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Abstract

Background

To investigate modern nonlinear iterative strategies for formula constant optimisation and

show the application and results from a large dataset using a set of disclosed theoretical-

optical lens power calculation concepts.

Methods

Nonlinear iterative optimisation algorithms were implemented for optimising the root mean

squared (SoSPE), the mean absolute (SoAPE), the mean (MPE), the standard deviation

(SDPE), the median (MEDPE), as well as the 90% confidence interval (CLPE) of the predic-

tion error (PE), defined as the difference between postoperative achieved and formula pre-

dicted spherical equivalent power of refraction. Optimisation was performed using the

Levenberg-Marquardt algorithm (SoSPE and SoAPE) or the interior point method (MPE,

SDPE, MEDPE, CLPE) for the SRKT, Hoffer Q, Holladay 1, Haigis, and Castrop formulae.

The results were based on a dataset of measurements made on 888 eyes after implantation

of an aspherical hydrophobic monofocal intraocular lens (Vivinex, Hoya).

Results

For all formulae and all optimisation metrics, the iterative algorithms showed a fast and sta-

ble convergence after a couple of iterations. The results prove that with optimisation for

SoSPE, SoAPE, MPE, SDPE, MEDPE, and CLPE the root mean squared PE, mean abso-

lute PE, mean PE, standard deviation of PE, median PE, and confidence interval of PE

could be minimised in all situations. The results in terms of cumulative distribution function

are quite coherent with optimisation for SoSPE, SoAPE, MPE and MEDPE, whereas with

optimisation for SDPE and CLPE the standard deviation and confidence interval of the PE

distribution could only be minimised at the cost of a systematic offset in mean and median

PE.
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Conclusion

Nonlinear iterative techniques are capable of minimising any statistical metrics (e.g. root

mean squared or mean absolute error) of any target parameter (e.g. PE). These optimisa-

tion strategies are an important step towards optimising for the target parameters which are

used for evaluating the performance of lens power calculation formulae.

Introduction

The refractive power of intraocular lenses can be calculated using either empirical formulae, or

so called theoretical-optical formulae based on deep learning algorithms, or with combinations

[1, 2] of these. With the SRK or SRK2 formula [1, 3], the power of the intraocular lens (IOL)

for emmetropisation is derived from the corneal power (calculated from the corneal radius

using a keratometer index (nK) of 1.3375), axial length (AL) and a formula constant (A), which

adapts the formula to a specific lens design. In addition to this simplistic regression formula,

several theoretical-optical formulae have been published based on a pseudophakic eye model,

in which the IOL power for emmetropisation is based on: the AL, the corneal power calculated

from corneal curvature with a keratometer index, other optional biometric measures such as

anterior chamber depth (ACD), central thickness of the cornea (CCT) or the crystalline lens

(LT), the horizontal corneal diameter (W2W), the age of the patient, and one or more formula

constants which again adapt the generally defined formula to the characteristics of a specific

lens design [1, 4]. The classical calculation concepts use formula constants A (SRKT formula

[3, 5]), personalised anterior chamber depth pACD (Hoffer Q formula [6–8]), surgeon factor

SF (Holladay 1 formula [9]), or constant triplets a0/a1/a2 (Haigis formula [1]). All of these the-

oretical optical formulae based on the Gernet or Fyodorov (published independently in 1970

[10] and 1975 [11]) are restricted to linear Gaussian optics (paraxial optics). The prediction of

the axial position of the thin IOL implant (effective lens position, ELP) is mostly performed

empirically using the formula constant [12–14]. In addition to these classical calculation con-

cepts, over the last 2 or decades many IOL power calculation strategies such as the Holladay 2,

the Barrett, Kane, T2, or DGS formula have been presented, and their relative merits discussed

in many scientific reports [15–17]. Only a few of these modern IOL power calculation formu-

lae (for example, the Castrop formula) have been disclosed by the formula authors [16, 18]. In

contrast to all these formulae, IOL power calculations using deep learning (e.g. the Hill RBF

calculator) are based on a big data setup instead of an eye model, and they do not require for-

mula constants to consider the specific characteristics of a lens model.

It is well known that formula constants are specific not only to IOL models, but also to the

clinical population, the surgical technique, and to the measurement techniques (e.g. refractom-

etry) or the equipment (e.g. the biometer). Therefore formula constants should be customised

to the surgeon or the surgical centre [19, 20]. For optimisation of formula constants, in addi-

tion to the preoperative biometric measures which are considered in the lens power calculation

formula, the power of the IOL inserted in the patient eye and the achieved refraction (spherical

equivalent, SEQ) after cataract surgery are required. Special attention should be given to the

postoperative refraction, which should be documented in a time interval at least 4 weeks after

cataract surgery using manual refractometry using trial glasses in a trial frame. Eyes with a

postoperative Snellen decimal visual acuity lower than 0.8 should not be considered as the

refraction might be unreliable.

However, there is in general no consensus on the optimisation technique for formula con-

stants [18–20]. If the IOL power calculation formula is fully disclosed and uses only one
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formula constant, the formula can be reorganised to solve for the formula constant. For each

individual eye a formula constant is extracted, combining the preoperative biometric mea-

sures, the power of the implanted IOL, and the postoperative refraction. Ultimately, any statis-

tical measure such as the mean or median could be used to identify the proper formula

constant for this study population from the formula constant distribution. However, when

using this ‘optimised’ formula constant in a back-calculation procedure, due to nonlinearity of

the formula, we have to be aware that such a procedure does not necessarily result in a zero

mean or median prediction error for the spherical equivalent, the least mean absolute predic-

tion error (MAE), the least root mean squared prediction error (RMS), or the least confidence

intervals (CL) in the distribution of the prediction error [19]. With more than 1 formula con-

stant in the calculation concept, a direct back calculation of the formula constants for an indi-

vidual patient eye is not possible. In the simplest case, if all the formula constants together

define the ELP in a multilinear superposition, the formula can be solved for the ELP and the

formula constants retrieved with a multivariable linear regression analysis from the ELP (e.g.

a0/a1/a2 with the Haigis formula). In IOL calculation concepts with more than one formula

constant which do not define the ELP with a multilinear superposition (such as the Castrop

formula), optimisation procedures fail, and nonlinear optimisation strategies have to be

applied [18].

The purpose of the present study is to present a methodology for nonlinear iterative opti-

mising formula constants:

• which could be used for any fully disclosed IOL power calculation concept, and

• which is in general capable of minimising any statistical measure (e.g. mean, median, stan-

dard deviation, confidence interval, or combinations) of any target parameter (e.g. SEQ pre-

diction error).

This optimisation strategy is applied to a large dataset of measurements made after cataract

surgery from one clinical centre using one IOL type, in order to explain the meaning of the for-

mula constant optimisation results more in detail.

Materials and methods

Dataset for formula constant optimisation

In this retrospective study we analysed a dataset containing measurements from 888 eyes from

a cataract population from Augen- und Laserklinik Castrop-Rauxel, Castrop-Rauxel, Germany

which was transferred to us (490 right eyes and 398 left eyes; 495 female and 392 male). The

mean age was 71.2±9.1 years (median: 71 years, range: 47 to 91 years). The study was registered

with the local ethics committee (Ärztekammer des Saarlandes, registration number 157/21),

and a patient informed consent was not required for this study. The data were transferred to

us in an anonymised fashion, which precludes back-tracing of the patient. The anonymised

data contained preoperative biometric data derived with the IOLMaster 700 (Carl-Zeiss-Medi-

tec, Jena, Germany) including axial length AL, anterior chamber depth ACD measured from

the corneal front apex to the anterior apex of the crystalline lens, lens thickness LT, and the

corneal front surface radius measured in the flat (R1) and in the steep meridian (R2). In all

cases a Vivinex 1 piece hydrophobic aspherical (aberration correcting) monofocal intraocular

lens (Hoya Surgical Optics, Singapore) was inserted. In addition to the refractive power of the

inserted lens (PIOL), the postoperative refraction (sphere and cylinder) 5 to 12 weeks after cat-

aract surgery was measured by an experienced optometrist and recorded in the dataset. The

dataset included only data with a postoperative Snellen decimal visual acuity of 0.8 (20/25
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Snellen lines) or higher to ensure that the postoperative refraction was reliable. The descriptive

data on pre-cataract biometry, PIOL and postoperative refraction are summarised in Table 1.

The anonymised Excel data (.xlsx-format) was imported into MATLAB to Matlab (Matlab

2019b, MathWorks, Natick, USA) for further processing.

Preprocessing of the data

Custom software was written in Matlab. The patient age was derived from the date of cataract

surgery and date of birth. The mean corneal radius of curvature Rmean was calculated as

Rmean = ½(R1+R2), and the mean corneal power Kmean was derived from R1 and R2 as

Kmean = ½((nK-1)/R1+(nK-1)/R2) with a keratometer index nK as indicated in the formula

definition. The following lens power calculation formulae were considered in this constant

optimisation process:

• SRKT formula published by Sanders, Retzlaff and Kraff [3, 5],

• Hoffer Q formula published by Hoffer [6–8],

• Holladay 1 formula published by Holladay and Prager [9],

• Haigis formula [1], as well as the

• Castrop formula published by Wendelstein et al. and Langenbucher et al. [16, 18].

The SRKT, Hoffer Q, and Holladay 1 formulae consider the AL and corneal curvature/

power data together with one formula constant (A, pACD, and SF, respectively), the Haigis

formula considers the AL, ACD, and corneal curvature together with a formula constant triplet

a0/a1/a2s, and the Castrop formula considers AL, CCT, ACD, LT and corneal curvature of the

front and back surface together with a formula constant triplet C/H/R. For the Haigis formula

we used 2 versions: the simplified option (Haigis1) with preset values a1 = 0.4/a2 = 0.1 and cus-

tomisation of a0, and additionally the option with a customised formula constant triplet a0/a1/

a2 (Haigis3) [19]. For simplicity when using the Castrop formula, instead of using the CCT

and the curvature data of the corneal back surface, we replaced CCT by 0.55 mm and the cor-

neal back surface curvature was estimated from the corneal front surface curvature with a

fixed anterior to posterior curvature ratio of 0.834 as published by Langenbucher et al. [18],

and a sum of segments correction according to Cooke [21, 22] was used for the axial length.

All formulae included in this analysis were reorganised and solved for the SEQ as a function of

preoperative biometrical data and PIOL. The difference between the achieved SEQ (from the

postoperative follow-up examination) and the SEQ predicted by the formula was considered

as the formula prediction error PE.

Table 1. Descriptive statistics of the dataset with mean, standard deviation (SD), median, and the lower (quantile 5%) and upper (quantile 95%) boundary of the

90% confidence interval.

N = 888 AL in mm ACD in mm LT in mm R1 in mm R2 in mm Rmean PIOL in dpt SEQ in dpt

Mean 24.10 3.19 4.62 7.85 7.67 7.77 20.62 -0.56

SD 1.41 0.41 0.46 0.28 0.27 0.27 3.73 0.92

Median 23.90 3.18 4.59 7.85 7.67 7.77 21.0 -0.25

Quantile 5% 22.10 2.51 3.86 7.40 7.22 7.31 13.5 -2.38

Quantile 95% 26.78 3.83 5.36 8.33 8.15 8.23 26.0 0.38

AL refers to the axial length, ACD to the external phakic anterior chamber depth measured from the corneal front apex to the front apex of the crystalline lens, LT to the

central thickness of the crystalline lens, R1 and R2 to the corneal radius of curvature for the flat and steep meridian, Rmean to the average of R1 and R2, PIOL to the

refractive power of the intraocular lens implant, and SEQ to the spherical equivalent power achieved 4 to 12 weeks after cataract surgery.

https://doi.org/10.1371/journal.pone.0267352.t001
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Formula constant optimisation

In this context, formula constants were optimised for statistical metrics of the SEQ prediction

error PE. For the statistical metrics we used: the sum of squared PE (SoSPE) which minimises

the ‘energy’ of the prediction error, the sum of the absolute PE (SoAPE, as typically used in sci-

entific reports on the performance of lens power prediction formulae), zeroing of the mean

the PE (MPE), the standard deviation of the PE (SDPE) and a linear combination of both

(SDMPE), and zeroing of the median PE (MEDPE), the 90% confidence interval (CLPE) and

combination of both (CLMEDPE). For all formulae under test (SRKT, Hoffer Q, Holladay 1,

Haigis1, Haigis3, and Castrop) formula constant optimisation programming code was written

in Matlab for the above mentioned metrics.

For optimisation of the PE for minimising the SoSPE and SoAPE we used the Levenberg-

Marquardt algorithm, which is also quoted in the literature as a damped least-squares method

and in general solves non-linear least squares problems. This optimisation technique was first

described by Levenberg in 1944 [23] and 2 decades later rediscovered by Marquardt [24]. This

algorithm is typically used in least squares curve fitting [25] and in most cases converges faster

than simple back-propagation methods. It combines the classical Gauss-Newton algorithm

with the gradient descent algorithms and is–in most applications–more robust in terms of

finding the global minimum, with the potential drawback that the convergence may be some-

what slower compared to the Gauss-Newton algorithm.

Formula constant optimisation for MPE, SDPE, SDMPE, MEDPE, CLPE, and CLMEDPE

was implemented using the interior point methods, which refer to a family of optimisation

techniques for solving linear and nonlinear convex optimisation problems. This algorithm is

also quoted as the barrier method. First published by Dikin in 1967 [26] and 2 decades later re-

discovered by Karmarker [27], this algorithm is very efficient in terms of minimising the num-

ber of iterations and the number of function evaluations, but seems to be less robust in search-

ing a global minimum [28]. It can be directly implemented with linear programming

techniques, and in many situations shows a better performance compared to the simplex

algorithm.

Both optimisation techniques–the Levenberg-Marquardt algorithm [23, 24] and the interior

point method [26, 27]–were used with box constraint boundaries. The formula constants used

for initialisation were: 118.9 (boundaries 116.0 to 121.0) for the SRKT formula, pACD = 5.4

(boundaries from 4.5 to 6.3) for the Hoffer Q, SF = 1.5 (boundaries from 0.5 to 3.0) for the

Holladay, a0 = 1.8 (boundaries from -1.0 to 2.5) for the Haigis1, a0/a1/a2 = 1.8/0.4/0.1 (bound-

aries from -1.0 to 2.5/0.0 to 0.8/0.0 to 0.3 for the Haigis3, and C/H/R = 0.4/0.0/0.0 (boundaries

from 0.25 to 0.45/-0.35 to 0.35/-0.35 to 0.35 for the Castrop formula, respectively. After opti-

mising the formula constants for SoSPE, these constants were used as presets for all other opti-

misations, and the respective boundaries were set symmetrically to ±0.5, ±0.5, ±0.5, ±0.5, ±0.5/

±0.1/±0.1, and ±0.1/±0.35/±0.35, respectively. The box constraints were not reached in any

iteration step of any of the optimisations.

The SEQ prediction was back-calculated using the optimised constants for each formula

and each optimisation metric, and the prediction error PE was derived and analysed. The per-

formance of the formula constant optimisation process was documented with the same metrics

which were used earlier for the constant optimisation (sum of squared PR, sum of absolute PE,

mean PE, SD of PE, median PE, and 90% CL of PE).

Results

In general, the convergence of the iterative optimisation process for all formulae was faster

when optimising for the sum of squared PE (up to 26 iterations and 152 function evaluations),
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the mean PE (up to 30 iterations and 148 function evaluations) or the median PE (up to 32

iterations and 177 function evaluations), as compared to the optimisation for the sum of abso-

lute PE (up to 48 iterations and 255 function evaluations) standard deviation (up to 50 itera-

tions and 311 function evaluations), 90% confidence interval (up to 48 iterations and 198

function evaluations) or combinations of standard deviation and mean or 90% confidence

interval and median PE (up to 77 iterations and 510 function evaluations). Convergence was

achieved in all optimisations for all formulae under test.

The resulting optimised formula constants in terms of minimising the sum of squared pre-

diction error (SoSPE), sum of absolute prediction error (SoAPE, mean prediction error

(MPE), standard deviation of prediction error (SDPE), combinations of standard deviation

and mean prediction error (SDMPE), median prediction error (MEDPE), 90% confidence

interval of prediction error (CLPE), and combinations of 90% confidence interval of predic-

tion error and median prediction error (CLMEDPE) are listed in Table 2.

Except for the Castrop formula where all optimisation strategies yielded consistent results,

an optimisation solely for the standard deviation or the 90% confidence interval of the predic-

tion error may in some cases yield formula constants which deviate from those derived from

an optimisation for sum of squared or sum of absolute prediction error, mean or median pre-

diction error, or combinations of standard deviation and mean or confidence interval and

median prediction error.

In the next step, the optimised formula constants for the 8 different metrics were used to

derive the formula predicted refraction and to calculate the prediction error in terms of

achieved spherical equivalent minus formula predicted refraction. In Table 3, the mean, stan-

dard deviation, median, lower and upper boundary of the 90% confidence interval together

with the width of the 90% confidence interval, the mean absolute and the root mean squared

prediction error are listed for all formulae under test.

The numbers marked in bold in each row indicate the prediction error corresponding to

the optimisation metric for that row, and which is therefore expected to yield the lowest value.

For example, in the row corresponding to optimisation for the mean or the median prediction

error, the resulting mean or median prediction error would be expected to have the smallest

value. In general, except when optimising for the standard deviation or the 90% confidence

interval without considering the respective mean or median value, the optimisation metrics

Table 2. Optimised formula constants for the SRKT, the Hoffer Q, the Holladay 1, Haigis (with optimised a0 and preset values a1 = 0.4 / a2 = 0.1, Haigis1; and with

optimised a0 / a1 / a2 constant triplet, Haigis3), and Castrop formula.

SoSPE SoAPE MPE SDPE SDMPE MEDPE CLPE CLMEDPE

SRKT A 119.2748 119.2877 119.2698 119.3783 119.2698 119.2854 119.2810 119.2811

Hoffer Q pACD 5.7356 5.7336 5.7638 5.4638 5.7638 5.7549 5.6517 5.6564

Holladay 1 SF 1.9618 1.9565 1.9762 1.6762 1.9762 1.9661 1.8683 1.9230

Haigis1 a0 1.5633 1.5540 1.5884 1.2884 1.5884 1.5934 1.5530 1.5702

Haigis3 a0 -0.6853 -0.8422 -0.6846 -0.3346 -0.6846 -0.6920 -0.6856 -0.6410

a1 0.3417 0.3524 0.3420 0.3308 0.3420 0.3459 0.3526 0.3340

a2 0.2029 0.2077 0.2030 0.1795 0.2030 0.2025 0.2024 0.2021

Castrop C 0.2814 0.2517 0.2814 0.2746 0.2814 0.2780 0.2780 0.2780

H 0.3500 0.5014 0.3500 0.3905 0.3500 0.3653 0.3477 0.3477

R 0.0848 0.0554 0.0848 0.0848 0.0848 0.0765 0.1083 0.1019

Formula constant optimisation was performed to minimise the sum of squared prediction errors (SoSPE), the sum of absolute prediction errors (SoAPE), the mean

prediction error (MPE), standard deviation of prediction error (SDPE), a combination of mean and standard deviation of prediction error (SDMPE), median prediction

error (MEDPE), the 90% confidence interval of prediction error (CLPE), and a combination of median and 90% confidence interval of prediction error (CLMEDPE).

https://doi.org/10.1371/journal.pone.0267352.t002
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Table 3. Prediction error (PE) as the difference between achieved and formula predicted spherical equivalent for 8 different statistical metrics of formula constant

optimisation and various formulae under test.

N = 888; optimisation for! SoSPE SoAPE MPE SDPE SDMPE MEDPE CLPE CLMEDPE

SRKT MEAN -0.0041 -0.0147 0.0000 -0.0884 0.0000 -0.0128 -0.0092 -0.0092

SD 0.4414 0.4413 0.4414 0.4410 0.4414 0.4413 0.4413 0.4413

MEDIAN 0.0097 -0.0019 0.0143 -0.0775 0.0143 0.0000 0.0034 0.0033

5% quantile -0.7089 -0.7181 -0.7064 -0.7866 -0.7064 -0.7160 -0.7121 -0.7121

95% quantile 0.7095 0.7002 0.7120 0.6298 0.7120 0.7020 0.7054 0.7054

90% CL 1.4184 1.4184 1.4184 1.4164 1.4184 1.4181 1.4175 1.4175

ABS 0.3407 0.3405 0.3408 0.3471 0.3408 0.3405 0.3406 0.3406

RMS 0.4412 0.4413 0.4412 0.4495 0.4412 0.4412 0.4412 0.4412

Hoffer Q MEAN 0.0370 0.0397 0.0000 0.3969 0.0000 0.0116 0.1474 0.1412

SD 0.4275 0.4272 0.4307 0.4027 0.4307 0.4297 0.4185 0.4189

MEDIAN 0.0291 0.0322 -0.0115 0.3941 -0.0115 0.0000 0.1383 0.1309

5% quantile -0.6550 -0.6512 -0.7016 -0.2541 -0.7016 -0.6876 -0.5326 -0.5404

95% quantile 0.7702 0.7733 0.7330 1.0423 0.7330 0.7418 0.8385 0.8336

90% CL 1.4252 1.4246 1.4346 1.2964 1.4346 1.4294 1.3711 1.3739

ABS 0.3327 0.3327 0.3346 0.4657 0.3346 0.3336 0.3463 0.3449

RMS 0.4288 0.4288 0.4305 0.5652 0.4305 0.4296 0.4435 0.4419

Holladay 1 MEAN 0.0188 0.0257 0.0000 0.3942 0.0000 0.0132 0.1410 0.0694

SD 0.4256 0.4253 0.4265 0.4169 0.4265 0.4259 0.4210 0.4235

MEDIAN 0.0057 0.0116 -0.0130 0.4034 -0.0130 0.0000 0.1275 0.0546

5% quantile -0.6576 -0.6497 -0.6784 -0.2710 -0.6784 -0.6640 -0.5251 -0.6011

95% quantile 0.8011 0.8056 0.7905 1.0901 0.7905 0.7981 0.8876 0.8390

90% CL 1.4588 1.4553 1.4689 1.3611 1.4689 1.4621 1.4127 1.4400

ABS 0.3269 0.3269 0.3277 0.4689 0.3277 0.3271 0.3444 0.3296

RMS 0.4258 0.4259 0.4262 0.5736 0.4262 0.4258 0.4438 0.4289

Haigis1 MEAN 0.0334 0.0458 0.0000 0.4033 0.0000 -0.0067 0.0471 0.0242

SD 0.4027 0.4017 0.4055 0.3789 0.4055 0.4061 0.4015 0.4034

MEDIAN 0.0341 0.0434 0.0071 0.3940 0.0071 0.0000 0.0444 0.0267

5% quantile -0.6472 -0.6331 -0.6853 -0.2350 -0.6853 -0.6929 -0.6316 -0.6578

95% quantile 0.7140 0.7263 0.6843 1.0394 0.6843 0.6802 0.7276 0.7049

90% CL 1.3612 1.3594 1.3696 1.2744 1.3696 1.3731 1.3592 1.3626

ABS 0.3156 0.3154 0.3173 0.4580 0.3173 0.3177 0.3154 0.3159

RMS 0.4038 0.4040 0.4053 0.5532 0.4053 0.4059 0.4041 0.4039

Haigis3 MEAN 0.0065 0.0172 0.0000 0.3305 0.0000 0.0108 -0.0247 0.0058

SD 0.3711 0.3712 0.3712 0.3677 0.3712 0.3711 0.3717 0.3712

MEDIAN -0.0056 0.0024 -0.0126 0.3222 -0.0126 0.0000 -0.0369 -0.0062

5% quantile -0.5930 -0.5763 -0.5997 -0.2535 -0.5997 -0.5906 -0.6257 -0.5922

95% quantile 0.6234 0.6439 0.6159 0.9440 0.6159 0.6254 0.5821 0.6151

90% CL 1.2163 1.2202 1.2157 1.1976 1.2157 1.2160 1.2077 1.2073

ABS 0.2830 0.2826 0.2833 0.3987 0.2833 0.2829 0.2852 0.2833

RMS 0.3710 0.3714 0.3710 0.4943 0.3710 0.3710 0.3724 0.3710

(Continued)
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provide consistent results. When using the standard deviation or the 90% confidence intervals

as the sole metrics for formula constant optimisation, the mean / median prediction error may

in some cases have a systematic offset up to 0.4 dpt (underlined numbers) / 0.14 dpt (italic

numbers). This systematic offset in mean / median prediction error could be mostly compen-

sated for by using metrics for formula constant optimisation which consider combinations of

the standard deviation and mean or 90% confidence interval and median.

Fig 1 shows the cumulative distribution function (CDF) of the prediction error (difference

between the achieved SEQ from the formula predicted SEQ) for the 6 lens power calculation

formulae (SRKT, Hoffer Q, Holladay 1, Haigis with preset a1/a2 and optimisation of a0 (Hai-

gis1) and with optimisation of the constant triplet a0/a1/a2 (Haigis3), and Castrop formula).

For each formula under test, formula constant(s) were optimised to minimise the sum of

squared prediction errors, the sum of absolute prediction errors, the mean prediction error,

standard deviation (SD) of prediction error, a combination of mean and standard deviation of

prediction error (SD & mean), median prediction error, the 90% confidence interval (CL) of

prediction error, and a combination of median and 90% confidence interval of prediction

error (90% CL & median). From the first graph (SRKT) we see that the CDFs for the prediction

error are almost consistent except for the constant optimisation for the standard deviation,

which ends up with an A constant which shifts the patient refraction moderately in the direc-

tion of myopia (dashed cyan line shifted to the left). From the second graph (Hoffer Q) we see

that the CDFs for the prediction error are mostly consistent except for the constant optimisa-

tions for the standard deviation and for the confidence interval, both of which end up with a

pACD constant with a moderate to severe shift of the patient refraction in the direction of

hyperopia (dashed cyan / dashed magenta line shifted to the right). It can be seen from the

third graph (Holladay 1) that, similar to the Hoffer Q formula, the CDFs for the prediction

error are mostly consistent except for the constant optimisation for the standard deviation and

the confidence interval, both of which end up with a surgeon factor SF which moderately or

severely shifts the patient refraction in the direction of hyperopia (dashed cyan / dashed

magenta line shifted to the right). The fourth graph (Haigis1) shows that the CDFs for the

Table 3. (Continued)

N = 888; optimisation for! SoSPE SoAPE MPE SDPE SDMPE MEDPE CLPE CLMEDPE

Castrop MEAN 0.0000 0.0114 0.0000 -0.0120 0.0000 0.0089 0.0008 0.0072

SD 0.3437 0.3440 0.3437 0.3437 0.3437 0.3437 0.3438 0.3438

MEDIAN -0.0075 0.0000 -0.0075 -0.0205 -0.0075 0.0000 -0.0064 0.0000

5% quantile -0.5626 -0.5372 -0.5626 -0.5730 -0.5626 -0.5530 -0.5556 -0.5492

95% quantile 0.5553 0.5692 0.5553 0.5461 0.5553 0.5643 0.5554 0.5618

90% CL 1.1180 1.1064 1.1180 1.1191 1.1180 1.1173 1.1111 1.1111

ABS 0.2662 0.2658 0.2662 0.2666 0.2662 0.2660 0.2661 0.2661

RMS 0.3435 0.3440 0.3435 0.3437 0.3435 0.3436 0.3436 0.3436

MEAN/SD/MEDIAN/5%quantile/95%quantile/90%CL/ABS/RMS refer to mean/standard deviation/median/5% and 95% quantile/90% confidence interval/mean

absolute/root mean squared prediction error (PE). Columns 2 to 9 refer to formula constant optimisation for least sum of squared PE (SoSPE), least sum of absolute PE

(SoAPE), least mean PE (MPE), least standard deviation of PE (SDPE), combination of least mean and standard deviation of PE (SDMPE), least median PE (MEDPE),

smallest 90% confidence interval of PE (CLPE), and a combination of least median and 90% confidence interval of PE. The numbers in bold indicate the PE values in

each row that are expected to be the lowest based on the optimisation strategy. For example, the RMS PE / ABS PE would be expected to be lowest where optimisation

was performed for the sum of squared prediction errors / sum of absolute PE. Optimisation for the standard deviation of prediction error SDPE resulted in a MEAN of

up to 0.40 dpt (underlined numbers), and optimisation for the 90% confidence interval CLPE resulted in a MEDIAN of up to 0.14 dpt (italic numbers). All data are

provided in dioptres.

https://doi.org/10.1371/journal.pone.0267352.t003
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Fig 1. Cumulative density function (CDF) of prediction error (PE, achieved spherical equivalent–formula predicted

spherical equivalent) for the SRKT, Hoffer Q, Holladay1, Haigis (with optimised a0 and preset values a1 = 0.4 / a2 = 0.1

(Haigis1); and with optimised a0 / a1 / a2 constant triplet (Haigis3)), and Castrop formula. Formula constants were

optimised to minimise the sum of squared prediction errors, the sum of absolute prediction errors, the mean prediction error,

standard deviation (SD) of prediction error, a combination of mean and standard deviation of prediction error (SD & mean),
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prediction error are mostly consistent except for the constant optimisation for the standard

deviation, which ends up with an a0 which severely shifts the patient refraction in the direction

of hyperopia (dashed cyan line shifted to the right). The fifth graph (Haigis3) shows that–simi-

lar to the Haigis1 formula–the CDFs for the prediction error are mostly consistent except for

the constant optimisation for the standard deviation, which ends up with a a0/a1/a2 constant

triplet which severely shifts the patient refraction in the direction hyperopia (dashed cyan line

shifted to the right). And last but not least, from the sixth graph (Castrop) we see that the

CDFs for the prediction error all are consistent. This means that all of the optimisation metrics

tested in this study result in constant triplets C/H/R that do not induce systematic offsets in

the formula predicted refraction.

Discussion

Numerous formulae for calculation of intraocular lens power have been proposed in the last

20 years. In contrast to the basic formulae of Fyodorov [11] or Gernet [12] or the classical for-

mulae of Sanders, Retzlaff and Kraff (SRKT), Hoffer (Hoffer-Q), Holladay (Holladay1) or Hai-

gis (simplified Haigis with 1 optimised constant and Haigis formula with 3 optimised

constants) [1, 4–9, 14], most of the formula authors nowadays do not disclose or publish the

calculation strategy. At best they offer WEB based applications or software solutions for calcu-

lating the lenses. Such software tools do not allow batch calculations on a large set of patient

data. Today, classical formulae are increasingly being replaced by ‘modern’ calculation strate-

gies such as the Barrett Universal II, Kane, Pearl, EVO, VRF/VRF-G, Hill RBF or T2 formula

in many countries of the world [2, 16]. To compare the prediction performance with other for-

mulae it is necessary to enter the data from preoperative data (biometry), intraoperative data

(lens power) and postoperative data (manual refraction after 4 weeks to 6 months) manually,

introducing a large risk of transcription errors. Additionally, a systematic optimisation of con-

stants is not possible for undisclosed formulae [15, 19, 20]. Obtaining the appropriate formula

constant is mostly achieved by trial and error e.g. by varying the constants in the calculation

scheme to eliminate the mean or median prediction error.

Currently there are no generally accepted guidelines or recommendations for formula con-

stant optimisation [15, 20, 29]. Where a formula is fully disclosed, and in the simple case of a

formula with a single constant, it would be possible to reorganise the formula to solve for the

formula constant (for each clinical case), and from the distribution of the formula constants

the clinician could select statistical metrics such as the arithmetic or geometric mean or the

median. However, back-calculating the prediction error with such constants does not neces-

sarily yield the best formula performance in terms of least root mean squared or least mean

absolute error or zeroing of the mean or median of the prediction error [19]. In the case of

undisclosed formulae or formulae with more than 1 constant there is no straightforward tech-

nique for back-tracing the appropriate formula constant(s) for an individual case. In the best

case, when all formula constants together describe a linear superposition of a parameter for

which the formula could be solved, (e.g. the effective lens position ‘d’ in the Haigis formula) a

linear regression technique could be used to derive the regression coefficients (for the Haigis

formula a0 as intercept, and a1 / a2 as coefficients for the phakic ACD / AL) for the dataset

median prediction error, the 90% confidence interval (CL) of prediction error, and a combination of median and 90%

confidence interval of prediction error (90% CL & median). The respective formula constants used for calculating the PE are

shown in the graphs. Formula constant optimisation for SD or for 90% CL without considering the mean or median may in

some formulae lead to a significant shift in the CDF for PE, as indicated by the dashed cyan and dashed magenta lines, whereas

the optimisations for sum of squared PE, sum of absolute PE, mean PE, SD & mean PE, and 90% CL & median PE yield

consistent results.

https://doi.org/10.1371/journal.pone.0267352.g001
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[19]. In some studies, when investigating the performance of a formula and comparing to

other formulae, the formula constants are not optimised at all. Instead, the prediction error

calculated with a given preset formula constant is zeroed for its mean or median [15, 20, 30] to

analyse performance metrics such as mean absolute or root mean squared prediction error,

the standard deviation, or confidence intervals of the distribution. However, such techniques

do not yield proper results for the formula performance, as statistical metrics such as standard

deviation or confidence intervals can change depending on the formula constant used for pre-

dicting the refractive outcome. When zeroing the mean or median prediction error, the entire

distribution of the prediction error is simply shifted to centre it on a zero prediction error,

which is rather different to the distribution of the prediction error when the formula constant

is optimised.

A systematic optimisation of formula constants for statistical metrics of the refractive out-

come requires more advanced techniques than simple reorganisation of the formula to solve

for the formula constant [18]. In engineering, nonlinear iterative techniques are typically used

to derive the best formula constant(s) in terms of minimising any classical statistical metrics of

the prediction error. The requirements for such nonlinear techniques are: reliable and fast

convergence with all datasets after a couple of iterations, robustness in a way that they result in

global, rather than local, minima, and a straightforward implementation with a programming

code.

In the present paper, we have used classical statistical metrics to show the capability of non-

linear iterative optimisation strategies: the sum of squared prediction error, the sum of abso-

lute prediction error, the mean, the standard deviation of the prediction error distribution, a

combination of the standard deviation of the prediction error distribution and the mean pre-

diction error, the median prediction error, the 90% confidence interval of the prediction error,

and a combination of the 90% confidence interval of the prediction error and the median pre-

diction error. In general, such nonlinear iterative optimisation strategies are not restricted to

classical metrics [28], and any continuous metrics could be used for the merit function. For

statistical metrics, sum of squares and sum of absolute prediction error, special techniques

which have a fast and reliable convergence to a global minimum of the merit function have

been developed. Especially for minimising the sum of squared prediction error, which is equiv-

alent to the minimisation of the root mean squared prediction error, the Levenberg-Marquardt

algorithm [23, 24] is well-known in engineering disciplines to show excellent performance and

robustness. For minimisation of other statistical metrics, other optimisation techniques such

as the interior point methods [26, 27] or the simplex algorithm [25] are used. However, in gen-

eral, if the merit function to be minimised is a ‘good-natured problem’ with a global convexity

[25, 28] and without local minima, any iterative optimisation algorithm will result in a good

solution for the formula constant (but with different numbers of iteration cycles and function

evaluations). For this study we used the Levenberg-Marquardt algorithm [23, 24] for optimis-

ing the constant(s) for the root mean squared and the mean absolute error, and for all other

metrics we used the interior point method [26, 27]. The iterative algorithms under test showed

stable convergence for all formulae and for all optimisation metrics.

We see from our results that formula constant optimisation for the root mean squared and

mean absolute prediction error, and also for the mean and median prediction error yields

mostly consistent results for all formulae. Fig 1 shows us that the cumulative distribution func-

tions (CDFs) as a measure of the formula performance with this optimisation are quite coher-

ent, and there are no systematic differences in the shape or the horizontal position of the

CDFs. However, looking more in detail at the respective formula constants for the Haigis3 and

the Castrop formula, both of which use constant triplets, it is obvious that the individual con-

stants in the triplet can vary significantly (e.g. for the Castrop formula: C/H/R with optimising
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for SoSPE 0.2814/0.3500/0.0848 vs. 0.2517/0.5014/0.0554 with optimising for SoAPE) without

significantly affecting the distributions of the prediction error [19]. All of the constant triplets

work quite well when calculating for eyes with ‘normal’ biometrical parameters, but if applying

these constant triplets to extreme values of biometric parameters (highly myopic/hyperopic

eyes or with extremely flat or steep corneal curvatures), the resulting formula predicted refrac-

tion can vary significantly between the different constant triplets.

What can also be seen from Fig 1 is that the standard deviation of the prediction error dis-

tribution and the 90% confidence interval of the prediction error as statistical metrics for for-

mula constant optimisation do not yield the best results in the overall performance. In

particular, optimising for the standard deviation of the prediction error without considering

the mean prediction error shows a systematic offset in the CDF graphs, indicating that with

the formula optimised constants having the smallest mean prediction errors, the standard

deviation of the prediction error is not smallest. Only with the Castrop formula are all of the

optimisation strategies more or less consistent. This is mostly due to the internal structure of

the formula, where one of the formula constants (R) is used as a systematic offset value for the

formula predicted refraction, mainly to account for different lane distances in the refraction

measurements. With this constant the CDF may be centred using the constant optimisation

strategy without changing the ‘shape’ of the CDF. However, optimising formula constants for

the 90% confidence interval does not yield acceptable results for all of the formulae under test.

In particular, the CDF for the Hoffer Q and the Holladay 1 formula is not centred and indi-

cates some systematic offset. This means that optimising for the confidence interval without

considering the median prediction error may provide constant(s) with a narrow distribution,

but probably with a systematic offset in the prediction error. To overcome this problem we

completed our optimisation strategies using a compromise of using combinations of the stan-

dard deviation of the prediction error distribution and the mean prediction error to ensure

that the CDF is centred and the standard deviation is considered in the optimisation (optimis-

ing for SDMPE). Accordingly, we completed our optimisation strategies using a compromise

of using combinations of the 90% confidence interval of the prediction error and the median

prediction error to ensure that the CDF is centred and the confidence interval is considered in

the optimisation (optimising for CLMEDPE). Both optimisations show a good performance in

terms of low systematic offset of the prediction error and a narrow CDF.

The results of the classical performance indicators for lens power calculation concepts are

summarised in Table 3. The mean error mostly accounts for a systematic shift towards either

myopia or hyperopia in the formula predicted refraction, and the standard deviation accounts

for the width of the distribution if a (parametric) normal distribution is considered. The

median and the lower and upper boundaries of the 90% confidence interval (together with the

width of the 90% confidence interval) refer to the (nonparametric) metrics of an arbitrary dis-

tribution for the prediction error. Finally, the mean absolute and the root mean squared pre-

diction error are classical measures in the literature to evaluate the performance of formula

predicted refractions, but both are significantly affected by systematic offsets in the prediction

error. This means that they are not proper measures of the consistency of the results. The list-

ing implies that the optimisation strategies worked quite well: where we optimised for the

SoSPE the resulting root mean squared error (RMS) is the lowest in the row for all formulae.

When optimising for the SoAPE it is clear that on our dataset the mean absolute error (ABS) is

the lowest in the row. Where we have optimised for the mean prediction error (MPE) or the

median prediction error (MEDPE), it is can be seen that the resulting mean prediction error

(MEAN) or the median prediction error (MEDIAN) is lowest in the row. When optimising for

the standard deviation of the prediction error distribution (SDPE) we see that the standard

deviation (SD) is lowest in the row, but at the cost of a systematic shift in mean or median
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formula predicted refraction (MEAN or MEDIAN). Accordingly, when optimising for the

90% confidence interval, the width of the confidence interval (90% CL) is lowest in the row at

the cost of the mean or median value (MEAN and MEDIAN) which are systematically shifted,

at least in the Hoffer Q and the Holladay formula.

In conclusion, this study describes techniques for optimising formula constants on a clini-

cal dataset using modern nonlinear iterative optimisation strategies. These optimisation strate-

gies are generally capable of dealing with all disclosed lens power calculation formulae having

one or more formula constants, and with any statistical metric of any outcome measure. The

applicability of this constant optimisation technique is shown for the SRKT, Hoffer Q, Holla-

day 1, Haigis, and Castrop formula on a clinical dataset with 888 data from 1 clinical centre

treated with the Hoya Vivinex intraocular lens. The prediction error, defined as the difference

between the postoperatively achieved and the formula predicted spherical equivalent power of

refraction, was used as a merit function. Optimisations for the root mean squared and mean

absolute prediction error and for the mean and median prediction error yielded mostly consis-

tent performance results, but optimisations for the standard deviation of the prediction error

distribution or the confidence interval may result in a narrow distribution but with some sys-

tematic offset in the formula predicted refraction which is not appropriate in a clinical setting.
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