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Abstract

BACKGROUND: Fetal responses to adverse pregnancy environments are sex-specific. In fetal 

guinea pigs (GPs), we assessed morphology and messenger RNA (mRNA) expression in fetal 

growth-restricted (FGR) tissues at midpregnancy.

METHODS: Female GPs were assigned either an ad libitum diet (C) or 30% restricted diet (R) 

prior to pregnancy to midpregnancy. At midpregnancy, a subset of R females underwent 

ultrasound-guided nanoparticle (NP) injection to enhance placental function. Five days later, 

fetuses were sampled. Fetal brain, heart, and liver were assessed for morphology (hematoxylin and 

eosin), proliferation (Ki67), and vascularization (CD31), as well as expression of inflammatory 

markers.

RESULTS: R fetuses were 19% lighter with reduced organ weights and evidence of brain sparing 

compared to controls. No increased necrosis, proliferation, or vascularization was found between 

C and R nor male or female fetal organs. Sexual dimorphism in mRNA expression of Tgfβ and 

Ctgf was observed in R but not C fetal brains: increased expression in females. NP treatment 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence: Rebecca L. Wilson (rebecca.wilson@ufl.edu).
These authors contributed equally: Rebecca L. Wilson, Kendal K. Stephens
AUTHOR CONTRIBUTIONS
R.L.W. conceived the study, performed experiments, analyzed the data, and wrote the manuscript. K.K.S. conceived the study, 
performed experiments, analyzed the data, and wrote the manuscript. K.L. performed experiments and edited the manuscript. H.N.J. 
conceived the study, obtained the funding, and edited the manuscript. All authors approved the final version.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
s41390-021-01362-4.

Competing interests: The authors declare no competing interests.

HHS Public Access
Author manuscript
Pediatr Res. Author manuscript; available in PMC 2021 August 02.

Published in final edited form as:
Pediatr Res. 2021 May ; 89(7): 1673–1680. doi:10.1038/s41390-021-01362-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


increased fetal brain mRNA expression of Tgfβ and Ctgf in R males, abolishing the significant 

difference observed in untreated R fetuses.

CONCLUSIONS: Sex-specific differences in mRNA expression in the fetal brain with FGR 

could impart a potential survival bias and may be useful for the development of treatments for 

obstetric diseases.

INTRODUCTION

Fetal growth restriction (FGR) is defined by the American College of Obstetricians and 

Gynecologists as estimated fetal growth for gestational age ≤10th percentile with a live birth 

rate incidence of 4–8% in developed countries and 6–30% in developing countries.1 FGR is 

a common cause of medically indicated iatrogenic preterm birth, and the second most 

common cause of neonatal morbidity and mortality behind spontaneous preterm birth, 

placing a significant burden on health-care systems and social costs related to long-term 

disease and disability.2 The development of FGR is still largely unknown; however, 

maternal, fetal, and placental characteristics have all been implicated as causative factors. 

Most abundantly studied is uteroplacental insufficiency, where the impaired exchange of 

nutrients and oxygen at the placental interface does not allow the fetus to reach its full 

growth potential.3 However, other environmental factors such as a maternal diet, pollution, 

substance abuse, and chronic stress are all known to be associated with increasing the risk of 

FGR.4

Another factor affecting fetal growth in utero is fetal sex. It is well established that fetal sex 

influences fetal and neonatal morbidity and mortality in humans,5 as well as animal models.
6 In general, male fetuses experience poorer pregnancy outcomes including increased 

incidences of preterm delivery and stillbirth.5 This is thought to have evolutionary origins 

where males are traditionally viewed as the more “costly” sex and the maternal system is 

less likely to invest long term in the development of a male under adverse maternal 

conditions.7,8 Furthermore, female fetuses appear to have more placental adaptations to 

adverse pregnancy outcomes suggesting an innate ability to adapt to stressors and thus more 

likely to result in a favorable pregnancy outcome.9,10 Sex-specific differences in placental 

development and function have been studied;11 however, the mechanistic link between 

adverse maternal conditions and the placental/fetal response is poorly understood.

Guinea pigs offer a unique advantage in the study of adverse pregnancy outcomes and 

particular FGR via noninvasive maternal nutrient restriction (MNR). In humans, 

epidemiologic study of the Dutch famine during World War II showed that a major reduction 

in caloric uptake equivalent to 75% food restriction during pregnancy was needed to produce 

significant fetal weight reduction by >300 g in human infants.12 In guinea pigs, MNR of 

30%, 4 weeks prior to conception and until midpregnancy, and then 10% thereafter, 

significantly reduces fetal body weight.13 Fetal body composition is also altered in FGR 

offspring with skeletal muscle, retroperitoneal adiposity, thymus, and spleen decreased; 

heart, kidneys, and adrenals remained the same; while brain and lungs increased relative to 

fetal body weight indicating a pattern of blood redistribution for fetal brain sparing.14 

Furthermore, this model does not result in extreme fetal loss and only modest increased 

Wilson et al. Page 2

Pediatr Res. Author manuscript; available in PMC 2021 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



preterm delivery rate,15 overall validating this model for translational study. The aim of the 

current study was to understand the impact of MNR on the developing fetal organs in 

midpregnancy and assess potential sexual dimorphisms that could aid future studies 

developing therapeutics for placental dysfunction and FGR.

METHODS

Animal care and usage

Animal care, mating, and surgical procedures were approved by the Institutional Animal 

Care and Use Committee at Cincinnati Children’s Hospital Medical Center and Research 

Center (Protocol number 2017–0065). Female Dunkin–Hartley guinea pigs were purchased 

(Charles River Laboratories, Wilmington, MA) at ∼6–8 weeks of life and housed in a 

temperature-controlled environment with a 12 h light–dark cycle and placed on ad libitum 

chow (LabDiet diet 5025: 27% protein, 135 fat, and 60% carbohydrate as % of energy) with 

tap water ad libitum during their acclamation.

Following a 2-week acclimation, females were weighed and assigned into two groups: 

control (C), n = 7 or MNR/R, n = 5. In the R group, food intake was restricted to 70% of the 

C group for 4 weeks preconception through midpregnancy (gestational day (GD) 30). To 

prevent pregnancy wastage, intake was increased to 90% of C at GD30. Throughout the 4-

week dietary acclimation period, the estrus cycle was monitored daily by observing the 

perforation of the vaginal membrane.16 Females were placed with males overnight when the 

vaginal membrane was observed as beginning to perforate, and remained with the males 

during the nighttime period only until closure of the vaginal membrane. Ovulation was 

assumed to occur when the vaginal membrane was fully perforated and designated GD1. 

These animals were used as part of a larger study to determine the effects of nanoparticle 

(NP) treatment on placental function and therefore underwent an ultrasound-guided, trans-

uterine, intra-placental injection of 200 μL phosphate-buffered saline at GD30–33. A second 

cohort of R females (R-NP): n = 7, received an ultrasound-guided transuterine intra-

placental injection of NP (240 μg plasmid in 200 μL injection). This NP was composed of a 

plasmid containing the human insulin-like 1 growth factor (hIGF1) gene under the control of 

a placenta-specific promoter (Cyp19a1) complexed with a nonviral, biodegradable HPMA-

DMEAMA (N-(2-hydroxypropyl) methacrylamide-2-(dimethylamino)ethyl methacrylate) 

copolymer, which functions to protect the plasmid from degradation as well as to aide 

cellular uptake.17,18 All females were sacrificed 5 days after injection between GD35–38. At 

the time of sacrifice, dam was fasted for 4 h, weighed, and euthanized using carbon dioxide 

asphyxiation; the second method was maternal cardiac puncture with exsanguination. The 

pregnant uterine horns were dissected out and fetuses weighed. Fetal sex was determined 

based on examination of the fetal gonads and validated using polymerase chain reaction 

(PCR). Fetal organs including brain, heart, liver, and lungs were dissected and weighted. The 

dissected tissues were then divided in half and either placed in tissue cassettes and fixed in 

4% w/v paraformaldehyde (PFA) for histology or flash frozen in liquid nitrogen and stored 

in −80 °C for later RNA extractions.
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Fetal sex determination

Fetal sex determination at the time of necropsy was validated using PCR following the 

protocol outlined in ref. 19. Briefly, fetal ear was digested and genomic DNA (gDNA) 

extracted using the Qiagen gDNA Extraction Kit following standard protocols (Qiagen). 

PCR reactions were performed with primers that amplified guinea pig Dystrophin (Dys) and 

Sry with sequences as follows:19

Dys F: GTGTTAATGGTGACAGCATCAGC, R: TGCTGTTGGATCTGAA GTGGAGG;

Sry F: CCATGATTGCATTTATGGTGTGGTCCCG, R: GCCTTTTTTCGG 

CTTCTGTAAGCATTTTCCAC.

In 25 μL PCR reactions, 10 ng of fetal gDNA was mixed with 12.5 μL of EconoTaq DNA 

polymerase (Lucigen), 0.4 μM of each Dys primer and 0.8 μM of each Sry primer. PCR 

cycling then proceeded as follows: 95 °C for 3 min, 36 cycles at 95 °C for 30 s, 58 °C for 30 

s, and 72 °C for 30 s, followed by a final cycle at 72 °C for 5 min. PCR products were then 

run on a 10% TBE (Tris/Borate/EDTA) gel (Invitrogen) and stained with GelRed nucleic 

acid gel stain (Biotium) to visualize bands. gDNA from known female and male origins 

were also included as reference samples.

Morphological analysis and immunohistochemistry

For morphological analysis of fetal heart, lung, and brain, 5-μm-thick fixed tissue sections 

were cut using a microtome. Hematoxylin and eosin staining was used following standard 

laboratory protocol to assess gross tissue morphology. Immunohistochemistry (IHC) was 

undertaken to show CD31, an endothelial cytoplasm marker, and Ki67, a nuclear 

proliferation marker expression. The 5 μm sections were deparaffinised and rehydrated 

following standard protocol. Antigen retrieval was performed by incubating slides in 10× 

Target Retrieval Solution (Dako) for 15–30 min in a bead bath at 95 °C and then cooled at 

room temperature. Endogenous peroxidase activity was suppressed by incubating the slides 

in 3% hydrogen peroxide and then a protein block of fish skin gelatin, 5% goat serum, and 

1% bovine serum albumin was applied to the sections for 1 h at room temperature. Primary 

antibodies for CD31 (Abcam ab28364; diluted 1:50) and Ki67 (Invitrogen MA5–14520; 

diluted 1:200) were diluted in the protein block and applied overnight at 4 °C under 

humidified conditions. Negative controls were included by omitting the primary antibody 

from the diluent. CD31 and Ki67 antibody binding was amplified with goat anti-rabbit 

secondary antibody (Invitrogen; diluted 1:200), followed by incubation with ABC reagents 

(Vector) and visualized using 3,3′-diaminobenzidine (DAB) (Vector). Nuclei were 

counterstained with hematoxylin and sections set as previously described. Final images of 

the staining were captured using the Nikon Eclipse 80i light microscope. For analysis of 

Ki67, ten images per section at ×40 magnification were captured and cell counts were 

performed using the automated cell counting function in the Nis Elements Basic Research 

software (Nikon). Both positive DAB-stained nuclei and negative hematoxylin stained nuclei 

were counted. For analysis of CD31, a similar approach was used except the number of 

blood vessels per field counted manually.
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Fetal brain in situ hybridization

To confirm the inability of the NP to cross into fetal circulation, in situ hybridization was 

used to determine plasmid-specific messenger RNA (mRNA) expression in representative 

fetal brain sections. Using a custom-designed BaseScope™ probe (Advanced Cell 

Diagnostics) specific to the sequence between the stop codon and polyA signaling of the 

plasmid, 5-μm-thick PFA-fixed, paraffin-embedded tissue sections were deparaffinized and 

rehydrated following protocols outlined in the standard BaseScope™ protocol. Extended 

antigen retrieval was then performed by boiling for 30 min in RNAscope™ Targeted 

Retrieval Reagent (Advanced Cell Diagnostics), followed by incubation with RNAscope™ 

Protease IV (Advanced Cell Diagnostics) for 30 min at 40 °C. In situ hybridization with the 

BaseScope™ assay to visualize plasmid-specific mRNA occurred following the 

manufacturer’s protocol and sections were counterstained with hematoxylin. Imaging 

occurred using the Nikon Eclipse 80i microscope and a section of NP-injected guinea pig 

placenta was used as a positive control.

RNA isolations, reverse transcription, and quantitative PCR (qPCR) For RNA extractions, 

flash-frozen fetal heart, liver, and brain samples were homogenized in RLT lysis buffer 

(Qiagen) with 1% β-mercaptoethanol and agitation was aided by a tissue homogenizer. Total 

cellular RNA was isolated using the RNeasy Mini RNA Isolation Kit (Qiagen) as per the 

manufacturer’s protocol. RNA quantification was assessed using Nanodrop® 

Spectrophotometer (Thermo Fisher). 1 μg of total RNA was used to generate complementary 

DNA (cDNA) using the High Capacity cDNA Reverse Transcription Kit following the 

manufacturer’s protocol (Applied Biosystems). Inflammatory response markers were 

quantified qPCR with primers against transforming growth factor β (Tgfβ), connective tissue 

growth factor (Ctgf), tissue necrosis factor-α (Tnfα), matrix metalloproteinase 2 (Mmp2), 

and normalized to the housekeeping gene β-actin (β-Actin) as follows:

Tgfβ F: CAATTCCTGGCGCTACCTCA, R: ACCGATCCGTTGATTTCC;

Ctgf F: CACCCGGGTTACCAATGACA, R: CCGGTAGGTCTTCATGCTGG;

Tnfα F: GCCGTCTCCTACCCGGAAAA, R: TAGATCTGCCCGGAATCGGC;

Mmp2 F: CAGGGCACCTCCTACAACAG, R: CCTCTGAGTCCCCACCGAC;

β-Actin F: CGCGAGAAGATGACCCAG, R: TAGCACAGCCTGGATAGCAA.

qPCR analysis was performed in 20 μL triplicate reactions containing Power SYBR Green 

Master Mix (Invitrogen), 600 nM of primers, and 2.5 μL cDNA by the Applied Biosystems 

StepOne-Plus Real-Time PCR System. Relative mRNA expression was calculated using the 

StepOne Software v2.3 (Applied Biosystems) by the comparative CT method.

Statistical analysis

All data were analyzed using generalized linear modeling in SPSS Statistics Software (v.26). 

Each variable was adjusted for gestational age; fetal sex and maternal diet were considered 

main effects, while the random effect of maternal in utero environment was also included. 

Post hoc analyses were performed using Bonferroni adjustment. For additional analyses 
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including the R-NP group, NP treatment was also included within the model as the main 

effect. Data are reported as the estimated marginal mean and standard error (SE), and 

statistical significance was deemed at P < 0.05.

RESULTS

Maternal nutrient restriction induces FGR without pregnancy wastage

In the current study, MNR of female guinea pigs through to GD35–38 resulted in no fetal 

loss related to MNR and no significant difference in litter size between the C or R groups (C: 

3.29 ± 0.52 vs. R: 2.80 ± 0.84; P > 0.05). There was also no difference in the proportions of 

female to male fetuses between the C and R diet groups (C female: 11 vs. C male: 10 vs. R 

female: 7 vs. R male: 7; Fisher’s test P = 0.721). While there was no difference in maternal 

carcass weight (maternal weight minus total fetal and placental weight) between C and R 

dams (Fig. 1a), fetal weight was decreased in the R group (Fig. 1b). There was no difference 

in placental weight (Fig. 1c) nor was there a difference between the fetal sexes for fetal and 

placental weight. Fetal heart, lung, and liver weight as a percentage of fetal body weight was 

lower in the R fetuses compared to C and was also not different between the sexes (Fig. 2a–

c). Fetal brain weight as a percentage of body weight was, however, not different between 

the C and R fetuses (Fig. 3A), and the brain-to-liver weight ratio was increased in the R 

fetuses indicating brain sparing consistent with the physiologic blood redistribution typically 

seen in asymmetric FGR and not different between the sexes (Fig. 3b).

Histological analysis of tissue morphology and cell proliferation in fetal brain, heart, and 
liver

With smaller fetal weight and organ size, as well as brain sparing in the FGR fetuses, we 

sought to further investigate tissue morphology. Hematoxylin and eosin staining of the fetal 

brain, heart, and liver showed no evidence of increased tissue necrosis or inflammatory 

infiltration in the R tissue when compared to C fetuses (Fig. 4). IHC staining for Ki67 in the 

fetal brain revealed regions of high amounts of proliferation including the left ventricle and 

cerebellum (Fig. 5a, b). Interestingly, despite reduced organ weights, the percentage of cells 

positive for Ki67 in both fetal heart and liver was similar between C and R fetuses (Fig. 5c, 

d). There was also no difference in the percentage of cells positive for Ki67 in fetal heart or 

liver between males and females. IHC staining for CD31 to identify blood vessels in fetal 

brain and heart indicated no differences in blood vessel density with neither dietary 

intervention nor fetal sex (Supplementary Fig. 1).

Fetal brain mRNA expression of inflammatory markers Tgfβ and Ctgf differ with FGR and 
fetal sex

After recapitulating the FGR model, we then began to characterize some of the baseline 

characteristics of fetal programming in organs affected by blood redistribution in 

asymmetric FGR: fetal brain, heart, and liver. While no significant difference in mRNA 

expression of Tgfβ, Ctgf, Tnfα, or Mmp2 was found in fetal heart or liver (Supplementary 

Table 1), there was differences in fetal brain mRNA expression of Ctgf and Tgfβ. Ctgf and 

Tgfβ mRNA in the fetal brain was not different between female and male fetuses in the C 

dietary group; however, the expression was increased in female fetuses compared to male 
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fetuses in the R dietary group (Fig. 6a, b). There was no difference in fetal brain expression 

of Tnfα nor Mmp2 between C and R fetuses nor between male and female fetuses (Fig. 6c, 

d).

Placental treatment with NP modulates brain and fetal mRNA expression in a sex-specific 
manner

Placental treatment with NP has previously been shown to maintain fetal growth in a mouse 

model of surgically induced FGR.18 R-NP fetuses had reduced fetal weight compared to 

control and was similar to R fetal weight (Fig. 7a); placental weight was similar across all 

groups (Fig. 7b). No plasmid-specific mRNA was found in fetal brain tissue from R-NP 

treated fetuses confirming the inability of the NP to enter fetal circulation via the placenta 

(Fig. 7c). Of most interest, despite only directly affecting the placenta, NP treatment resulted 

in changes in fetal brain mRNA expression of both Tgfβ and Ctgf so that expression was 

similar between male and female fetuses in the R-NP group (Fig. 7d, e).

DISCUSSION

There is continuing interest in identifying biomarkers for adverse pregnancy outcomes as 

this information can not only be used to better diagnose obstetric diseases but also as 

potential targets for therapeutics. Here, we were able to successfully induce FGR with 

asymmetrical fetal growth patterning resulting in brain sparing at midpregnancy in the 

guinea pig. Analysis of the key organs involved in blood redistribution: fetal heart, liver, and 

brain revealed for the first time sex-specific differences in brain expression of growth factors 

and inflammatory cytokines, which may confer a survival advantage or disadvantage as the 

pregnancy progresses. Furthermore, we have shown that treatment of the placenta with a NP, 

known to modulate fetal growth in other models of fetal growth restriction18,20 by increasing 

nutrient transporter expression and placental angiogenesis, can affect brain mRNA 

expression in sex-specific manners. Overall, such observations provide crucial 

understandings of fetal programming in FGR, which will inform future studies aimed at 

predicting and treating placental dysfunction in utero.

In the present study, we were able to successfully establish the guinea pig model of FGR 

through MNR as previously described.13–15 MNR resulted in reduced overall fetal weight at 

midpregnancy as well as reductions in key fetal organ weight, except for the fetal brain. 

Furthermore, our study successfully recapitulated the FGR model without impaired fertility, 

pregnancy wastage, similar fertility rates, and litter sizes, as well as no differences in the 

distribution of male and female pups. In humans, fetal growth occurs in three distinct phases 

during gestation with the second phase of growth in midpregnancy characterized by both 

rapid cellular proliferation (hyperplasia) and increased cellular size (hypertrophy).2 

Perturbations to growth patterning during this time are predicted to result in asymmetric 

growth patterning with normal skeletal size but low fetal weight and is the hallmark of the 

80% of FGR attributable to uteroplacental insufficiency. Current clinical practices, however, 

are more commonly incorporating the use of sonographic fetal biometry measures including 

umbilical artery Doppler to increase the predictive accuracy of diagnosing growth restriction 

in utero.21 Such techniques are only just being explored in the guinea pig MNR model with 
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reduced biparietal diameter and head circumference observed as early as GD39.22 While 

these experiments are beyond the scope of the current study, they do present promising 

future directions that build up our current study, which highlights the usefulness of this 

model in continuing to elucidate the mechanistic causes and potential treatments of FGR.

Another key finding within the guinea pig MNR model was brain sparing. Organ sparing in 

FGR occurs due to blood redistribution from peripheral organs including the liver to 

essential organs such as the brain and heart based on organ size.23 Physiologically this is via 

the carotid chemoreflex and baroreceptors utilizing nitric oxide and adenosine to alter the 

vascular tone.24 However, histological analysis of fetal organs involved in blood 

redistribution in FGR: the brain, heart, and liver, showed no evidence of decreased nuclear 

hyperplasia or vascularization that would account for smaller fetal organ size or blood 

redistribution in midpregnancy. On the other hand, there was no evidence of increased 

cellular necrosis or increased inflammatory infiltrate in the organs of the restricted fetuses. 

While these preliminary investigations do not provide definitive conclusions on the 

biological mechanisms as to how fetal brain sparing is occurring in this model, such data 

does contribute necessary baseline measurements for further studies. These potentially 

include assessing glucose transporter 1, erythropoietin, and vascular endothelial growth 

factor to further evaluate fetal hypoxia–ischemia and neovascularization.25

The most compelling outcomes observed in this study were differences in mRNA expression 

of inflammatory markers between female and males fetuses. To our knowledge, we are the 

first to explore sexual dimorphism in the expression of Tgfβ, Ctgf, Tnfα, and Mmp2 in fetal 

liver, heart, and brain, comparing normal and growth-restricted fetuses. In male growth-

restricted fetuses, brain mRNA expression of Ctgf and Tgfβ were significantly lower 

compared to female fetuses. It is well established that female and male fetuses respond 

differently to adverse obstetric environments.5 Furthermore, sexual dimorphism among FGR 

fetuses in the MNR guinea pig model have been previously shown near term.26 Increased 

hypoxyprobe-1 (a marker of chronic tissue hypoxia) in the fetal liver and kidneys was 

observed in all pups, but only female pups showed increased erythropoietin and vascular 

endothelial growth factor, which is hypothesized to impart a survival advantage during 

suboptimal uterine conditions.26 The impact of fetal sex on fetal outcome is also not 

restricted to models of maternal undernutrition. In studies of maternal obesity or high-fat 

diet animal models, there are known differences in placental function depending on fetal sex.
27–29 Thus, these findings, that there are differences in expression of the inflammatory 

markers in males compared to females, which may provide a survival advantage/

disadvantage, may also occur in other models of pregnancy perturbations and help reinforce 

the idea that sex-specific differences must be considered in all pregnancy studies.

Consideration of fetal sex in the development of pregnancy therapeutics is also important. 

When the placental function was modified through NP treatment, this resulted in increased 

mRNA expression in the fetal brain of the restricted males, abolishing the prior significant 

difference with restricted female fetuses. Further still, we showed the inability of our NP to 

cross the placental barrier and enter the fetus, and thus any differences in fetal mRNA 

expression were due to signaling events from the placenta. We did not observe any 

significant changes to fetal weight with NP treatment, although this was not unexpected as 5 
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days is a relatively short period of time when considering guinea pigs having a 65–70 day 

gestation. Nevertheless, the observed changes in gene expression in the present study may be 

important to the initial processes of restoring fetal growth. Without further studies, these 

mechanistic implications are unclear; however, these data have established a baseline 

understanding of these markers in fetal liver, heart, and brain, as well as shown the ability to 

modulate fetal gene expression, which will be necessary for future investigations.

In conclusion, we have shown for the first time sexual dimorphism in mRNA expression of a 

number of inflammatory markers in the fetal brain at midpregnancy in the guinea pig. 

Additionally, we have demonstrated that treatment of the placenta with a nanoparticle that 

enhances placental growth factor expression can differentially affect fetal organ mRNA 

expression depending on fetal sex. Such observations may impart a potential survival bias 

between females and males, particularly in adverse conditions. Overall, this study provides 

essential baseline data for further studies focused on not only better understanding the 

developmental origins of health and disease but also on the development of potential 

therapeutics to treat obstetric diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IMPACT:

• Male and female fetuses respond differently to adverse pregnancy 

environments.

• Under fetal growth restriction conditions, inflammatory marker mRNA 

expression in the fetal brain was higher in females compared to males.

• Differences in gene expression between males and females may confer a 

selective advantage/disadvantage under adverse conditions.

• Better characterization of sexual dimorphism in fetal development will aid 

better development of treatments for obstetric diseases.
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Fig. 1. The effect of maternal nutrient restriction in guinea pigs.
At midpregnancy, there was no difference in maternal weight (a) between control-fed and 

restricted-fed females. However, fetal weight (b) was reduced in the restricted-fed females, 

while placental weight remained similar between the diet groups (c). There was no 

difference between the fetal sexes for neither fetal nor placental weight. Data are estimated 

marginal mean ± SE, n = 7 control (11 female and 10 male fetuses) and n = 5 restricted (7 

female and 7 male fetuses). Statistical significance was determined using generalized linear 

mixed modeling including diet and fetal sex as main effects, maternal in utero environment 

as a random effect, and gestational day as a covariate.
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Fig. 2. The effect of maternal nutrient restriction on midpregnancy fetal organ weights as a 
percentage of body weight.
In fetuses from restricted-fed females, % of body weight of fetal heart (a), fetal lung (b), and 

fetal liver (c) was reduced compared to fetuses from control-fed females. For all organs, 

there was no difference between the fetal sexes. Data are estimated as marginal mean ± SE, 

n = 7 control (11 female and 10 male fetuses) and n = 5 restricted (7 female and 7 male 

fetuses). Statistical significance determined using generalized linear mixed modeling 

including diet and fetal sex as main effects, maternal in utero environment as a random 

effect, and gestational day as a covariate.
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Fig. 3. The effect of maternal nutrient restriction on midpregnancy fetal brain sparring.
In the fetuses from restricted-fed females, brain weight as a % of body weight was similar to 

fetuses from control-fed females (a), while there was an increase in the brain-to-liver weight 

ratio (b) indicating brain sparring. There was no difference between fetal sexes. Data are 

estimated as marginal mean ± SE, n = 7 control (11 female and 10 male fetuses) and n = 5 

restricted (7 female and 7 male fetuses). Statistical significance determined using 

generalized linear mixed modeling including diet and fetal sex as main effects, maternal in 

utero environment as a random effect, and gestational day as a covariate.
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Fig. 4. Hematoxylin and eosin staining of fetal brain, heart, and liver sections.
Representative images show no increased signs of necrosis or immune cell infiltration 

between control and restricted fetuses. Scale bars brain = 5 mm, heart = 1 mm, liver = 2.5 

mm.
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Fig. 5. Immunohistochemistry staining of Ki67 in fetal brain, heart, and liver.
Ki67 staining showed high levels of proliferation within the fetal brain, particularly in the 

left ventricle (closed arrow) and cerebellum (open arrow) regions of both control (a) and 

restricted (b) fetuses. The percentage of cells positive for Ki67 in the fetal heart was not 

different between control and restricted fetuses nor between male and female fetuses (c). 

Similarly, there was no difference in the percentage of cells positive for Ki67 in fetal liver 

between different diet groups or fetal sex (d). a and b are representative images, scale bar = 

5 mm. Data in c and d are estimated marginal mean ± SE, n = 4 control (2 female and 4 

male fetuses) and n = 3 restricted (3 female and 3 male fetuses).
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Fig. 6. Analysis of inflammatory marker mRNA in the fetal brain.
There was no effect of fetal growth restriction due to maternal nutrient restriction on fetal 

brain mRNA expression of transforming growth factor β (Tgfβ, a), connective tissue growth 
factor (Ctgf, b), tissue necrosis factor-α (Tnfα, c), or matrix metalloproteinase 2 (Mmp2, d) 

when compared to control fetuses. However, fetal brain mRNA expression of Tgfβ was 

lower in the restricted male fetuses compared to restricted female fetuses (a). mRNA 

expression of Ctgf in the fetal brain was also lower in restricted males compared to restricted 

females (b). Data are estimated marginal mean ± SE, n = 6 control (11 female and 7 male 

fetuses) and n = 5 restricted (7 female and 7 male fetuses). Statistical significance was 

determined using generalized linear mixed modeling including diet and fetal sex as main 

effects, maternal in utero environment as a random effect, and gestational day as a covariate. 

Bonferroni post hoc analyses were also performed. *P < 0.05; ns not significant.
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Fig. 7. Analysis of fetal and placental weight, and inflammatory marker mRNA in fetal brain 
with nanoparticle treatment.
In growth-restricted fetuses, placental injection of nanoparticle (NP) to treat placental 

dysfunction did not change fetal weight when compared to untreated fetuses (a). Placental 

weight remained similar in nanoparticle-treated restricted females compared to untreated, 

restricted, and control fed (b). In situ hybridization of plasmid-specific mRNA confirmed the 

inability for the nanoparticle plasmid to enter fetal circulation as no plasmid-specific mRNA 

was found in the fetal brain of fetuses, which received nanoparticle treatment (c). However, 
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nanoparticle treatment resulted in changes to fetal brain expression of transforming growth 

factor-β (Tgfβ, d) and connective tissue growth factor (Ctgf, e). Expression of both markers 

was lower in untreated restricted male fetuses compared to untreated restricted female 

fetuses. Data are estimated marginal mean ± SE, n = 7 control (11 female and 10 male 

fetuses) and n = 5 restricted (7 female and 7 male fetuses). Statistical significance was 

determined using generalized linear mixed-modeling including diet and fetal sex as main 

effects, maternal in utero environment as a random effect, and gestational day as a covariate. 

Bonferroni post hoc analyses were also performed. A and B indicate statistical significance 

of P < 0.05 between diet groups. *P < 0.05, **P < 0.01; ns not significant.
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