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Kidney stone disease (KSD) is a common illness caused by deposition of solid minerals formed inside the
kidney. The disease prevalence varies, based on sociodemographic, lifestyle, dietary, genetic, gender, age,
environmental and climatic factors, but has been continuously increasing worldwide. KSD is a highly
recurrent disease, and the recurrence rate is about 11% within two years after the stone removal.
Recently, machine learning has been widely used for KSD detection, stone type prediction, determination
of appropriate treatment modality and prediction of therapeutic outcome. This review provides a brief
overview of KSD and discusses how machine learning can be applied to diagnostics, therapeutics and
prognostics in clinical management of KSD for better therapeutic outcome.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In routine clinical practice, kidney stone disease (KSD) can be
detected by laboratory tests such as urinalysis, X-ray, ultrasonog-
raphy, and/or computerized tomography (CT) scan [1]. Disease
management depends on type and size of the stones. Most of
KSD patients (or stone formers) are asymptomatic and may require
no specific treatment [2,3]. In complicated KSD, extracorporeal
shock wave lithotripsy (ESWL), percutaneous nephrolithotomy
(PNL), ureteroscopy (URS) and other surgical procedures are the
common therapeutic procedures to remove kidney stones [4–6].
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Nevertheless, there is a high recurrence rate following the stone
removal [7–9].

Machine learning has been used in medicine for diagnostics and
therapeutics for quite some time. The use of artificial intelligence
(AI) has been increasing in several aspects of biomedical areas.
Using training dataset, machine learning algorithms can create
models, identify underlying patterns, and then make predictions
based on the best-suited model [10,11]. Development of image
and speech recognition is one of the significant advancements in
this field. The use of machine learning in medical imaging, such
as ultrasound elastography (UE), CT scan and magnetic resonance
imaging (MRI), improves diagnostic accuracy and reduces the pos-
sibility of human errors across a wide range of medical areas [12].
This approach has been also used in urology to diagnose urological
disorders, to design appropriate treatment modality, and to predict
therapeutic outcome [13,14]. Deep learning, a branch of machine
learning, has a potential to be used as an innovative method for
diagnosis of chronic kidney disease (CKD) [15] and predicting the
decline of renal function [16], renal dysfunction [17], and diabetic
nephropathy [18].

In KSD, machine learning has been employed for over two dec-
ades [19]. Recently, it has been widely used for stone detection
[20], stone type prediction [21], determination of appropriate man-
agement option, and prediction of therapeutic outcome [22]. This
review provides a brief overview of KSD and discusses how
machine learning can be applied to diagnostics, therapeutics and
prognostics in clinical management of KSD for better therapeutic
outcome.
2. Brief overview of KSD

2.1. Epidemiology and risks

KSD, also known as urolithiasis, nephrolithiasis and renal cal-
culi, is a common illness caused by deposition of solid minerals
formed inside the kidney [23]. It is one of the oldest diseases that
has caused human suffering for over millennia with evidence in
Egyptian mummies [24,25]. The worldwide disease prevalence
and incidence vary based on sociodemographic, lifestyle, dietary,
genetic, gender, age, environmental and climatic factors [26,27].
The prevalence of KSD is greater in the Western hemisphere as
compared with the Eastern (7–13 %, 5–9 % and 1–5 % in North
America, Europe and Asia, respectively) [26]. KSD is a highly recur-
rent disease, of which recurrence rate is approximately 11 %, 20 %
and 31 % within two, five and ten years, respectively, after the
stone removal [28]. The evidence also indicates the continuously
increasing prevalence and incidence around the globe [26,29–31].
In addition to genetic and geographical backgrounds, which are
environmental risk factors [26], some systemic diseases, including
obesity, diabetes mellitus, hypertension, metabolic syndrome and
gout, are also considered as the risks for KSD development [26].
2.2. Types of kidney stones and mechanisms of the stone formation

Kidney stones can be classified into five major types based on
the stone composition, including calcium oxalate (CaOx), carbon-
ated apatite or carbapatite (CA), urate, struvite or magnesium
ammonium phosphate, and cystine or drug-induced stones [32–
34]. Kidney stone formation is a prerequisite process initiated by
urinary supersaturation of ions of the stone composition, leading
to their transformation from liquid phase to solid phase, the mech-
anism that is called crystallization or crystal nucleation [35,36].
Thereafter, the loosely formed stone crystals can enlarge by adding
free ions from the supersaturated urine, resulting in crystal growth
[37]. Additionally, individual crystals can form crystal aggregates
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that further enlarge the crystalline particles [37,38]. Moreover,
the formed crystals can adhere onto apical surfaces of renal tubular
cells via affinity between crystals and their receptors on the cell
surfaces [39]. Crystal growth, aggregation and adhesion altogether
slow down the elimination rate of the formed crystals through
intratubular luminal segments with small size, resulting in crystal
retention [35,36]. These processes are known as the ‘‘free-particle
model” of kidney stone formation (the stone forms inside renal
tubule) [35,40].

In another model of kidney stone formation namely ‘‘fixed-
particle model” [35,41], the stone develops on the preformed pla-
que firstly described by Alexander Randall in 1937 [42]. Randall’s
plaque comprises mainly calcium phosphate that forms at intersti-
tial compartment of the renal papilla and then serves as an anchor
for stone formation [43,44]. Several studies have shown
histopathological evidence indicating that the majority of idio-
pathic CaOx stones are associated with Randall’s plaque [43,44].
And basement membrane of the thin loop of Henle is the main
locale that plaque arises and expands to the nearby interstitial
space under the urothelium [43,44]. After affecting the integrity
of urothelium, the plaque is unmasked and exposed to the urine
rich with calcium and oxalate ions. Thereafter, the supersaturated
urine reacts with the emerging plaque to forms layers of the CaOx
crystals on the Randall’s plaque by repeated coating, crystallization
and growth [43,44].
2.3. Diagnosis and management in current clinical practice

Although most of the stone formers are mainly asymptomatic
and do not require specific treatment or surgical intervention, they
are suggested to attend the follow-up program annually or at least
every 2–3 years to evaluate the disease progression [2,3]. Symp-
tomatic stone formers typically have acute renal colic or flank pain
(originating over the costovertebral angle and extending towards
the inguinal area), nausea and/or vomiting [2,45]. Clinical presen-
tations may also include hematuria, low urinary flow,
hydronephrosis, and secondary urinary tract infection (UTI) [3,23].

Diagnosis and disease management usually start with confirma-
tion of the presence of the stone [3]. The gold standard method for
stone detection, size measurement and localization is non-contrast
CT (NCCT) scan of the kidneys, ureters, and bladder [2,3,46]. NCCT
scan is a highly sensitive and highly accurate method for stone
imaging, which is very helpful for further selecting appropriate dis-
ease management [46]. Ultrasonography has lower sensitivity as
compared with CT scan. However, it is more suitable for some
stone formers, e.g., children, pregnant women and patients with
frequent episodes of KSD [46]. MRI is used as a second-line modal-
ity for pregnant stone formers, who do not meet the criteria for
ultrasonography [46]. Besides imaging modality, history taking,
physical examination and laboratory tests (e.g., urinalysis and
blood chemistry) are also required [2,3].

Based on the guidelines for management of KSD by the Euro-
pean Association of Urology (EAU), non-steroidal anti-
inflammatory drugs (NSAIDs) are recommended as the first-line
analgesics for renal colic management [3,47]. Spontaneous passage
is recommended for the cases with stones <5 mm, whereas medical
expulsive therapy (MET) using a-blockers is recommended for
those with stones >5 mm in the distal ureter [47]. In the cases with
stones >20 mm, PNL is recommended as the first-line treatment
[47]. Note that when the patients do not meet the criteria for
PNL, retrograde intrarenal surgery (RIRS) or ESWL is recommended
[47]. More details and the updated version of the guidelines for dis-
ease management are available on the EAU Guidelines Office web-
site (https://uroweb.org/guidelines/urolithiasis).

https://uroweb.org/guidelines/urolithiasis
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3. Roles of machine learning in KSD diagnostics

Imaging is a crucial diagnostic tool and the first step for select-
ing the most appropriate treatment modality in KSD management.
De Perrot et al. [48] have reported how well radiomics features and
a machine learning classifier can distinguish KSD from phleboliths
using low-dose CT. Li et al. [49] have employed the unenhanced
abdominopelvic CT scans and deep learning segmentation net-
works to exclude false positive areas from kidney stones. Parakh
et al. [20] have shown the efficacy of cascading convolutional neu-
ral network (CNN) for detecting urinary stones. Using this
approach, the urinary tract is detected by the first CNN model,
whereas the stones are detected by the second CNN model [20].
Additionally, a total of six models have been designed and
deployed using CT image datasets of kidney stones, cysts and
tumors [50]. Both deep learning techniques (VGG16, Inceptionv3
and Resnet50) and Visual Transformer variants (EANet, CCT and
Swin transformer algorithms) can be applied to differentiate KSD
from renal cysts and tumors with 99.30 % accuracy achieved by
Swin transformer-based model [50]. Caglayan et al. [51] have
examined the efficacy of a deep learning model for identifying kid-
ney stones in unenhanced CT images in various planes based on
stone size. The sagittal plane has provided the best sensitivity
and specificity as compared with other planes [51]. Längkvist
et al. [52] have created a computer-aided detection (CAD)
algorithm that can detect a ureteral stone in a CT scan. Similarly,
Sudharson et al. [53] have developed a CAD algorithm using
Table 1
Summary of studies using machine learning in KSD diagnostics.

Study/Reference Year Objective Input

Längkvist et al. [52] 2018 Detecting kidney stone in CT images CT images

Parakh et al. [20] 2019 Detecting ureteral stone in CT
images

CT images

De Perrot et al. [48] 2019 Differentiating kidney stones and
phleboliths in low-dose CT (LDCT)
images

Radiomics
features
extracted fo
LDCT

Cui et al. [55] 2021 Detecting and scoring kidney stone
score based on S.T.O.N.E.
nephrolithometry

Non-contras
(NCCT) imag

Sudharson et al. [53] 2021 Detecting kidney abnormalities from
noisy ultrasound images

Ultrasound
images

Yildirim et al. [54] 2021 Detecting kidney stone using coronal
CT images

CT images

Xiang et al. [58] 2021 Predicting calcium oxalate kidney
stone

Patients and
microbiota
characterist

Elton et al. [56] 2022 Detecting kidney stone using coronal
CT images

CT images

Islam et al. [50] 2022 Detecting kidney tumors, cysts, and
stones using CT scan of the entire
abdomen and urogram

CT and urog
images

Kavoussi et al. [59] 2022 Predicting 24-h urine abnormalities
for KSD using electronic health
record-derived data

Patient
characterist
and 24-h ur
data

Li et al. [49] 2022 Detecting kidney stone in CT images CT images

Babajide et al. [57] 2022 Detecting kidney stone and
measuring stone features in CT
images

CT images

Caglayan et al. [51] 2022 Detecting kidney stone in CT images
with different planes

CT images

AUC = area under the curve; n/a = not available.
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support vector machine (SVM)-based machine learning classifier
to identify kidney abnormalities of multiple classes, such as kidney
stones, cysts and tumors, by ultrasonography.

Clinicians would take great benefit from a deep learning system
that is automated and can segment data automatically. Several
previous studies have tried using automated machine learning to
detect kidney stones. For example, Yildirim et al. [54] have applied
a deep learning model to automatically detect and localize kidney
stones from coronal CT scans. Cui et al. [55] have also reported
automated detection of kidney stones in NCCT images using deep
learning and S.T.O.N.E. nephrolithometry scoring method. To deal
with noisy CT, Elton et al. [56] have employed CNN (U-Net model)
for automated detection and volume quantification of small stones
in coronal CT images. Babajide et al. [57] have analyzed the efficacy
of a machine learning method to detect and characterize kidney
stones automatically compared with manual diagnosis. The data
have shown that the machine learning algorithm more accurately
approximates the stone boundary with both sensitivity and speci-
ficity of 100 % [57].

Most of kidney stone studies on diagnostics use various medical
imaging methods, including X-ray, CT scan and MRI. Nevertheless,
only few studies have used clinical characteristics to assist KSD
diagnostics. Using clinical and gut microbiota traits, one can pre-
dict the development of CaOx KSD [58]. Recently, Kavoussi et al.
[59] have used 24-h urine and clinical data to predict urinary
abnormalities. Age, gender and body mass index are the three vari-
ables that have the most impact on training the prediction models
Method(s) Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC

Deep learning
(CNN)

n/a 100.00 n/a 0.997

Deep learning
(CNN)

95.00 94.00 96.00 0.954

rm

Machine learning
(AdaBoost)

85.10 91.70 78.30 0.902

t CT
es

Deep learning
(CNN) & Machine
learning (3D U-
Nets)

n/a 95.90 n/a n/a

Machine learning
(SVM) & Deep
learning (CNN)

87.31
at noise
level = 0.02

n/a n/a n/a

Machine learning
(XResNet50)

96.82 95.76 97.00 n/a

ics

Machine learning
(RF)

n/a n/a n/a 0.940

Deep learning
(CNN) & Machine
learning (3D U-
Nets)

n/a 86.00 n/a n/a

ram Machine learning
(Swin transformers)

99.30
for stone

98.90
for stone

n/a 0.99975
for
stone

ics
ine

Machine learning
(XGBoost)

98.00
for urine
volume

n/a n/a 0.590
for
urine
volume

Machine learning
(Res U-Net)

99.95 96.61 99.97 n/a

Machine learning n/a 100.00 100.00 n/a

Machine learning
(XResNet50)

93.00
for stone
sizes >2 cm

n/a n/a n/a
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[59]. All the information obtained from the aforementioned studies
(also summarized in Table 1) indicate the important roles of
machine learning in KSD diagnostics.
4. Roles of machine learning for stone type prediction

Specifying type of kidney stones is an important step for man-
agement of KSD to achieve satisfactory therapeutic outcome. There
is a wide attention to predict type of kidney stones using clinical
and imaging data. As such, machine learning-based text classifica-
tion has been extensively used for this purpose. For example, data
mining techniques have been used to extract useful information,
such as stone types and compositions, from electronic health
record [60]. In a study by Kazemi et al. [61], 42 features extracted
from medical information record of patients have been used to
build a model for predicting type of kidney stones. Similarly, Abra-
ham et al. [62] have predicted stone composition by using XGBoost
machine learning on 24-h urine data and clinical information.
Interestingly, performance of the predictive model is improved
by using 24-h urine data [62]. In another study, the microwave
dielectric properties, which differ in various stone types, have been
used to predict three types of kidney stones [63]. Moreover, the
eight simple clinical parameters, including gender, age, body mass
index, estimated glomerular filtration rate, urine pH, the presence
of bacteriuria, the presence of gout, and the presence of diabetes
mellitus, can improve uric acid stone prediction with an area under
the curve (AUC) of 0.936 [64].

Additionally, the stone type can be predicted from appearance,
texture and section of the stones shown in digital images, CT scans
and digital videography. Grosse Hokamp et al. [65] have used dual-
energy CT scan and machine learning to predict various composi-
tions of the stones, including whewellite (CaOx monohydrate;
COM), weddellite (CaOx dihydrate; COD), calcium phosphate,
cystine, struvite, uric acid, and xanthine. Zheng et al. [66] have cre-
ated a predictive model with radiomics signature based on NCCT
images and independent clinical predictors for detecting infection
stones with an AUC of 0.825. Recently, machine learning has been
used to analyze high-quality digital images of a kidney stone,
Table 2
Summary of studies using machine learning for stone type prediction.

Study/Reference Year Objective Input

Kazemi et al. [61] 2017 Predicting kidney stone type Patient and ston
characteristics

Saclı et al. [63] 2019 Predicting kidney stone
composition

Microwave diele
properties of sto

Grosse Hokamp et al.
[65]

2020 Predicting the main component
of pure and mixed kidney stones

CT images

Black et al. [21] 2020 Predicting kidney stone
composition

Digital photogra
stones

Zheng et al. [66] 2021 Identifying urinary infection
stone in vivo

CT images

Abraham et al. [62] 2022 Predicting kidney stone
composition

Demographic, c
and urine analy

Chen et al. [64] 2022 Predicting uric acid component Clinical parame
El Beze et al. [67] 2022 Predicting kidney stone

composition
Surface and sec
images of stone

Onal et al. [68] 2022 Predicting kidney stone
composition

Microscopic ima
stone

Estrade et al. [69] 2022 Predicting kidney stone
composition

Endoscopic digi
images and vide

AUC = area under the curve; n/a = not available.
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resulting in successful prediction of the stone type with high speci-
ficity [21]. El Beze et al. [67] have developed an automated stone
detection technique to discriminate six types of stones from endo-
scopy by using surface and section of urinary calculi. Using a data-
set of smartphone-based microscopic images, Onal et al. [68] have
evaluated an image recognition system for categorizing four types
of kidney stones in the rapid and precise manner. Likewise, Estrade
et al. [69] have applied deep learning method on digital endoscopic
video sequences to automatically detect stone morphology during
the stone fragmentation process. All the aforementioned studies,
including their goals, AI methods used and results, are summarized
in Table 2.
5. Roles of machine learning for determination of appropriate
treatment modality and prediction of therapeutic outcome

Significant technological advancements have been made for
management of KSD. Parekattil et al. [70] have used information
from 384 stone formers who had spontaneous passing stones or
underwent intervention (stent, ureteroscopy or ESWL) to develop
the model. The findings have shown that the cutoff at 6 mm of
the stone dimension can accurately identify patients who may
require intervention.

To prevent or minimize the problematic stone recurrence, many
studies have employed machine learning to predict the therapeutic
outcome of KSD. For this kind of research, most of the studies have
applied artificial neural network (ANN) to predict the ESWL out-
come. The clinical data and urine samples of patients who under-
went ESWL are used as the parameters to predict the stone
recurrence after ESWL [19,71]. In addition, radiographic images
categorized by radiographic morphological patterns are used for
prediction of stone clearance after ESWL with an accuracy of
92 % [72]. In addition, the most influential factors on prediction
of the ESWL outcome are size and position of the stones, the usage
of stents, and the stone width [73]. Moreover, combining three-
dimension textual analysis features (3D-TA) derived from CT
images with clinical variables can improve prediction of the ESWL
success [74]. NCCT image analysis of stone formers who
Method(s) Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC

e Machine learning
(Ensemble-based
method)

97.10 n/a n/a 0.996

ctric
ne

Machine learning
(K-nearest neighbors)

98.17 98.00 98.60 n/a

Machine learning
(Shallow neural
network)

91.10 n/a n/a n/a

phs of Machine learning
(ResNet-101)

n/a 94.12
for uric
acid stone

97.83
for uric
acid stone

n/a

Machine learning
(LASSO)

n/a n/a n/a 0.825

linical,
te data

Machine learning
(XGBoost)

91.00 26.00 n/a 0.800

ters Machine learning n/a 100 91.20 0.936
tion Machine learning

(Inception v3)
n/a 99.00

for COM
98.00
for COM

0.980
for
COM

ges of Deep learning (CNN) 88.00 n/a n/a n/a

tal
os

Deep learning (CNN) 88 ± 6 80 ± 13 92 ± 2 n/a



Table 3
Summary of studies using machine learning for determination of appropriate treatment modality and prediction of therapeutic outcome.

Study/Reference Year Objective Input Method(s) Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC

Michaels et al. [19] 1998 Predicting stone regrowth after
extracorporeal shock wave lithotripsy
(ESWL)

Patient and stone
characteristics

Deep
learning
(ANN)

91.00 91.00 92.00 0.964

Poulakis et al. [72] 2003 Predicting stone clearance in lower pole
after ESWL

Patient and stone
characteristics and
radiographic images

Deep
learning
(ANN)

92.00 n/a n/a 0.936

Gomha et al. [73] 2004 Predicting stone-free status after ESWL Patient and stone
characteristics

Deep
learning
(ANN)

77.70 77.90 75.00 n/a

Parekattil et al. [70] 2006 Predicting outcome and duration of
passage for ureteral/renal calculi

Patient and stone
characteristics

Deep
learning
(ANN)

88.00 n/a n/a 0.900

Moorthy et al. [75] 2016 Predicting fragmentation of stones using
non-contrast CT (NCCT) image of patients
undergoing ESWL

NCCT images Deep
learning
(ANN)

n/a 80.70 98.40 n/a

Aminsharifi et al. [79] 2017 Predicting different outcome variables of
percutaneous nephrolithotomy (PNL)

Patient and stone
characteristics

Deep
learning
(ANN)

98.20
need for
SWL

98.00
need for
SWL

n/a n/a

Seckiner et al. [71] 2017 Predicting the stone-free rate after ESWL Patient and stone
characteristics

Deep
learning
(ANN)

85.48 n/a n/a n/a

Mannil et al. [74] 2018 Predicting stone-free status after ESWL patient and stone
characteristics and CT
images

Machine
learning (RF)

n/a 65.00 72.00 0.850

Choo et al. [76] 2018 Predicting treatment success after ESWL Patient and stone
characteristics, X-ray
and CT images

Machine
learning
(Decision
tree)

92.29 95.87 85.82 n/a

Shabaniyan et al. [80] 2019 Predicting postoperative outcome of PNL Patient and stone
characteristics and
laboratory data

Machine
learning
(SVM)

94.80 100.00 88.90 n/a

Aminsharifi et al. [22] 2020 Predicting multiple outcomes after PNL Preoperative and
postoperative patient
characteristics

Machine
learning
(SVM)

95.10
need for
repeat
PNL

n/a 97.00
need for
repeat PNL

n/a

Yang et al. [77] 2020 Predicting stone-free success after ESWL Patient and stone
characteristics

Machine
learning
(LightGBM)

87.90
for stone-
free

n/a n/a n/a

Hameed et al. [81] 2021 Predicting postoperative outcome of PNL Preoperative and
postoperative patient
characteristics

Machine
learning (RF)

81.00 n/a n/a 0.810

Moghisi et al. [78] 2022 Predicting ESWL outcome to assist
practitioners in their decision-making

Patient and stone
characteristics

Machine
learning
(AdaBoost)

77.59 87.50 65.30 0.800

AUC = area under the curve; n/a = not available.
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underwent ESWL can create a model to predict fragmentation of
stones and outcome of treatment [75]. Choo et al. [76] have uti-
lized stone features from X-ray and CT scans to construct a decision
support system (DSS) to forecast treatment success following
ESWL with high accuracy, especially using the 15-factor model.
Recently, Yang et al. [77] have also determined ability of DSS to
predict the ESWL success rate with accuracy up to 88 % [77]. A
more recent study has built a machine learning model that can pre-
dict the ESWL outcome to aid practitioners in decision making with
a sensitivity of 87.5 % [78].

Machine learning has been also applied to predict the therapeu-
tic outcome after nephrolithotomy. Aminsharifi et al. [79] have
predicted postoperative outcome of PNL from preoperative and
postoperative variables using ANN. The model can predict stone-
free status or ancillary procedures with sensitivity and accuracy
from 81.0 % to 98.2 % [79]. Moreover, machine learning technique
classification software seems to provide better results as compared
with the Guy’s Stone Score (GSS) and the Clinical Research Office of
Endourological Society (CROES) nomogram [22]. Machine learning
has been also used to create the DSS for forecasting therapeutic
success. In a study by Shabaniyan et al. [80] using four different
classification methods to develop DSS, the PNL outcome can be
264
predicted with a high degree of accuracy (94.8 %). Hameed et al.
[81] have used Random Forest (RF)-based machine learning to
develop a decision support system to predict stone-free status after
PNL for staghorn calculi with an accuracy of 81 %. All the aforemen-
tioned studies, including their goals, AI methods used and results,
are summarized in Table 3.
6. Summary and outlook

As evidenced by several studies, it becomes clear that machine
learning plays essential theranostic roles in clinical management of
KSD. Various machine learning algorithms, including XGBoost,
CNN, ensemble-based method, k-nearest neighbors, ANN, SVM,
RF and several other methods, have improved performance of the
systems by increasing the accuracy and sensitivity of KSD diagnos-
tics, prediction of stone type, prediction of therapeutic outcome
and prognostics. The advantages of such computational-based
approaches therefore serve as the other means for clinical manage-
ment of KSD. These approaches may also lead to discovery of new
therapeutic strategies, better therapeutic outcome, and more suc-
cessful prevention of KSD.
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The amount of available information on KSD has been growing
exponentially as new generations of the biotechnology has contin-
uously emerged. The recently emerging medical imaging technolo-
gies, like high-resolution 3D imaging and other new methods, have
offered higher quality of imaging in terms of resolution and signal-
to-noise ratio. These technologies together with improved machine
learning algorithms have paved the way for more precise clinical
diagnostics of KSD. Additionally, the well-developed texture anal-
ysis of stone images has dramatically improved the accuracy for
prediction of kidney stone type. Such advances in these medical
imaging technologies and machine learning are likely to be more
extensively used in routine clinical management of KSD in the near
future. However, there are still rooms for further improvements of
machine learning algorithms to increase the sensitivity and speci-
ficity of automated classification methods, particularly for uretero-
scopic kidney stone images. Furthermore, blood and urine
chemistry laboratory tests should be also combined with clinical
information and medical imaging to enhance the accuracy of
machine learning in KSD theranostics.

Finally, establishment of an international network to construct
a centralized kidney stone database for each type of the stones
comprising patients’ demographic and background information,
urine/blood parameters and chemical analyses, imaging, all other
laboratory tests, treatment modalities, therapeutic outcome, etc.,
should be considered. Such ideal database will definitely pave
the way for development of the more robust machine learning
algorithm towards precision medicine for KSD.

CRediT authorship contribution statement

Supatcha Sassanarakkit: Data curation, Formal analysis,
Visualization, Writing – original draft. Sudarat Hadpech: Data
curation, Formal analysis, Writing – original draft. Visith Thong-
boonkerd: Funding acquisition, Project administration,
Supervision, Validation, Visualization, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

This work was financially supported by Mahidol University
research grant.

References

[1] Fontenelle LF, Sarti TD. Kidney stones: treatment and prevention. Am Fam
Physician 2019;99(8):490–6.

[2] Rule AD, Lieske JC, Pais Jr VM. Management of kidney stones in 2020. JAMA
2020;323(19):1961–2. https://doi.org/10.1001/jama.2020.0662.

[3] Wilcox CR, Whitehurst LA, Cook P, Somani BK. Kidney stone disease: an update
on its management in primary care. Br J Gen Pract 2020;70(693):205–6.
https://doi.org/10.3399/bjgp20X709277.

[4] Chen X, Chen J, Zhou X, Long Q, He H, Li X. Is there a place for extracorporeal
shockwave lithotripsy (ESWL) in the endoscopic era? Urolithiasis 2022;50
(3):369–74. https://doi.org/10.1007/s00240-022-01307-4.

[5] Golomb D, Dave S, Berto FG, McClure JA, Welk B, Wang P, et al. A population-
based, retrospective cohort study analyzing contemporary trends in the
surgical management of urinary stone disease in adults. Can Urol Assoc J
2022;16(4):112–8. https://doi.org/10.5489/cuaj.7474.

[6] Serrell EC, Best SL. Imaging in stone diagnosis and surgical planning. Curr Opin
Urol 2022;32(4):397–404. https://doi.org/10.1097/MOU.0000000000001002.

[7] Wang K, Ge J, Han W, Wang D, Zhao Y, Shen Y, et al. Risk factors for kidney
stone disease recurrence: a comprehensive meta-analysis. BMC Urol 2022;22
(1):62. https://doi.org/10.1186/s12894-022-01017-4.

[8] Forbes CM, McCoy AB, Hsi RS. Clinician versus nomogram predicted estimates
of kidney stone recurrence risk. J Endourol 2021;35(6):847–52. https://doi.org/
10.1089/end.2020.0978.
265
[9] Zeng J, Wang S, Zhong L, Huang Z, Zeng Y, Zheng D, Zou W, Lai H. A
Retrospective study of kidney stone recurrence in adults. J Clin Med Res
2019;11(3):208–12. 10.14740/jocmr3753.

[10] Nijman S, Leeuwenberg AM, Beekers I, Verkouter I, Jacobs J, Bots ML, et al.
Missing data is poorly handled and reported in prediction model studies using
machine learning: a literature review. J Clin Epidemiol 2022;142:218–29.
https://doi.org/10.1016/j.jclinepi.2021.11.023.

[11] Shao H, Shi L, Lin Y, Fonseca V. Using modern risk engines and machine
learning/artificial intelligence to predict diabetes complications: A focus on
the BRAVO model. J Diabetes Complications 2022;36(11):. https://doi.org/
10.1016/j.jdiacomp.2022.108316108316.

[12] Hameed BMZ, Prerepa G, Patil V, Shekhar P, Zahid Raza S, Karimi H, et al.
Engineering and clinical use of artificial intelligence (AI) with machine
learning and data science advancements: radiology leading the way for
future. Ther Adv Urol 2021;13:17562872211044880. 10.1177/
17562872211044880.

[13] Hameed BMZ, AVL SD, Raza SZ, Karimi H, Khanuja HS, Shetty DK, et al. Artificial
intelligence and its impact on urological diseases and management: A
comprehensive review of the literature. J Clin Med 2021:10(9):1864.
10.3390/jcm10091864.

[14] Hameed BMZ, Shah M, Naik N, Rai BP, Karimi H, Rice P, et al. The ascent of
artificial intelligence in endourology: a systematic review over the last 2
decades. Curr Urol Rep 2021;22(10):53. https://doi.org/10.1007/s11934-021-
01069-3.

[15] Alnazer I, Bourdon P, Urruty T, Falou O, Khalil M, Shahin A, et al. Recent
advances in medical image processing for the evaluation of chronic kidney
disease. Med Image Anal 2021;69:. https://doi.org/10.1016/
j.media.2021.101960101960.

[16] Testa F, Fontana F, Pollastri F, Chester J, Leonelli M, Giaroni F, et al. Automated
prediction of kidney failure in IgA nephropathy with deep learning from
biopsy images. Clin J Am Soc Nephrol 2022. https://doi.org/10.2215/
CJN.01760222.

[17] Kaas-Hansen BS, Leal Rodriguez C, Placido D, Thorsen-Meyer HC, Nielsen AP,
Derian N, et al. Using machine learning to identify patients at high risk of
inappropriate drug dosing in periods with renal dysfunction. Clin Epidemiol
2022;14:213–23. https://doi.org/10.2147/CLEP.S344435.

[18] Makino M, Yoshimoto R, Ono M, Itoko T, Katsuki T, Koseki A, et al. Artificial
intelligence predicts the progression of diabetic kidney disease using big data
machine learning. Sci Rep 2019;9(1):11862. https://doi.org/10.1038/s41598-
019-48263-5.

[19] Michaels EK, Niederberger CS, Golden RM, Brown B, Cho L, Hong Y. Use of a
neural network to predict stone growth after shock wave lithotripsy. Urology
1998;51(2):335–8. https://doi.org/10.1016/s0090-4295(97)00611-0.

[20] Parakh A, Lee H, Lee JH, Eisner BH, Sahani DV, Do S. Urinary stone detection on
CT images using deep convolutional neural networks: evaluation of model
performance and generalization. Radiol Artif Intell 2019;1(4):e180066.

[21] Black KM, Law H, Aldoukhi A, Deng J, Ghani KR. Deep learning computer vision
algorithm for detecting kidney stone composition. BJU Int 2020;125(6):920–4.
https://doi.org/10.1111/bju.15035.

[22] Aminsharifi A, Irani D, Tayebi S, Jafari Kafash T, Shabanian T, Parsaei H.
Predicting the postoperative outcome of percutaneous nephrolithotomy with
machine learning system: software validation and comparative analysis with
guy’s stone score and the CROES nomogram. J Endourol 2020;34(6):692–9.
https://doi.org/10.1089/end.2019.0475.

[23] Alelign T, Petros B. Kidney stone disease: an update on current concepts. Adv
Urol 2018;2018:3068365.

[24] Tefekli A, Cezayirli F. The history of urinary stones: in parallel with civilization.
ScientificWorldJournal 2013;2013:. https://doi.org/10.1155/2013/
423964423964.

[25] Thongboonkerd V. Proteomics and kidney stone disease. Contrib Nephrol
2008;160:142–58. https://doi.org/10.1159/000125972.

[26] Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y.
Epidemiology of stone disease across the world. World J Urol 2017;35
(9):1301–20. https://doi.org/10.1007/s00345-017-2008-6.

[27] Wang Y, Wang Q, Deng Y, Chen Z, Van Cappellen P, Yang Y, et al. Assessment of
the impact of geogenic and climatic factors on global risk of urinary stone
disease. Sci Total Environ 2020;721:. https://doi.org/10.1016/j.
scitotenv.2020.137769137769.

[28] Eisner BH, Goldfarb DS. A nomogram for the prediction of kidney stone
recurrence. J Am Soc Nephrol 2014;25(12):2685–7. https://doi.org/10.1681/
ASN.2014060631.

[29] Chewcharat A, Curhan G. Trends in the prevalence of kidney stones in the
United States from 2007 to 2016. Urolithiasis 2021;49(1):27–39. https://doi.
org/10.1007/s00240-020-01210-w.

[30] Abufaraj M, Xu T, Cao C, Waldhoer T, Seitz C, D’Andrea D, et al. Prevalence and
trends in kidney stone among adults in the USA: analyses of national health
and nutrition examination survey 2007–2018 Data. Eur Urol Focus 2021;7
(6):1468–75. https://doi.org/10.1016/j.euf.2020.08.011.

[31] Morales-Martinez A, Melgarejo-Segura MT, Arrabal-Polo MA. Urinary stone
epidemiology in Spain and worldwide. Arch Esp Urol 2021;74(1):4–14.

[32] Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Recent advances on the
mechanisms of kidney stone formation (Review). Int J Mol Med 2021;48
(2):149. https://doi.org/10.3892/ijmm.2021.4982.

[33] Siener R, Herwig H, Rudy J, Schaefer RM, Lossin P, Hesse A. Urinary stone
composition in Germany: results from 45,783 stone analyses. World J Urol
2022;40(7):1813–20. https://doi.org/10.1007/s00345-022-04060-w.

http://refhub.elsevier.com/S2001-0370(22)00561-X/h0005
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0005
https://doi.org/10.1001/jama.2020.0662
https://doi.org/10.3399/bjgp20X709277
https://doi.org/10.1007/s00240-022-01307-4
https://doi.org/10.5489/cuaj.7474
https://doi.org/10.1097/MOU.0000000000001002
https://doi.org/10.1186/s12894-022-01017-4
https://doi.org/10.1089/end.2020.0978
https://doi.org/10.1089/end.2020.0978
https://doi.org/10.1016/j.jclinepi.2021.11.023
https://doi.org/10.1016/j.jdiacomp.2022.108316
https://doi.org/10.1016/j.jdiacomp.2022.108316
https://doi.org/10.1007/s11934-021-01069-3
https://doi.org/10.1007/s11934-021-01069-3
https://doi.org/10.1016/j.media.2021.101960
https://doi.org/10.1016/j.media.2021.101960
https://doi.org/10.2215/CJN.01760222
https://doi.org/10.2215/CJN.01760222
https://doi.org/10.2147/CLEP.S344435
https://doi.org/10.1038/s41598-019-48263-5
https://doi.org/10.1038/s41598-019-48263-5
https://doi.org/10.1016/s0090-4295(97)00611-0
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0100
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0100
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0100
https://doi.org/10.1111/bju.15035
https://doi.org/10.1089/end.2019.0475
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0115
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0115
https://doi.org/10.1155/2013/423964
https://doi.org/10.1155/2013/423964
https://doi.org/10.1159/000125972
https://doi.org/10.1007/s00345-017-2008-6
https://doi.org/10.1016/j.scitotenv.2020.137769
https://doi.org/10.1016/j.scitotenv.2020.137769
https://doi.org/10.1681/ASN.2014060631
https://doi.org/10.1681/ASN.2014060631
https://doi.org/10.1007/s00240-020-01210-w
https://doi.org/10.1007/s00240-020-01210-w
https://doi.org/10.1016/j.euf.2020.08.011
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0155
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0155
https://doi.org/10.3892/ijmm.2021.4982
https://doi.org/10.1007/s00345-022-04060-w


S. Sassanarakkit, S. Hadpech and V. Thongboonkerd Computational and Structural Biotechnology Journal 21 (2023) 260–266
[34] Zhang S, Huang Y, Wu W, He Z, Ou L, Tiselius HG, et al. Trends in urinary stone
composition in 23,182 stone analyses from 2011 to 2019: a high-volume
center study in China. World J Urol 2021;39(9):3599–605. https://doi.org/
10.1007/s00345-021-03680-y.

[35] Kok DJ, Boellaard W, Ridwan Y, Levchenko VA. Timelines of the ‘‘free-particle”
and ‘‘fixed-particle” models of stone-formation: theoretical and experimental
investigations. Urolithiasis 2017;45(1):33–41. https://doi.org/10.1007/
s00240-016-0946-x.

[36] Rodgers AL. Physicochemical mechanisms of stone formation. Urolithiasis
2017;45(1):27–32.

[37] Manzoor MAP, Agrawal AK, Singh B, Mujeeburahiman M, Rekha PD.
Morphological characteristics and microstructure of kidney stones using
synchrotron radiation muCT reveal the mechanism of crystal growth and
aggregation in mixed stones. PLoS One 2019;14(3):e0214003.

[38] Chaiyarit S, Thongboonkerd V. Defining and systematic analyses of
aggregation indices to evaluate degree of calcium oxalate crystal
aggregation. Front Chem 2017;5:113. https://doi.org/10.3389/
fchem.2017.00113.

[39] Fong-ngern K, Peerapen P, Sinchaikul S, Chen ST, Thongboonkerd V. Large-
scale identification of calcium oxalate monohydrate crystal-binding proteins
on apical membrane of distal renal tubular epithelial cells. J Proteome Res
2011;10(10):4463–77. https://doi.org/10.1021/pr2006878.

[40] Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al.
Kidney stones. Nat Rev Dis Primers 2016;2:16008.

[41] Khan SR. Histological aspects of the ‘‘fixed-particle” model of stone formation:
animal studies. Urolithiasis 2017;45(1):75–87. https://doi.org/10.1007/
s00240-016-0949-7.

[42] Randall A. The origin and growth of renal calculi. Ann Surg 1937;105
(6):1009–27. https://doi.org/10.1097/00000658-193706000-00014.

[43] Khan SR, Canales BK, Dominguez-Gutierrez PR. Randall’s plaque and calcium
oxalate stone formation: role for immunity and inflammation. Nat Rev
Nephrol 2021;17(6):417–33. https://doi.org/10.1038/s41581-020-00392-1.

[44] Evan AP, Coe FL, Lingeman J, Bledsoe S, Worcester EM. Randall’s plaque in
stone formers originates in ascending thin limbs. Am J Physiol Renal Physiol
2018;315(5):F1236–42. https://doi.org/10.1152/ajprenal.00035.2018.

[45] Sasmaz MI, Kirpat V. The relationship between the severity of pain and stone
size, hydronephrosis and laboratory parameters in renal colic attack. Am J
Emerg Med 2019;37(11):2107–10. https://doi.org/10.1016/j.
ajem.2019.06.013.

[46] Brisbane W, Bailey MR, Sorensen MD. An overview of kidney stone imaging
techniques. Nat Rev Urol 2016;13(11):654–62. https://doi.org/10.1038/
nrurol.2016.154.

[47] Quhal F, Seitz C. Guideline of the guidelines: urolithiasis. Curr Opin Urol
2021;31(2):125–9. https://doi.org/10.1097/MOU.0000000000000855.

[48] De Perrot T, Hofmeister J, Burgermeister S, Martin SP, Feutry G, Klein J, et al.
Differentiating kidney stones from phleboliths in unenhanced low-dose
computed tomography using radiomics and machine learning. Eur Radiol
2019;29(9):4776–82. https://doi.org/10.1007/s00330-019-6004-7.

[49] Li D, Xiao C, Liu Y, Chen Z, Hassan H, Su L, et al. Deep segmentation networks
for segmenting kidneys and detecting kidney stones in unenhanced abdominal
CT images. Diagnostics (Basel) 2022;12(8):1788. https://doi.org/
10.3390/diagnostics12081788.

[50] Islam MN, Hasan M, Hossain MK, Alam MGR, Uddin MZ, Soylu A. Vision
transformer and explainable transfer learning models for auto detection of
kidney cyst, stone and tumor from CT-radiography. Sci Rep 2022;12(1):11440.
https://doi.org/10.1038/s41598-022-15634-4.

[51] Caglayan A, Horsanali MO, Kocadurdu K, Ismailoglu E, Guneyli S. Deep learning
model-assisted detection of kidney stones on computed tomography. Int Braz J
Urol 2022;48(5):830–9. https://doi.org/10.1590/S1677-5538.IBJU.2022.0132.

[52] Langkvist M, Jendeberg J, Thunberg P, Loutfi A, Liden M. Computer aided
detection of ureteral stones in thin slice computed tomography volumes using
Convolutional Neural Networks. Comput Biol Med 2018;97:153–60. https://
doi.org/10.1016/j.compbiomed.2018.04.021.

[53] Sudharson S, Kokil P. Computer-aided diagnosis system for the classification of
multi-class kidney abnormalities in the noisy ultrasound images. Comput
Methods Programs Biomed 2021;205:. https://doi.org/10.1016/j.
cmpb.2021.106071106071.

[54] Yildirim K, Bozdag PG, Talo M, Yildirim O, Karabatak M, Acharya UR. Deep
learning model for automated kidney stone detection using coronal CT images.
Comput Biol Med 2021;135:. https://doi.org/10.1016/
j.compbiomed.2021.104569104569.

[55] Cui Y, SunZ,Ma S, LiuW,WangX, ZhangX, et al. automatic detection and scoring
of kidney stones on noncontrast CT images using S.T.O.N.E. nephrolithometry:
combined deep learning and thresholding methods. Mol Imaging Biol 2021;23
(3):436–45. https://doi.org/10.1007/s11307-020-01554-0.

[56] Elton DC, Turkbey EB, Pickhardt PJ, Summers RM. A deep learning system for
automated kidney stone detection and volumetric segmentation on
noncontrast CT scans. Med Phys 2022;49(4):2545–54. https://doi.org/
10.1002/mp.15518.

[57] Babajide R, Lembrikova K, Ziemba J, Ding J, Li Y, Fermin AS, et al. Automated
machine learning segmentation and measurement of urinary stones on CT
scan. Urology 2022. https://doi.org/10.1016/j.urology.2022.07.029.

[58] Xiang L, Jin X, Liu Y, Ma Y, Jian Z, Wei Z, et al. Prediction of the occurrence of
calcium oxalate kidney stones based on clinical and gut microbiota
characteristics. World J Urol 2022;40(1):221–7. https://doi.org/10.1007/
s00345-021-03801-7.
266
[59] Kavoussi NL, Floyd C, Abraham A, Sui W, Bejan C, Capra JA, et al. Machine
learning models to predict 24 hour urinary abnormalities for kidney stone
disease. Urology 2022. https://doi.org/10.1016/j.urology.2022.07.008.

[60] Bejan CA, Lee DJ, Xu Y, Hsi RS. Performance of a natural language processing
method to extract stone composition from the electronic health record.
Urology 2019;132:56–62. https://doi.org/10.1016/j.urology.2019.07.007.

[61] Kazemi Y, Mirroshandel SA. A novel method for predicting kidney stone type
using ensemble learning. Artif Intell Med 2018;84:117–26. https://doi.org/
10.1016/j.artmed.2017.12.001.

[62] Abraham A, Kavoussi NL, Sui W, Bejan C, Capra JA, Hsi R. Machine learning
prediction of kidney stone composition using electronic health record-derived
features. J Endourol 2022;36(2):243–50. https://doi.org/10.1089/
end.2021.0211.

[63] Sacli B, Aydinalp C, Cansiz G, Joof S, Yilmaz T, Cayoren M, et al. Microwave
dielectric property based classification of renal calculi: Application of a kNN
algorithm. Comput Biol Med 2019;112:. https://doi.org/10.1016/
j.compbiomed.2019.103366103366.

[64] Chen HW, Chen YC, Lee JT, Yang FM, Kao CY, Chou YH, et al. Prediction of the
uric acid component in nephrolithiasis using simple clinical information about
metabolic disorder and obesity: a machine learning-based model. Nutrients
2022;14(9):1829. https://doi.org/10.3390/nu14091829.

[65] GrosseHokampN, Lennartz S, Salem J, PintoDos SantosD,HeidenreichA,Maintz
D, et al. Dose independent characterization of renal stones by means of dual
energy computed tomography and machine learning: an ex-vivo study. Eur
Radiol 2020;30(3):1397–404. https://doi.org/10.1007/s00330-019-06455-7.

[66] Zheng J, Yu H, Batur J, Shi Z, Tuerxun A, Abulajiang A, et al. A multicenter study
to develop a non-invasive radiomic model to identify urinary infection stone
in vivo using machine-learning. Kidney Int 2021;100(4):870–80. https://doi.
org/10.1016/j.kint.2021.05.031.

[67] El Beze J, Mazeaud C, Daul C, Ochoa-Ruiz G, Daudon M, Eschwege P, et al.
Evaluation and understanding of automated urinary stone recognition
methods. BJU Int 2022. https://doi.org/10.1111/bju.15767.

[68] Onal EG, Tekgul H. Assessing kidney stone composition using smartphone
microscopy and deep neural networks. BJUI Compass 2022;3(4):310–5.
https://doi.org/10.1002/bco2.137.

[69] Estrade V, Daudon M, Richard E, Bernhard JC, Bladou F, Robert G, et al. Deep
morphological recognition of kidney stones using intra-operative endoscopic
digital videos. Phys Med Biol 2022;67(16):. https://doi.org/10.1088/1361-
6560/ac8592165006.

[70] Parekattil SJ, Kumar U, Hegarty NJ, Williams C, Allen T, Teloken P, et al.
External validation of outcome prediction model for ureteral/renal calculi. J
Urol 2006;175(2):575–9. https://doi.org/10.1016/S0022-5347(05)00244-2.

[71] Seckiner I, Seckiner S, Sen H, Bayrak O, Dogan K, Erturhan S. A neural network -
based algorithm for predicting stone - free status after ESWL therapy. Int Braz J
Urol 2017;43(6):1110–4. https://doi.org/10.1590/S1677-5538.IBJU.2016.0630.

[72] Poulakis V, Dahm P, Witzsch U, de Vries R, Remplik J, Becht E. Prediction of
lower pole stone clearance after shock wave lithotripsy using an artificial
neural network. J Urol 2003;169(4):1250–6. https://doi.org/10.1097/01.
ju.0000055624.65386.b9.

[73] Gomha MA, Sheir KZ, Showky S, Abdel-Khalek M, Mokhtar AA, Madbouly K.
Can we improve the prediction of stone-free status after extracorporeal shock
wave lithotripsy for ureteral stones? A neural network or a statistical model? J
Urol 2004;172(1):175–9. https://doi.org/10.1097/01.ju.0000128646.20349.27.

[74] Mannil M, von Spiczak J, Hermanns T, Poyet C, Alkadhi H, Fankhauser CD.
Three-dimensional texture analysis with machine learning provides
incremental predictive information for successful shock wave lithotripsy in
patients with kidney stones. J Urol 2018;200(4):829–36. https://doi.org/
10.1016/j.juro.2018.04.059.

[75] Moorthy K, Krishnan M. Prediction of fragmentation of kidney stones: A
statistical approach from NCCT images. Can Urol Assoc J 2016;10(7–8):
E237–40. https://doi.org/10.5489/cuaj.3674.

[76] Choo MS, Uhmn S, Kim JK, Han JH, Kim DH, Kim J, et al. A Prediction model
using machine learning algorithm for assessing stone-free status after single
session shock wave lithotripsy to treat ureteral stones. J Urol 2018;200
(6):1371–7. https://doi.org/10.1016/j.juro.2018.06.077.

[77] Yang SW, Hyon YK, Na HS, Jin L, Lee JG, Park JM, et al. Machine learning
prediction of stone-free success in patients with urinary stone after treatment
of shock wave lithotripsy. BMC Urol 2020;20(1):88. https://doi.org/10.1186/
s12894-020-00662-x.

[78] Moghisi R, El Morr C, Pace KT, Hajiha M, Huang J. A machine learning approach
to predict the outcome of urinary calculi treatment using shock wave
lithotripsy: model development and validation study. Interact J Med Res
2022;11(1):e33357.

[79] Aminsharifi A, Irani D, Pooyesh S, Parvin H, Dehghani S, Yousofi K, et al.
Artificial neural network system to predict the postoperative outcome of
percutaneous nephrolithotomy. J Endourol 2017;31(5):461–7. https://doi.org/
10.1089/end.2016.0791.

[80] Shabaniyan T, Parsaei H, Aminsharifi A, Movahedi MM, Jahromi AT, Pouyesh S,
et al. An artificial intelligence-based clinical decision support system for large
kidney stone treatment. Australas Phys Eng Sci Med 2019;42(3):771–9.
https://doi.org/10.1007/s13246-019-00780-3.

[81] Hameed BMZ, Shah M, Naik N, Singh Khanuja H, Paul R, Somani BK.
Application of artificial intelligence-based classifiers to predict the outcome
measures and stone-free status following percutaneous nephrolithotomy for
staghorn calculi: cross-validation of data and estimation of accuracy. J
Endourol 2021;35(9):1307–13. https://doi.org/10.1089/end.2020.1136.

https://doi.org/10.1007/s00345-021-03680-y
https://doi.org/10.1007/s00345-021-03680-y
https://doi.org/10.1007/s00240-016-0946-x
https://doi.org/10.1007/s00240-016-0946-x
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0180
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0180
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0185
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0185
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0185
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0185
https://doi.org/10.3389/fchem.2017.00113
https://doi.org/10.3389/fchem.2017.00113
https://doi.org/10.1021/pr2006878
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0200
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0200
https://doi.org/10.1007/s00240-016-0949-7
https://doi.org/10.1007/s00240-016-0949-7
https://doi.org/10.1097/00000658-193706000-00014
https://doi.org/10.1038/s41581-020-00392-1
https://doi.org/10.1152/ajprenal.00035.2018
https://doi.org/10.1016/j.ajem.2019.06.013
https://doi.org/10.1016/j.ajem.2019.06.013
https://doi.org/10.1038/nrurol.2016.154
https://doi.org/10.1038/nrurol.2016.154
https://doi.org/10.1097/MOU.0000000000000855
https://doi.org/10.1007/s00330-019-6004-7
https://doi.org/10.3390/diagnostics12081788
https://doi.org/10.3390/diagnostics12081788
https://doi.org/10.1038/s41598-022-15634-4
https://doi.org/10.1590/S1677-5538.IBJU.2022.0132
https://doi.org/10.1016/j.compbiomed.2018.04.021
https://doi.org/10.1016/j.compbiomed.2018.04.021
https://doi.org/10.1016/j.cmpb.2021.106071
https://doi.org/10.1016/j.cmpb.2021.106071
https://doi.org/10.1016/j.compbiomed.2021.104569
https://doi.org/10.1016/j.compbiomed.2021.104569
https://doi.org/10.1007/s11307-020-01554-0
https://doi.org/10.1002/mp.15518
https://doi.org/10.1002/mp.15518
https://doi.org/10.1016/j.urology.2022.07.029
https://doi.org/10.1007/s00345-021-03801-7
https://doi.org/10.1007/s00345-021-03801-7
https://doi.org/10.1016/j.urology.2022.07.008
https://doi.org/10.1016/j.urology.2019.07.007
https://doi.org/10.1016/j.artmed.2017.12.001
https://doi.org/10.1016/j.artmed.2017.12.001
https://doi.org/10.1089/end.2021.0211
https://doi.org/10.1089/end.2021.0211
https://doi.org/10.1016/j.compbiomed.2019.103366
https://doi.org/10.1016/j.compbiomed.2019.103366
https://doi.org/10.3390/nu14091829
https://doi.org/10.1007/s00330-019-06455-7
https://doi.org/10.1016/j.kint.2021.05.031
https://doi.org/10.1016/j.kint.2021.05.031
https://doi.org/10.1111/bju.15767
https://doi.org/10.1002/bco2.137
https://doi.org/10.1088/1361-6560/ac8592
https://doi.org/10.1088/1361-6560/ac8592
https://doi.org/10.1016/S0022-5347(05)00244-2
https://doi.org/10.1590/S1677-5538.IBJU.2016.0630
https://doi.org/10.1097/01.ju.0000055624.65386.b9
https://doi.org/10.1097/01.ju.0000055624.65386.b9
https://doi.org/10.1097/01.ju.0000128646.20349.27
https://doi.org/10.1016/j.juro.2018.04.059
https://doi.org/10.1016/j.juro.2018.04.059
https://doi.org/10.5489/cuaj.3674
https://doi.org/10.1016/j.juro.2018.06.077
https://doi.org/10.1186/s12894-020-00662-x
https://doi.org/10.1186/s12894-020-00662-x
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0390
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0390
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0390
http://refhub.elsevier.com/S2001-0370(22)00561-X/h0390
https://doi.org/10.1089/end.2016.0791
https://doi.org/10.1089/end.2016.0791
https://doi.org/10.1007/s13246-019-00780-3
https://doi.org/10.1089/end.2020.1136

	Theranostic roles of machine learning in clinical management of kidney stone disease
	1 Introduction
	2 Brief overview of KSD
	2.1 Epidemiology and risks
	2.2 Types of kidney stones and mechanisms of the stone formation
	2.3 Diagnosis and management in current clinical practice

	3 Roles of machine learning in KSD diagnostics
	4 Roles of machine learning for stone type prediction
	5 Roles of machine learning for determination of appropriate treatment modality and prediction of therapeutic outcome
	6 Summary and outlook
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References


