded with 235 μl of a conditioned medium or control medium (serum-free

DMEM). PMNs (2.5 × 106 neutrophils/ml per 75 μl) were placed in the inserts and allowed to

migrate at 37˚C and 5% CO2 for 1 hour. At the end of the incubation, the cells were centri-

fuged and resuspended in 100 μl of PBS and counted by flow cytometry (MACSQuant Ana-

lyzer 10, Miltenyi Biotec, Germany). In some experiments, neutrophils were preincubated

with mouse monoclonal anti-CXCR1 and/or anti-CXCR2 blocking antibodies at 10 μg/ml

(clone 42705 and clone 48311 respectively, R&D Systems) or the corresponding control iso-

type (R&D Systems) at 37˚C and 5% CO2 for 60 minutes and then subjected to the migration

assay as already described above.

Apoptosis assay and morphological analysis of neutrophils

Purified neutrophils (2 × 106 cells/ml) were cultured in a TPC1 or 8505c conditioned medium

with or without the mouse monoclonal anti-GM-CSF blocking antibody at 10 μg/ml (clone

3209, R&D Systems) or the corresponding control isotype (R&D Systems). For each time

point, neutrophils were stained with fluorescein isothiocyanate (FITC)-conjugated annexin V

and propidium iodide (PI) according to the protocol provided by the manufacturer (Miltenyi

Biotec, Germany). Quantification was performed on a MACS Quant flow cytometer (Miltenyi

Biotec, Germany). Live cells were assumed to be double-negative annexin V−PI− cells. Analysis

was performed by means of FlowJo v.10.

Flow cytometry

These experiments were conducted with purified neutrophils. For activation experiments, the

cells were kept in RPMI 1640 with 10% of FCS for 1 h and stimulated with one of TC-CMs for

90 minutes. Then, the cells were stained (20 minutes, 4˚C) in PBS plus 1% FCS (Euroclone,

Milan, Italy) (staining buffer containing antibodies). The following antibodies were employed:
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VioBlue-conjugated anti-human CD15 (clone VIMC6, dilution 1:10, from Miltenyi Biotech,

Germany), phycoerithrin (PE)-conjugated anti-human CCR3 (clone 5E8, dilution 1:10,

from Biolegend, CA, USA), allophycocyanin (APC)-conjugated anti-human CD66b (clone

G10F5, dilution 1:20, from Biolegend, CA, USA), APC-conjugated anti-human CD11b (clone

ICRF44, dilution 1:50, from eBiosciences), and FITC-conjugated anti-human CD62L (clone

DREG-56, dilution 1:10, from BD Biosciences, USA). The samples were studied on the MACS

Quant Analyzer 10 (Miltenyi Biotec) and in FlowJo v.10. Doublets and debris (identified based

on forward and side scatter properties) were excluded from the analysis. Data are expressed as

a percentage of positive cells or median fluorescence intensity [43].

Reactive oxygen species (ROS) production

Neutrophils (2 × 106 cells/ml) were resuspended in the RPMI 1640 medium with 2% of fetal

bovine serum (FBS) and antibiotics at 37˚C and 5% CO2. The cells were incubated for 30 min-

utes after the addition of 10 μg/ml H2DCF-DA (Life Technologies, Milan, Italy). H2DCF-DA

is a fluorogenic dye that allows researchers to determine hydroxyl peroxyl and other ROS

activities within the cell. Once diffused into the cell, H2DCF-DA is deacetylated by cellular

esterases to a nonfluorescent molecule, which is oxidized by ROS into 20,70dichlorofluorescein

(DCF). DCF is highly fluorescent and can be detected by fluorescence spectroscopy with maxi-

mum excitation and emission wavelengths of 492–495 and 517–527 nm, respectively. The cells

were washed in PBS and resuspended in a TC-CM, control medium, or phorbol myristate ace-

tate (PMA; 10 ng/ml) and immediately seeded in a 96-well plate and placed in a EnSpire Multi-

mode Plate Reader (Perkin Elmer). DCF mean fluorescence intensity was measured at an

excitation wavelength of 492–495 nm and emission at 517–527 nm. The ability of a TC-CM to

induce cytoplasmic ROS-catalyzed oxidation of DCFH in neutrophils was measured as com-

pared to the positive control (PMA; Sigma-Aldrich, Milan, Italy) and to the negative control

(the medium alone).

RNA isolation and real-time RT-PCR

Total RNA was extracted with the TRIzol Reagent (Thermo Fisher Scientific) and quantified

on a Nanodrop ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

Reverse transcription was performed using the High-Capacity cDNA Reverse Transcription

Kit (Applied Biosystems, Foster City CA, USA). Real-time RT-PCR was performed by means

of Universal SYBR Green Supermix (Bio-Rad) on a CFX96 Real-time detection system (Bio-

Rad). Relative gene expression was calculated by the ΔCt (relative expression) method. Each Ct

value was normalized to the respective GAPDH Ct value. Target-specific primers for GAPDH,

CXCL8/IL-8, TNF-α, and VEGF-A were synthesized and purified by Custom Primers (Life

Technologies, Milan, Italy).

Fluorescence, time-lapse, and high-content microscopy

Microscopy experiments were conducted with the Operetta High-Content Imaging System

(PerkinElmer), similarly to previously described procedures [43]. Neutrophils were cultured in

96-well black CellCarrier plates (PerkinElmer). For time-lapse experiments, neutrophils were

cultured overnight. Within this time window, digital phase contrast images of 15 fields/well

were captured every 15 minutes via a 20× objective. To quantify cell morphological features,

bright-field snapshots were taken at 15 fields/well. PhenoLOGIC (PerkinElmer) was employed

for image segmentation and for calculating the single-cell morphological results by the dedi-

cated STAR analysis sequence [43]. STAR morphology is an enhanced series of algorithms that

provide a statistically powerful set of properties for analyzing phenotypes by characterizing cell
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morphology and the distribution of intensity within regions. The STAR method offers the pos-

sibility to calculate symmetry properties, threshold compactness, axial properties, radial prop-

erties, and a profile [43,44].

Immunohistochemistry

We retrieved 32 thyroid tumors from the archives of the Department of Public Health, Pathol-

ogy Division, University of Naples Federico II. These cases included papillary thyroid carcino-

mas (n = 23), follicular adenomas (n = 1), Hürthle cell adenomas (n = 4), follicular carcinoma

(n = 3), and one case of medullary thyroid carcinoma. Four-micron slices of formalin-fixed

paraffin-embedded cell blocks were placed on charged slides, then deparaffinized and dehy-

drated. To detect the infiltrating neutrophils, we employed the anti-CD66b monoclonal anti-

body (clone G10F5, dilution 1:100) as a primary antibody [22,27,28]. After heat-induced

antigen retrieval, the slides were processed by Benchmark XT Autostainer (Ventana, Roche)

using the UltraView Polymer Detection kit. Negative controls were implemented by omitting

the primary antibody. Whole-tumor section CD66b+ neutrophils were counted and scored by

a trained pathologist at 200× magnification. Only CD66b+ neutrophils infiltrating the tumor-

ous lesions were considered, avoiding those within the vascular spaces. The CD66b+ neutro-

phil count in tumor samples was distributed according to the tumor size. The median value of

tumor size served as a cutoff. The numbers of CD66b+ neutrophils were also studied regarding

a possible correlation with the dimensions (in cm) of each thyroid nodule.

Statistical analysis

The data are expressed as mean ± SEM of the indicated number of experiments. Statistical

analysis was performed in Prism 6 (GraphPad Software). Values from groups were compared

by Student’s t test or repeated-measures one-way or two-way analysis of variance corrected for

multiple comparisons as appropriate. Pearson’s analysis was carried out to test the correlation

between CD66b+ tumor infiltrating neutrophils and tumor size. Differences were assumed to

be statistically significant when the p value was< 0.05.

Results

TC-derived soluble mediators induced neutrophil chemotaxis

In the first group of in vitro experiments, we studied the ability of TC cell lines to direct migra-

tion of PMNs, referred to as chemotaxis. Highly purified human PMNs from peripheral blood

of healthy donors were allowed to migrate toward a TC-CM from papillary TC cell line TPC1

or from the anaplastic TC cell line 8505c or toward a control medium. After 1 hour of incuba-

tion, migrating cells were counted by flow cytometry. TC-CM was found to induce greater

directed migration of PMNs as compared to the control medium (Fig 1A). These results sug-

gested that soluble factors released by TC induced PMN chemotaxis.

Thyroid cancer cell lines autocrinously produce a large amount of CXCL chemokines

[8,10,45], which can be responsible for neutrophil chemotaxis [20,46]. CXCL8/IL-8 was

found in large amounts (~10 ng/ml) in TC-CM (Fig 1B). CXCL8/IL-8 retains a well-known

chemotactic activity for neutrophils, acting through CXCR1/2 and playing a pivotal role in

the tumor microenvironment (TME) [47,48]. To investigate the mechanisms of PMN chemo-

taxis, neutralizing antibodies against CXCL8/IL-8 receptors CXCR1 and/or CXCR2 were used.

Thus, PMNs were allowed to migrate toward a TC-CM in the presence of a CXCR1-blocking

and/or CXCR2-blocking antibody or the related isotype (control). The results showed that
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Fig 1. TC-derived soluble mediators induced neutrophil chemotaxis. A. Neutrophil chemotaxis toward TC-CM or the control medium was evaluated using

3 μm cell culture inserts in 96-well companion plates. Neutrophils (2.5 × 106 cells/ml per 75 μl) were allowed to migrate (37˚C, 60 minutes) toward a TC-CM or

the control medium (235 μl per well). At the end of the incubation, the cells were centrifuged and resuspended in PBS (100 μl) and counted by flow cytometry.

Data are expressed as migratory cells relative to the control (mean ± SEM of five independent experiments), ��p< 0.01. B. The CXCL8/IL-8 release by TPC1

and 8505c cells was evaluated by an ELISA in a TC-CM or in the control medium. Results are expressed as mean ± SEM of seven independent experiments;
����p< 0.001. C and D. Chemotactic activity of neutrophils via a TPC1-derived (C) or 8505c-derived (D) conditioned medium was analyzed in the presence of

blocking antibodies directed against CXCR1 and/or CXCR2 (10 μg/ml) or the related isotype control. Migratory neutrophils were counted by flow cytometry.

The results are expressed as a percentage of isotype control (mean ± SEM of eight independent experiments); ���p< 0.005; ��p< 0.01; �p< 0.05.

https://doi.org/10.1371/journal.pone.0199740.g001

Neutrophils in human thyroid cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0199740 June 28, 2018 7 / 22

https://doi.org/10.1371/journal.pone.0199740.g001
https://doi.org/10.1371/journal.pone.0199740


blocking of CXCR1 and CXCR2 significantly reduced PMN chemotaxis toward a TC-CM (Fig

1C and 1D).

TC-derived soluble factors promoted neutrophil survival

We next tested whether a TC-CM could modulate PMN lifespan. To investigate the effect of

TC cells on PMN survival, highly purified human neutrophils from healthy donors were cul-

tured in vitro in a TC-CM or control medium. At different time points (24 and 48 hours)

PMNs were stained with FITC-conjugated annexin V and propidium iodide (PI) and sub-

jected to cytofluorimetric analysis. The presence of a TC-CM markedly increased the survival

of PMNs as compared to the control medium (Fig 2A and 2B). On day 2, almost all PMNs cul-

tured in the control medium were apoptotic (live cells represented 3.8%). In contrast, a large

proportion of PMNs cultured in the presence of a TC-CM were live (40.9% ± 9%, 31.7% ± 9%;

mean ± SEM) cultured in the conditioned medium from cells TPC1 and 8505c, respectively.

Fig 2B illustrates representative flow cytometric panels of one out five independent experi-

ments. Interestingly, the presence of the CM derived from the non-tumoral cell line Nthy-ori

did not increase the survival of PMNs (S1 Fig). These results suggested that TC cell lines pro-

duced soluble mediators that increased PMN survival.

To dissect the molecular mechanism behind this prosurvival effect, we evaluated the pres-

ence of soluble factors known to increase the PMN lifespan in a TC-CM. GM-CSF is a well-

known determinant of proliferation and differentiation of granulocytes and macrophages

[49]. Of note, a large number of cell types, such as endothelial cells, T cells, macrophages,

fibroblasts, mesothelial, and epithelial cells as well as tumor cells can produce GM-CSF [50].

To evaluate the molecular mechanism underlying the prosurvival effect of TC-CMs, we eval-

uated the presence of GM-CSF in TC-CMs by an ELISA. Cells TPC1 and 8505c constitutively

produced high levels of GM-CSF, as compared to the control medium (Fig 2C). To assess the

relevance of TC-derived GM-CSF in TC-CM for PMN survival, TC-CMs were depleted of

GM-CSF with a neutralizing antibody. PMNs were purified and cultured in a TC-CM or the

control medium in the presence of an anti-GM-CSF blocking antibody or the relative isotype

control. After 24 hours, PMNs were stained with FITC-conjugated annexin V and PI and

subjected to cytofluorimetric analysis. Of note, a blocking antibody, anti-GM-CSF, signifi-

cantly inhibited the prosurvival effect of CM (Fig 2D and 2F). Fig 2E and 2G illustrate repre-

sentative flow cytometric panels of one out of five independent experiments. Collectively,

these data suggested that TC-CMs markedly improved PMN survival because of the presence

of GM-CSF.

TC-derived soluble factors induced PMN activation

To determine whether TC-derived soluble factors activate human PMNs, we determined

CD11b, CD66b, and CD62L (L-selectin) expression on PMNs by flow cytometry [51,52].

PMNs were stimulated with PMA (as a positive control), with a TC-CM, or with the control

medium. PMNs were then stained with antibodies against CD11b, CD66b, and CD62L and

evaluated by flow cytometry. Under basal conditions, neutrophils showed minimal expres-

sion of CD11b and CD66b, which rapidly increased after incubation with inflammatory

agonists, such as PMA (Fig 3A and 3B). TPC1 and 8505c conditioned media also induced

CD66b and CD11b upregulation (Fig 3A, 3B, 3G and 3H). On the contrary, under resting

conditions, PMNs highly expressed CD62L. In the presence of a TC-CM, the expression of

selectin decreased, similarly to the proinflammatory control PMA (Fig 3C and 3I). Collec-

tively, these data indicated that TC-derived soluble factors activated PMNs (CD66b and

CD11b upregulation, CD62L shedding). Fig 3D–3I show representative flow cytometry
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panels for Fig 3A (CD11b), 3B (CD66b) and 3C (CD62L), with the specific gating strategy

and related histograms (Fig 3G, 3H and 3I, respectively).

TC-derived soluble factors induced MMP-9 release and ROS production

Besides, PMN activation was investigated by evaluation of extracellular and intracellular con-

centrations of MMP-9 by an ELISA. We measured the extracellular levels of MMP-9 in PMN

supernatants of a TC-CM or the control medium. MMP-9 production was not detectable in

TC-CMs and in the control medium (Fig 4A). MMP-9 concentration significantly increased

Fig 2. TC-derived soluble factors promoted neutrophil survival. A. Neutrophils were cultured in a TC-CM or the control medium. At the indicated time points,

live cells were evaluated by flow cytometry with FITC-conjugated annexin V and PI. Results were expressed as percentages of live cells (mean ± SEM of five

independent experiments); ���p< 0.005; ��p< 0.01; �p< 0.05. B. Representative flow cytometric panels of dot plots of PMNs cultured in a TC-CM or control

medium and stained with FITC-conjugated annexin V and propidium iodide (PI) at 24 (upper panels) and 48 (lower panels) hours. C. The GM-CSF release by

TPC1 and 8505c cells was evaluated by an ELISA in a TC-CM or in the control medium. Results were expressed as mean ± SEM of seven independent experiments;
����p< 0.001; ���p< 0.005. D-F. Neutrophil survival in a TPC1-derived (D-E) or 8505c-derived (F-G) conditioned medium was evaluated in the presence of an

anti-GM-CSF blocking antibody or the relative isotype control (10 μg/ml). At 24 hours, live cells were stained with FITC-conjugated annexin V and PI and

analyzed by flow cytometry. Figs E and G illustrate representative flow cytometric panels of one out of five independent experiments. The results were expressed as

mean ± SEM of five independent experiments; ��p< 0.01; �p< 0.05.

https://doi.org/10.1371/journal.pone.0199740.g002
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Fig 3. TC-derived soluble factors induced activation of neutrophils. A–C. Neutrophils were stimulated with a TC-CM or the control

medium for 90 minutes, stained for neutrophil activation markers CD11b (A), CD66b (B), and CD62L (C) and subjected to

cytofluorimetric analysis. The results were expressed as mean fluorescence intensity or percentages of positive cells gated on neutrophils

(mean ± SEM of five independent experiments); ���p< 0.005, ��p< 0.01, �p< 0.05. D-F. Representative flow cytometric panels with

respect to the gating strategy of total cells (D), singlets (E) and CD15+ CCR3- neutrophils (F). G-I. Representative histograms illustrating
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in PMN supernatants after TC-CM stimulation (Fig 4A). In addition, PMNs cultured in a

TC-CM showed reduced MMP-9 intracellular content as compared to the negative control

and compared to freshly isolated cells (Fig 4B), suggesting that TC-CMs activated PMNs and

mediated the MMP-9 release from PMN tertiary granules.

mean fluorescence intensity (MFI) and cell counts for CD11b (G), CD66b (H) and CD62L (I) for one out of five independent experiments.

MFI = mean fluorescence intensity; FMO = fluorescence minus one.

https://doi.org/10.1371/journal.pone.0199740.g003

Fig 4. TC-derived soluble factors induced MMP-9 release and ROS production. A and B. Neutrophils were cultured in a TC-CM or the control medium for 18

hours. At the end of the incubation, neutrophils were harvested and centrifuged (600 × g, 4˚C, 5 minutes), and the supernatants were collected. The extracellular

release of MMP-9 from TC cell lines and neutrophils (A) as well as intracellular concentration of MMP-9 in neutrophils (B) after cell lysis (Triton X-100, 0.1%)

were evaluated by an ELISA. The results were expressed as mean ± SEM of five independent experiments; ���p< 0.005; �p< 0.05. C. Neutrophils were incubated

with 20,70-dichlorodihydrofluorescein diacetate (H2DCFDA, 10 μM, 30 minutes, 37˚C), washed, and stimulated with a TC-CM or the control medium.

Immediately after the stimulation, the cells were placed in a multimode microplate reader (EnSpire Multimode Plate reader, PerkinElmer), and DCF fluorescence

intensity was quantitatively measured for 20 minutes at 2 minutes intervals. The results were expressed as percentages of t0 (mean ± SEM of five independent

experiments); ���p< 0.005; ��p< 0.01.

https://doi.org/10.1371/journal.pone.0199740.g004
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To test whether neutrophil activation leads to ROS production, we performed a 20,70-

dichlorodihydrofluorescein diacetate (H2DCF-DA) ROS detection assay. PMNs were labeled

with H2DCF-DA or a control medium. Fig 4C illustrates the kinetics (2 to 20 minutes) of the

production of ROS induced by PMA, each TC-CM, and the control medium. ROS production

by PMNs was significantly increased by TC-CMs or by PMA. By contrast, the control medium

did not induce the production of ROS (Fig 4C). Collectively, these findings suggested that TC-

derived soluble factors promoted the release of ROS from human PMNs.

TC-CMs modified morphology and kinetic properties of neutrophils

Morphological cell features are related to cellular functions and have been shown to predict

clinical outcomes [53]. Using the high-content imaging approach, we effectively measured and

tracked changes of a number of morphological characteristics at the single-cell level and quan-

titatively determined these morphological feature distributions in response to the culture

conditions [43,44]. To this end, PMNs were incubated with a TPC1 or 8505c TC-CM or the

control medium for 16 hours at 37˚C. For each individual cell, morphological characteristics

were assessed. PMNs treated with a TC-CM showed increased their cell area, a greater cell

radial mean, and lower width-to-length and axial length ratios and lost their roundness and

symmetry (Fig 5A–5F). Thus, morphological changes in PMNs owing to cell attachment and

spreading and known to occur after stimulation by inflammatory cytokines and growth factors

[53], were observed when the cells were cultured in a TC-CM (Fig 5A–5F).

In addition to evaluating morphological changes at a single time point, we detected fluctua-

tions in cell morphology over time by time-lapse microscopy. To this end, PMNs were

Fig 5. TC-CMs induced morphological changes in neutrophils. Neutrophils were stimulated with a TC-CM or the control medium for 16 hours and then were

imaged by means of an Operetta high-content imaging system at 20× magnification. The images were analyzed in the Harmony software with PhenoLOGIC

(PerkinElmer) and a dedicated analysis sequence (morphological properties, method STAR) to evaluate cell area (A), roundness (B), radial mean (C), symmetry

(D), width-to-length ratio (E), and axial length (F). The results were expressed as an increase or decrease compared to the control (mean ± SEM of five

independent experiments); ���p< 0.005.

https://doi.org/10.1371/journal.pone.0199740.g005
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cultured in a TC-CM or the control medium for 16 hours at a controlled temperature (37˚C)

and CO2 levels (5%). Within this time window, digital phase contrast images were captured

every 15 minutes. PMNs cultured in a TC-CM showed a reduced overall accumulated distance

and an increased speed and straightness (Fig 6A–6C). Moreover, timepoint analyses per-

formed with regard of time-dependent properties such as current step size (Fig 6D) and cur-

rent speed (Fig 6E), showed that, in the presence of a TC-CM, PMNs displayed increased step

size and speed compared to the control medium. Taken together, these results suggest that

under the influence of TC-derived soluble mediators, PMNs modified their kinetic properties,

taking up less space per time unit and losing their basal random movement.

TC-CMs induced the expression of proinflammatory and angiogenic

factors by PMNs

We then evaluated whether the TC-CMs modified neutrophils’ gene expression. PMNs

stimulated with TC-CM for 18 hours at 37˚C manifested increased mRNA levels of genes

encoding proinflammatory and proangiogenic molecules such as CXCL8/IL-8, vascular endo-

thelial growth factor A (VEGF-A) and TNF-α (Fig 7A–7C). These data revealed that PMNs

Fig 6. TC-derived soluble factors modified neutrophils’ kinetic properties. Neutrophils were stimulated with a TC-CM or the control medium for 18 hours.

Within this time window, digital phase contrast images of 15 fields/well were captured every 15 minutes via a 20× objective in the Operetta high-content imaging

system. PhenoLOGIC (PerkinElmer) was employed for image segmentation and to calculate the single-cell kinetic properties (A), accumulated distance, (B) speed

and straightness (C) in dedicated analysis sequence. The results were expressed as mean ± SEM of six independent experiments; ���p< 0.005; ��p< 0.01;
�p< 0.05. D-E. Timepoint analyses of time-dependent properties such as current step size (D) and current speed (E) illustrating dynamic changes of the behavior

of neutrophils (in presence or absence of TC-CMs) in function of the elapsed time from treatment. The results were expressed as mean ± SEM of six independent

experiments; ����p< 0.001.

https://doi.org/10.1371/journal.pone.0199740.g006
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stimulated with TC-CM upregulated mRNA expression of various proinflammatory and

angiogenic factors such as CXCL8/IL-8, VEGF-A, and TNF-α.

Tumor-infiltrating neutrophils positively correlated with tumor size in

human TC specimens

Our results showed that a TC-CM recruited PMNs and significantly modified their biological

properties. PMNs infiltrate different types of human tumors [23]. With the exception of some

case reports [54], to our knowledge, there is no information concerning the presence and sig-

nificance of tumor-infiltrating PMNs in human TC. Therefore, we assessed the occurrence of

CD66b+ PMNs by immunohistochemistry in tumorous thyroid tissue samples. To this end, a

panel of 32 TC specimens was subjected to immunohistochemical analysis. The age of patients

ranged from 23 to 73 years, median 41 years. Lymph node metastasis positivity was found in

46.8% (15/32) of patients during the surgical operation. An anti-CD66b monoclonal antibody,

which specifically recognizes human PMNs was used [22,24,28]. Representative examples of

cell staining with the anti-CD66b antibody are presented in Fig 8A and 8B. In particular, Fig

8A shows one case of mixed classic-follicular variant papillary thyroid cancer with numerous

tumor-infiltrating PMNs, which are organized in clusters within the tumor tissue. Fig 8B

shows one case of a classic papillary thyroid carcinoma with a few granulocytes scattered

throughout the tumor tissue. An isotype-matched unrelated antibody yielded negative results

(not shown). A high CD66b+ cell count was significantly associated with a larger tumor vol-

ume (p = 0.04, Table 1 and Fig 8C). Thus, PMN density positively correlated with larger tumor

size in TC (r = 0.43, p = 0.01; Table 1 and Fig 8D). No correlations between PMN infiltration

and other clinical parameters were found (Table 1).

Discussion

In this study, we investigated the possible involvement of PMNs in TC. We found that soluble

factors derived from human TC cells can profoundly influence several characteristics of

human PMNs. TC-CMs induced PMN chemotaxis through a release of CXCL8/IL-8, which

acts on its cognate receptors CXCR1 and CXCR2 expressed on PMNs. Each TC-CM signifi-

cantly increased PMN survival via a release of GM-CSF by TC cells. In addition, each TC-CM

Fig 7. TC-derived soluble factors induced the expression of proinflammatory and angiogenic factors by neutrophils. Human neutrophils were treated with a

TC-CM or the control medium for 18 hours. At the end of the incubation, the cells were harvested and lysed for RNA isolation. CXCL8/IL-8 (A), VEGF-A (B), and

TNF-α (C) mRNA levels were evaluated by real-time PCR. The results are expressed as a fold change relative to the control (mean ± SEM of six independent

experiments); ��p< 0.01; �p< 0.05.

https://doi.org/10.1371/journal.pone.0199740.g007
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induced PMN activation (CD11b and CD66b upregulation and CD62L shedding) and pro-

foundly modified PMN morphology and kinetic properties. Furthermore, each TC-CM

induced the production of ROS, expression of proinflammatory and angiogenic factors

(CXCL8/IL-8, VEGF-A, and TNF-α), and a release of MMP-9. Moreover, the density of

tumor-infiltrating PMNs correlated with TC size.

A number of experimental pieces of evidence have proved that cancer-related inflammation

promotes tumor initiation and progression, helping cancers to acquire all the hallmark capa-

bilities, including evasion of immunosurveillance [55,56]. Solid tumors are characterized by an

inflammatory profile and the presence of infiltrating immune cells, which together with stro-

mal cells and blood and lymphatic vessels constitute the TME [57,58,59].

Some studies have extensively addressed the function of cells of innate immunity and adap-

tive immunity in TC [4] and other tumor types [23,59,60,61,62]. In particular, TAMs, den-

dritic cells, tumor-associated mast cells, myeloid-derived suppressor cells, natural killer (NK)

Fig 8. The number of tumor-infiltrating neutrophils positively correlated with tumor size in human TC specimens. A and B. Histological analysis of TC

specimens stained with a monoclonal anti-CD66b antibody. Whole-tumor section density of CD66b+ neutrophils was scored at 200× magnification.

Representative cases of papillary thyroid carcinomas with a high (A) and low (B) CD66b+ neutrophil count (arrows; hematoxylin counterstaining, 200×). C.

CD66b+ neutrophil counts in tumor specimens were distributed according to the tumor size. The median value of tumor size served as a cutoff level. Results are

shown as the median, the 25th and 75th percentiles (boxes), and 5th and 95th percentiles (whiskers); �p< 0.05, according to the two-tailed Mann–Whitney U test.

D. Neutrophil density positively correlated with larger tumor size in TC patients (r = 0.43; p = 0.01; Pearson’s correlation test).

https://doi.org/10.1371/journal.pone.0199740.g008
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cells, invariant natural killer cells, and CD4+ and CD8+ T cells have been shown to play a role

in TC [4,63,64].

PMNs are canonically associated with acute inflammation where they exert a pivotal action

against extracellular pathogens [19,65] and for wound repair [66]. Nonetheless, compelling evi-

dence points to a major involvement of PMNs in different types of cancer [22,24,25,28,30,34,

35,67], even though their functions are still a matter of debate, and a dual role of neutrophils in

tumor biology has been described [59,68,69,70].

Several studies have examined the NLR [39,71,72]; however, these studies have limited rele-

vance because there is increasing evidence of profound differences between peripheral-blood

PMNs and TANs [34]. By contrast, to our knowledge, no studies are so far available on the

occurrence, significance, and functional roles of neutrophils in human TC. Our results support

the observation that human neutrophils can be activated in response to components of the

TME in human TC [29,73]. To the best of our knowledge, our study is the first to reveal the

presence of neutrophils in human TC, the association between neutrophil infiltration and

tumor size in TC patients, and the plasticity of neutrophils under the influence of TC-derived

soluble mediators. Indeed, we found that TC cells produce soluble factors able to recruit, pro-

long the lifespan, and to activate neutrophils. We confirmed that TC cells constitutively pro-

duce CXCL8/IL-8 and, accordingly, conditioned media from TC cells exerted chemotactic

activity toward neutrophils in a CXCR1/2-dependent manner. In addition, TC cells activated

PMNs and prolonged their survival via the production of GM-CSF. Moreover, we demon-

strated that TC-CMs induced profound morphological and functional changes of human

PMNs.

Table 1. Correlation between the clinical variables and tumor-associated CD66b+ neutrophils in thyroid

carcinoma.

CD66b+ Cells (n = 32)

N Median Value (IQR) pvalue�

Age (years)§

� 41 17 16 (3.5–37.5) 0.48

< 41 15 15 (8.75–55.5)

Sex

Male 9 10 (5.25–16.75) 0.22

Female 23 22 (8–48)

Histotype

Adenomas 5 13 (2.5–66) 0.59

Carcinomas 27 17 (8–41.5)

Mutational status

Wild Type 5 40 (13–60) 0.1

Mutated 27 16 (5–35)

Tumor size (cm) §

� 1.3 17 28 (10–54) 0.04

< 1.3 16 9 (5–22)

T stage

T1-T2 25 19.5 (8–45) 0.1

T3-T4 7 9 (1.25–14.5)

IQR = interquartile range;
§ Median value;

� Mann–Whitney U test

https://doi.org/10.1371/journal.pone.0199740.t001
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We found that a TC-CM can prolong the survival, increase activity, and ROS production of

human PMNs. These findings suggest that PMNs can acquire a cytotoxic antitumor phenotype

under the influence of a TC-CM [34,74]. Quite recently, however, activated neutrophils, with

reduced apoptosis and increased ROS production were described in chronic leukemia and

non–small cell lung cancer and were found to correlate with poor prognosis among the

patients, suggesting that functional activation is not necessarily related to an antitumor pheno-

type [75,76].

Neutrophils are the main producers of ROS, which are the major antimicrobial tool for

these cells. ROS participate in neutrophils’ cytotoxic activity against cancer cells [35,74]. Nev-

ertheless, enhanced ROS production by neutrophils limits the NK cell–mediated antibody-

dependent cytotoxicity against leukemic cells during anti-CD20 treatment, induces DNA

mutations and genotoxicity, and favors drug resistance and systemic T-cell and NK-cell dys-

function [77,78,79]. Collectively, these findings suggest that neutrophil-derived ROS can exert

a protumorigenic action. Further studies are needed to test whether different ROS released

from activated neutrophils exert a pro- or antitumorigenic activity in TC.

PMNs activated by a TC-CM are a major source of several protumorigenic and angiogenic

factors (i.e. VEGF-A, CXCL8/IL-8, and MMP-9) which are known players in cancer-related

inflammation [33,80,81,82]. Indeed, neutrophil-derived MMP-9 induces the release of VEGF

from the ECM, and neutrophils have been identified as the major source of MMP-9 in differ-

ent types of human cancer [81,83,84]. Moreover, MMP-9 is released by neutrophils in a

TIMP1-free manner, thus providing a powerful proangiogenic factor [85]. Moreover, in a

murine model of transplantable melanoma and fibrosarcoma, TANs are the main regulators of

angiogenesis and tumor growth because of the expression of VEGF and MMP-9 [29], sugges-

tive of acquisition of a protumor phenotype. Nevertheless, whether a similar neutrophil polari-

zation exists in humans still needs to be assessed.

Of note, we found a correlation between tumor-infiltrating neutrophils and human TC vol-

ume. Finally, preliminary experiments indicated that neutrophils promoted the proliferation

of TC cell lines (data not shown). Taken together, our findings support the hypothesis that

TANs play a protumorigenic role in human TC.

Although our results indicate for the first time possible involvement of neutrophils in

human TC, further research is needed to understand their role in tumor initiation and pro-

gression. In particular, additional studies are needed to understand which mediators are

responsible for TC-driven neutrophil activation as well as to elucidate the mechanisms by

which these “tumor-educated neutrophils” can promote TC cell proliferation. Additional stud-

ies are needed to understand whether TAN density correlates with clinical parameters (i.e.,

survival) in different types of TC.

Insights into the molecular and cellular mechanisms underlying PMN infiltration in the

TME in various types of TC may lead to the identification of new diagnostic and prognostic

markers and perhaps novel therapeutic targets in this frequent endocrine cancer.
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S1 Fig. TC-derived soluble factors promoted neutrophil survival. Neutrophils were cultured

in a TC-CM, Nthy-ori-CM or the control medium. At the indicated time points, live cells were

evaluated by flow cytometry with FITC-conjugated annexin V and PI. Results were expressed

as percentages of live cells (mean ± SEM of four independent experiments); ����p< 0.001;�p<

0.05; ns = not significant.
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