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Abstract

Monocrotophos (MCP) is a widely used organophosphate (OP) pesticide. We studied apoptotic changes and their
correlation with expression of selected cytochrome P450s (CYPs) in PC12 cells exposed to MCP. A significant induction in
reactive oxygen species (ROS) and decrease in glutathione (GSH) levels were observed in cells exposed to MCP. Following
the exposure of PC12 cells to MCP (1025 M), the levels of protein and mRNA expressions of caspase-3/9, Bax, Bcl2, P53, P21,
GSTP1-1 were significantly upregulated, whereas the levels of Bclw, Mcl1 were downregulated. A significant induction in the
expression of CYP1A1/1A2, 2B1/2B2, 2E1 was also observed in PC12 cells exposed to MCP (1025 M), whereas induction of
CYPs was insignificant in cells exposed to 1026 M concentration of MCP. We believe that this is the first report showing
altered expressions of selected CYPs in MCP-induced apoptosis in PC12 cells. These apoptotic changes were mitochondria
mediated and regulated by caspase cascade. Our data confirm the involvement of specific CYPs in MCP-induced apoptosis
in PC12 cells and also identifies possible cellular and molecular mechanisms of organophosphate pesticide-induced
apoptosis in neuronal cells.
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Introduction

Organophosphorus (OP) group of pesticides have been used

extensively across the world for more than fifty years [1] resulting

annual exposure to 2–3 million people [2]. OPs are known to induce

acute and chronic neurotoxicity in mammalians primarily by inhibiting

acetylcholinesterase (AChE) activity [3,4]. However, neurotoxicity of

OPs has also been reported to link with necrosis [5], apoptosis [6,7],

and oxidative stress mediated pathways [7,8]. OPs have also been

found to induce oxidative stress in developing brain, leading to alter the

expression and functions of antioxidant genes [9]. Most of the OPs do

not produce the same pattern of behavioral deficits or toxic responses,

in part, because of the involvement of different toxicological

mechanisms that contribute to the net adverse outcomes [10]. The

toxic responses of OPs on cellular and molecular level have been

explored in cultured cells using standard endpoints of cytotoxicity and

genotoxicity [5,11]. However, the knowledge on specific pathway(s)

involved for individual OP-induced toxicity is needed to be elaborating

completely. The involvement of different CYPs has been suggested in

the process of oxidative stress [12], mutagenicity [13], apoptosis

[14,15], and behavioural deficits [16]. Significant induction in the

expression of different CYPs has been reported in liver exposed to

structurally unrelated chemicals [16]. Although, liver is known to be a

primary site for CYPs-mediated metabolism, but the expression and

inducibility of CYPs in extrahepatic systems such as blood and brain

have also been reported [16,17]. Involvements of the several CYPs in

the metabolic activation of drugs and chemicals have also been

reported in primary cultures of rat brain neuronal and glial cells [18].

CYPs facilitate biotransformation of xenobiotics by oxidizing them

result the formation of number of reactive oxygenated intermediates

(ROMs). ROMs are highly unstable in nature, but their presence for

short duration in the cells may lead cellular damages [19,20]. ROMs-

induced damages have been suggested to cause abrupt xenobiotic

metabolism as well as the formation of more hazards intermediates,

which could ultimately lead hyper-mutability, genomic instability,

adverse effects on number of proteins related to cell cycle checkpoints

and neuronal cell death [21].

Thus, we studied apoptotic changes and their correlation with

expression of selected cytochrome P450s (CYPs) in PC12 cells

exposed to MCP. MCP was selected as model pesticide, since it

has been used extensively worldwide and is known for its

neurotoxicity [22,23]. PC12 cells were selected because of known

expressions of CYPs [24] and most of the marker associated with

neuronal structures, functions, toxicity and repair [9,25]

Results

Intracellular glutathione levels
Data of MCP-induced alterations in the levels of intracellular

GSH concentrations are summarized in figure 1. Statistically
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significant (p,0.001) decrease in the values were observed at 6, 12,

and 24 h exposures, i.e., 31.461.5 mM, 29.761.3 mM, and

27.861.1 mM following an exposure of MCP (1026 M) and

28.261.3 mM, 22.361.1 mM, and 19.961.4 mM in cells ex-

posed to MCP (1025 M) when compared with unexposed controls

i.e., 37.860.8 mM (6 h), 37.161.0 mM (12 h) and 36.360.9 mM

(24 h) respectively.

ROS generation
MCP (1026 M and 1025 M) induces significant ROS produc-

tion in PC12 cells at all the incubation periods, i.e., 132611% and

116610% (6 h); 15563.6% and 13867.9% (12 h), and

14462.7% and 16965.6% (24 h) respectively. ROS production

was insignificant following 1027 M and 1028 M concentrations of

MCP at all the time points. While, MCP (1024 M) exposure for 12

and 24 h was significantly cytotoxic (Figure 2b). Fluorescence

microscopic analysis using DCFH-DA fluorescence dye maintains

the linearity with the data obtained by spectro-fluorimetric analysis

(Figure 2a).

Apoptosis detection
MCP (1025 M) exposure for 6 h induces significant (3 fold of

control) apoptosis in PC12 cells. While the magnitude of

apoptosis induction was low (2 fold of control) in cells exposed

to MCP (1026 M) for 6 h. Increase in necrosis and decrease in

apoptosis was observed in cells exposed to MCP (1024 M) for

6 h. System optimization was confirmed by induction of

apoptosis in 31.3% cell population following camptothecin

(3 mg/ml) exposure for 6 h, and served as positive control

(Figure 3a). Fluorescence imaging of the cells kept under identical

experimental conditions confirms our data obtained by FACS

analysis (Figure 3b).

Bis-benzimide Staining
Nuclear condensation and DNA fragmentation were studied as

markers of apoptosis in PC12 cells following the exposure of

selected concentrations of MCP. Findings of the assays were

showing the similar trends as observed in case of MMP and

responded to MCP insult in a dose dependent manner in PC12

cells (Figure 4a & b).

Transcriptional changes
MCP (1025 M) exposure for 2, 6, 12, and 24 h induces

significant alterations in the expression levels of mRNA of CYP

1A1, 1A2, 2B1, 2B2, and 2E1. In a biphasic response, at 2 and

6 h, expression was increased and thereafter levels were decreased

at 12 and 24 h. However, at 12 h, values were significantly higher

than unexposed control cells for all the CYPs except for CYP2B1.

Interestingly, the peak levels of all the CYPs were observed in cells

exposed for 6 h i.e., 4.7960.56; 17.0061.63; 2.5460.07;

3.5260.77; and 3.2860.95 fold of control for CYP 1A1, 1A2,

2B1, 2B2, and 2E1 respectively. The elevated levels of mRNA

were almost restored to basal level rather below to that by 24 h

exposure (Figure 5a).

Since, MCP (1025 M) exposure for 6 h was found to be most

effective in the induction of mRNA expression of CYPs, the

mRNA expression study for the genes associated with apoptosis

was restricted for 6 h only. Results show significant up-regulation

in the expression of mRNA for Caspase-3 (6.3760.31), Caspase-9

(3.5160.21), Bax (1.2860.12), Bcl2 (1.5060.25), Bnip3

(1.4360.08), p53 (1.6760.17), and p21 (1.3160.12) fold of

control, whereas down regulation was observed in case of Bclw

(0.6960.03), and Mcl1 (0.8860.01) fold of control (Figure 5b).

Western blot analysis
MCP (1025 M) exposure for 6 h shows peak upregulation of

protein expression of CYP 1A1 (1.8960.23), 1A2 (1.5360.19), 2B1

(1.2360.05), 2B2 (2.0660.23), 2E1 (3.1360.47), p53 (1. 9460.24),

GSTP1-1: 23 kda (1.8560.27), GSTP1-1: 42 Kda (1.3960.17),

GSTP1-1: 46 kda (1.4660.16), Bax (2.7560.34), Bcl2 (1.3360.12),

activated Caspase-9 (2.4360.14) and activated Caspase-3

(3.6260.41) fold of control. Protein expression of CYP1A1/1A2

and Bax came to the basal level in cells exposed to MCP (1025 M)

for 12, and 24 h. However, the levels of protein expression of

CYP2B2, 2E1, p53 and all forms of GSTP1-1 were higher than

unexposed control cells following MCP exposure for 12 and 24 h.

In case of Bcl2 values were observed below the basal level at 12, and

24 h exposure. Significant restoration of altered levels were

observed in recovery group i.e., CYP1A1 (0.7460.09), CYP1A2

(1.1660.17), CYP2B1 (1.1960.08), CYP2B2 (1.7260.26), CYP2E1

(1.7560.24), P53 (1.2760.19), Bax (1.1860.14), Bcl2 (0.4260.02),

and activated Caspase-3 (0.8660.07) [Figure 6 (i) a & b; (ii) a & b;

(iii) a & b].

Immunocytochemical analysis
MCP (1026 M and 1025 M) exposure for 6 h induces

significant (p,0.001) protein expression of C-fos (2.2060.51 fold,

2.8160.78), and C-jun (1.9360.51 fold, 3.3060.72) fold of control

respectively. MCP exposure of 1025 M induces the alteration in

the expression with greater magnitude than MCP 1026 M

concentration and this magnitude difference was statistically

significant (p,0.001) (Figure 7a & b-I, II).

Discussion

The high lipid contents, high oxygen consumption, and low

levels of glutathione contents are suggested reasons for ROS-

Figure 1. Glutathione (GSH) levels in PC12 cells exposed to
MCP (1024–1027 M) for 6, 12, and 24 h assessed by using
fluorescence based Glutathione Detection Kit (Catalog no.
APT250, Chemicon, USA). To estimate the GSH levels, the lysed
samples (90 ml/well) were transferred to 96 well black bottom plates
and mixed with freshly prepared assay cocktail (10 ml) containing
monochlorobimane (MCB), a dye has high affinity for glutathione in
cells compared to other thiols. Plates were read at excitation
wavelength 380 nm and emission wavelength 460 nm after the
incubation for 1–2 h at 37uC by using Multiwell Microplate Reader
(Synergy HT, Bio-Tek, USA). Standard curve was plotted using the
glutathione standard supplied in the kit and used to calculate the
experimental values. The data are expressed in intracellular concentra-
tions of GSH6SEM, n = 3. * = P,0.05, ** = p,0.001.
doi:10.1371/journal.pone.0017757.g001
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mediated vulnerability of brain cells against xenobiotics [26]. In

the present study, we also observed the significant dose and time

dependent induction in ROS generation and decrease in

glutathione (GSH) levels, which were found to be associated with

apoptotic changes. Earlier we reported the increase of LPO in

PC12 cells exposed to MCP [7]. Similar kind of associations have

also been reported using cultured cells of neural origin and rat

brain slices [10], blood mononuclear cells [27], and mouse

macrophage cell lines [28,29].

The activation of cytochrome P450s and their interaction with

mitochondrial chain complexes have been suggested in chemical-

induced apoptosis [20,30]. The involvement of CYPs in

organophosphates-induced apoptosis in neuronal cells has also

been indicated [31]. However, we are reporting first time that

MCP-induced apoptosis and oxidative stress are associated/

regulated by specific isoforms of CYPs in PC12 cells. We observed

significant induction in the expression of CYPs even at 2 h

exposure, which was found to be upstreamed to ROS generation

by 6 h in PC12 exposed to MCP. Such induced expression of

CYPs in early hours might have played important role in the

production of reactive oxygenated molecules (ROMs), which are

known to induce ROS generation [32], LPO [33], GSTs [34], and

eventually to apoptosis [15,20]. In the present investigations,

apoptosis induction and oxidative stress was found to be associated

with upregulation of CYP1A1. Such increased expression of

CYP1A1 has also been reported increase the excretion rate of 8-

oxoguanine (oxo8Gua) in human hepatoma cell line, a biomarker

of oxidative DNA damage [35]. CYP1A1 and CYP1B1 have been

demonstrated to catalyze catechol estrogen formations, which play

a key role in 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced

oxidative damage in cultured human mammary epithelium cells

[36]. Induced CYP2E1 was found to cause oxidative stress by

depleting the intracellular GSH levels [37], activation of the p38

MAP kinase pathway, and induction of the transcription factor

Nrf2 [38], in human hepatoma cell line-HepG2. The role of

CYP2E1has been suggested in alcohol-induced oxidative DNA

damage in liver of null mice [39].

Induction in the expression levels of CYPs (CYP1A1/1A2,

2B1/B2 and 2E1) were higher at 6 h, which brought down

towards the basal level by 24 h. Similarly, apoptotic events were

also found to reduce with the passage of time. This could be due to

increased necrosis at 12 and 24 h exposures, as discussed in our

earlier report too [7]. Since, induced expression of CYPs is

regarded as defence mechanism to detoxify the effect of

xenobiotics [40], thus, initial increase in the expression (mRNA

and protein) of CYPs suggest responsiveness of cells against MCP

Figure 2. Reactive Oxygen Species (ROS) generation in PC12 cells exposed to MCP. (a) Representative microphotographs showing MCP-
induced reactive oxygen species (ROS) generation in PC12 cells. ROS generation was studied using dichlorofluorescin diacetate (DCFH-DA) dye.
Images were captured by Nikon phase contrast cum fluorescence microscope (model 80i) attached with 12.7 Megapixel Nikon DS-Ri1 digital CCD
cool camera. (b) Percent change in ROS generation following 6, 12 and 24 h exposure of various concentrations of MCP in PC12 cells assessed by
spectrofluorometric analysis. In brief, cells (16104 per well) were seeded in poly L-lysine pre-coated 96 well black bottom culture plates and allowed
to adhere for 24 h in 5% CO2–95% atmosphere at 37uC. Cells were exposed to MCP (1024 to 1028 M) for 6, 12 and 24 h. Following the exposure, cells
were re-incubated with 29, 79 dichlorodihydrofluorescein-diacetate (DCFH-DA) (20 mM) for 30 min at 37uC and fluorescence intensity was measured
using multiwall micro plate reader (Synergy HT, Bio-Tek, USA) on excitation wavelength at 485 nm and emission wavelength at 528 nm. The data are
expressed in mean of percent of the unexposed control 6 SEM, n = 8. * = P,0.05, ** = p,0. 001.
doi:10.1371/journal.pone.0017757.g002
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exposure. Whereas, the decreased levels of CYPs in cells exposed

to MCP for longer period might be due to significant necrotic cell

death. It has already been demonstrated in case of various

xenobiotics that higher doses for low time periods and lower doses

for higher time periods can convert apoptosis into necrosis [41].

Following MCP exposure, we observed a significant up-

regulation in the expression of immediate early response gene

proteins, i.e., C-fos and C-jun. Such significant up-regulation

might be due to oxidative stress induced by the massive production

of ROS/ROMs or induction of JNK pathway during CYPs-

mediated metabolism of MCP. The association of chemical-

induced over expression of the various CYPs, and oxidative

damage is well established [42]. The induced level of GSH is an

indicator of strong anti-oxidant status in cell system [28], whereas,

reduced GSH levels were found to be associated with impaired

anti-oxidant activities [43]. The lower levels of GSH in brain cells

have been reported to facilitate the dissociation of GSTP1-1/JNK

complex, and activation of JNK pathway [44]. In the present

study, increased expression of GSTP1-1 and decreased GSH levels

may also be correlated with the activation of JNK pathway, and

subsequent cell death. However, upon the longer exposure, the

GSTP1-1 levels came down very near to basal, which indicate

either the failure of self defense due to activation of JNK pathway

or necrotic cell death. Such GSTP1-1 dependent activation of

JNK pathway is well documented in Jurkat [45], human

neuroblastoma cell line [46], and in NB4 cell line [44], against

variety of chemical exposures.

The other possible reason for our findings might be due to the

non-enzymatic direct binding of GSH with CYPs mediated

reactive metabolites of MCP. This phenomenon has already been

reported in case CYPs mediated metabolism of paracetamol,

where the levels of GSH were found to be depleted upon the

accumulation of reactive metabolite - N-acetyl-p-benzoquinone

imine (NAPQI) [47].

In the present investigation, synchronization was also observed

between the increased expressions of CYPs (1A1, 1A2, 2B1, 2B2,

and 2E1) and altered expressions of caspase 3 and caspase 9, genes

involved in apoptosis signalling cascade in PC12 cells. The caspase

cascade activation has been reported by two different routes, i.e.,

binding of procaspase-9 with Apaf-1 to form the apoptosome

complex following the release of cytochrome-c from damaged

mitochondria [29], while in other route OMI, and SMACs

released from intra-mitochondrial space is binds with caspase

inhibitors, and thus activates the caspases [48]. But, we are

hypothesizing the involvement of CYPs in the activation of

caspases as another possible route to trigger the apoptosis

signalling in PC12 cells receiving MCP exposure. Since, CYPs-

mediated apoptotic changes have already been reported in E47

cells [49], and Hepa1c1c7 cells [24,50] exposed to buthionine

sulfoximine and Benzo[a] pyrene respectively. Based on the

findings, we propose a schematic flow diagram showing the

involvement of selected CYPs in the triggering of ROM induced

oxidative stress and apoptosis cascade in PC12 cells exposed to

MCP. Apoptosis induction was routed through mitochondrial

activity and by the involvement of caspase 3/9 (Figure 8).

In summary, we believe that this is the first report showing

altered expressions of selected CYPs in MCP induced apoptosis

and oxidative damage in PC12 cells. These apoptotic changes

were mitochondria-mediated and regulated through caspase

cascade. Our data confirm the involvement of specific CYPs in

MCP induced apoptosis in PC12 cells and also identifies possible

cellular and molecular mechanisms of organophosphate pesticide-

induced apoptosis in neuronal cells.

Materials and Methods

Cell culture
PC12 cells were procured from National Centre for Cell

Sciences, Pune, India, and have been maintained at In Vitro

Toxicology Laboratory, Indian Institute of Toxicology Research,

Figure 4. DAPI staining for the detection of MCP-induced
apoptosis. (a) Representative microphotographs showing induction of
Apoptosis in PC12 cells exposed to various concentrations of MCP for
variable time periods. (A): Unexposed control cells (B): cells exposed to
1026 M MCP showing apoptotic body; (C): Cells exposed to 1025 M
MCP Showing more damages. (b) Apoptosis induction in PC12 cells
exposed to various concentrations of MCP for different time periods.
Apoptotic Bodies were counted by using Upright phase contrast
Fluorescent microscope (Nikon 80i, Japan) at 106100x oil immersion
magnification and images were grabbed by Nikon DS-Ri1 (12.7
megapixel) camera. Minimum 1000 cells were counted in each slide
in triplicate. * p,0.05, **p,0.001
doi:10.1371/journal.pone.0017757.g004

Figure 3. Apoptosis induction in PC12 cells exposed to MCP. (a) Apoptosis detection in PC12 cells exposed to MCP using MitolightTM

apoptosis detection kit (catalog no. APT142, Chemicon, USA). (A) Unstained cells; (B) Control cells; (C) PC12 cells exposed to MCP (1026 M) for 6 h; (D)
PC12 cells exposed to MCP (1025 M) for 6 h; (E) PC12 cells exposed to MCP (1024 M) for 6 h; (F) Experimental positive control- PC12 cells exposed to
campothecin (3 mg/ml) for 6 h; (G) Cells pretreated with 10 mM NAC for 1 h and then exposed with MCP(1025 M) for 6 h. (b) Apoptosis detection by
MitolightTM apoptosis detection kit using Upright Phasecontrast Microscope (Nikon 80i, Japan) at 106100x oil immersion magnification. The images
were snapped by Nikon DS-Ri1 (12.7 megapixel) camera. Figure A1- Control cells showing intense red color due to polymerization of Mitolight dye in
mitochondria indicative of healthy mitochondria. Figure A2- green color indicates the accumulation of non-polymerized dye in cytoplasm. Figure A3-
Nuclei stained with DAPI.Figure A4- Superimposed microphotographs showing healthy mitochondria with intact membrane. Figure B1-B4: PC12 cells
exposed to MCP (1026 M) for 6 h shows significant dissipation in Mitochondrial membrane potential. Figure C1–C4: PC12 cells exposed to MCP
(1025 M) for 6 h. C-3: cells showing nuclear condensation and fragmentations (D1 and D2 are magnified view highlighting the same). C-4:
Superimposed microphotograph showing apoptotic events.
doi:10.1371/journal.pone.0017757.g003
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Lucknow, India, as per the standard protocols described earlier

[7]. Briefly, cells were cultured in Nutrient Mixture (F-12 Hams),

supplemented with 2.5% fetal bovine serum (FBS), 15% horse

serum (HS), 0.2% sodium bicarbonate (NaHCO3), 100 units/mL

penicillin G sodium, 100 mg/mL streptomycin sulphate, and

0.25 mg/mL amphotericin B. Cultures were maintained at 37uC in

5% CO2-95% atmosphere under high humid conditions. Culture

medium was changed twice weekly and cultures were passaged at

a ratio of 1:6 once a week. Prior to experiments, cells were

screened for integrity and neuronal markers as described earlier

[27]. Cells were also checked for their viability using trypan blue

dye exclusion assay, and batches showing more than viability 95%

were only used in the experimentation.

Reagents and consumables
All the specified chemicals, primers, probes and reagents, viz.,

MCP (Dimethyl (E)-1-methyl-2-methyl carbanoyl vinyl phosphate

(IUPAC) C7H14NO5-P.; Catalog no. PS-609; purity-99.5%), and

diagnostic kits were purchased from Sigma, USA, unless otherwise

stated. Culture medium nutrient mixture F-12 Hams, antibiotics/

antimycotics, fetal bovine and horse sera were purchased from

Gibco BRL, USA.

Figure 5. Transcriptional changes in the levels of selected xenobiotic metabolizing cytochrome P450s (CYPs) and apoptosis
markers in PC12 cells exposed to MCP. (a) MCP-induced alterations in the mRNA expression of marker genes associated with metabolism of
xenobiotics in PC12 cells. Quantitative Real Time PCR (RT-PCRq) was performed in triplicate by TaqMan Probe using ABI PRISMH 7900HT Sequence
Detection System (Applied Biosystems, USA). Actin-b was used as internal control to normalize the data and MCP induced alterations in mRNA
expression are expressed in relative quantity compared with respective unexposed control groups. (b) MCP induced alterations in the mRNA
expression of marker genes associated with apoptosis in PC12 cells. Quantitative Real Time PCR (RT-PCRq) was performed in triplicate by SYBR Green
dye using ABI PRISMH 7900HT Sequence Detection System (Applied Biosystems, USA). Actin-b was used as internal control to normalize the data and
MCP induced alterations in mRNA expression are expressed in relative quantity (RQ) compared with respective unexposed control groups. Reliability
of Specific products was checked by melting curve analysis as well as running the product onto 2% agarose Gel.
doi:10.1371/journal.pone.0017757.g005
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Figure 6. Alterations in the expression of proteins involved in the metabolism [figure-6 (i) a & b], oxidative stress [figure-6 (ii) a & b], and
cell death [figure-6 (iii) a & b] were studied in PC12 cells exposed to MCP (1025 M) for various time periods. Actin- b was used as loading
control to normalize the data. (a) Lane (A): untreated control; (B): Cells exposed to MCP for 6 h; (C): Proteins isolated after 24 h, i.e., 6 h of MCP exposure
+18 h without exposure (auto-recovery period); (D): Cells exposed to MCP for 12 h; (E): Cells exposed to MCP for 24 h. (b) Relative quantification of
alterations in the expression of different proteins., viz CYP1A1 (59 kDa), CYP1A2 (57 kDa), CYP2B1 (55 kDa), CYP2B2 (54 kDa), CYP2E1 (56 kDa), GSTP1-1
(23.5, 42 and 46 kDa), P53 (53 kDa), Bax (29 kDa), Bcl2 (23 kDa), activated caspase-9 (35 kDa), activated caspase-3 (21 kDa), and Actin-b (42 kDa) in PC12 cells
exposed to MCP (1025 M) for various time periods. Actin-b was used as internal control to normalize the data. Quantification was done in Gel
Documentation System (Alpha Innotech, USA) with the help of AlphaEaseTM FC StandAlone V.4.0 software. * = P,0.05, ** = p,0. 001.
doi:10.1371/journal.pone.0017757.g006
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Selection of noncytotoxicity doses
Non-cytotoxic doses of monocrotophos (MCP) were identified

using standard endpoints of cytotoxicity, i.e., MTT [3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide], NRU

(neutral red uptake), LDH (lactate dehydrogenase) released, and

trypan blue assays. The selection of MCP concentrations for the

present investigations was based on our previous studies with same

cell line under identical conditions [7].

Estimation of Glutathione (GSH) levels
Glutathione (GSH) levels were assessed following the exposure

of MCP (1024–1027 M) to PC12 cells for 6, 12, and 24 h using

commercially available kit (Glutathione Detection Kit, Catalog no.

APT250, Chemicon, USA). In brief, following respective MCP

exposures, cells were collected by centrifugation at 7006g for

2 min at 4uC and lysed in lysis buffer. The samples were

centrifuged again at 12,0006g for 10 min at 4uC and supernatant

was collected. To estimate the GSH levels, the lysed samples

(90 ml/well) were transferred to 96 well black bottom plates and

mixed with freshly prepared assay cocktail (10 ml) and read at

excitation wavelength 380 nm and emission wavelength 460 nm

using Multiwell Microplate Reader (Synergy HT, Bio-Tek, USA)

after the incubation of 1–2 h. Standard curve was plotted using the

glutathione standard supplied in the kit and used to calculate the

experimental values. Cells exposed to H2O2 (100 mM) for 2 h

under identical conditions were served as positive control.

Estimation of Reactive Oxygen Species (ROS) generation
Estimation of MCP-induced ROS generation was carried out

following the standard protocol of Srivastava et al. [51]. In brief,

cells (16104 per well) were seeded in poly L-lysine pre-coated 96

well black bottom culture plates and allowed to adhere for 24 h in

5% CO2–95% atmosphere at 37uC. Cells were exposed to MCP

(1024 to 1028 M) for 6, 12 and 24 h. Following the exposure, cells

were re-incubated with 29, 79 dichloro-dihydrofluorescein-diacetate

(DCFH-DA) (20 mM) for 30 min at 37uC. The reaction mixture was

then replaced by 200 ml of PBS per well. The plates were kept on

rocker shaker platform for 10 min at room temperature in dark and

Figure 7. MCP induced alterations in the expression of early response genes. (7a) Representative microphotographs of
immunocytochemical localization of C-fos and C-jun proteins in PC12 cells exposed to MCP (1025 and 1026 M). Images were taken by Nikon
Eclipse 80i equipped with Nikon DS-Ri1 12.7 megapixel camera, Japan. (7b I & II) Relative quantification of fold inductions in the expression of C-fos
and C-jun proteins in PC12 cells exposed to MCP (1025 and 1026 M) for 6 h. Leica Q-Win 500 image analysis software was used to quantify the
expression of C-fos and C-jun. Data were calculated as mean 6 SE of at least 20 fields from three independent experiments.
doi:10.1371/journal.pone.0017757.g007

MCP-Induced Apoptosis in PC12: Role of CYPs

PLoS ONE | www.plosone.org 8 March 2011 | Volume 6 | Issue 3 | e17757



fluorescence intensity was measured using multiwall micro plate

reader (Synergy HT, Bio-Tek, USA) on excitation wavelength at

485 nm and emission wavelength at 528 nm. The data are

expressed in percent of the unexposed control.

Intracellular ROS generation was also confirmed by image

analysis. In brief, cells (56104 per well) were seeded in Poly L-

Lysine pre-coated tissue culture slide flasks and allowed to adhere.

Adhered cells were then exposed to MCP (1025 M to 1027 M) for

6 h. Following MCP exposure, cells were washed twice with PBS,

and re-incubated for 30 min in dark in incomplete culture medium

containing DCFH-DA (20 mM). Slides were washed twice again

with PBS and mounted for microscopic analysis. Images were taken

by using Nikon Eclipse 80i equipped with Nikon DS-Ri1 12.7

megapixel camera. Cells exposed to H2O2 (100 mM) for 2 h under

identical conditions were served as positive control.

Detection of apoptosis
Mitochondrial membrane potential, an early marker of

apoptosis induction was assessed using Flowcytometer based

MitolightTM Apoptosis Detection Kit (APT142, Chemicon,

USA). Cells were exposed to MCP (1024 M-1026 M) for 6 h,

then pelleted and re-suspended in 1 ml of pre-diluted MitolightTM

solution for 15 min at 37uC. Following incubation, uptake of

MitolightTM dye by living mitochondria was analyzed by

Flowcytometer (BD FACSCantoTM) equipped with the FACS

Diva Version 6.0.0.software. Validation of data was also done

using fluorescence microscopy (Nikon Eclipse 80i) attached with

Nikon digital CCD cool camera -Model DS-Ri1 of 12.7

Megapixel).

Nuclear condensation by Bis-bezimide Staining
MCP-induced apoptotic alterations were also observed by

counting the events of nuclear condensation. Nuclear condensa-

tion was observed under fluorescence microscope using (29-[4-

Ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2, 59-bi-1H-benzimid-

azole] (Hochest no. 33342, Sigma, USA) dye as described by

Srivastava et al. [51]. Data was presented by comparing the values

with un-exposed control cells.

Figure 8. Schematic flow diagram to depict the involvement of selected CYPs in the induction of oxidative stress and apoptosis in
PC12 cells expose to MCP.
doi:10.1371/journal.pone.0017757.g008
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Real Time - PCR (TaqMan Chemistry)
Expression (mRNA) of xenobiotic metabolizing cytochrome

P450s (CYP1A1, 1A2, 2B1, 2B2, & 2E1) was studied in PC12

cell exposed to MCP (1026 M &1025 M) for 2, 6, 12, and 24 h.

Total RNA was isolated using GeneElute mammalian total

RNA Miniprep Kit (Catalog no. RTN-70, Sigma, USA). The

quality of RNA was checked by Nanodrop ND-1000 Spectro-

photometer V3.3 (Nanodrop Technologies Inc., Wilmington,

DE, USA) as well as by running RNA onto 2% denaturing

agarose gel. Total RNA (1 mg) was reverse-transcribed into

cDNA by SuperScript III first strand cDNA synthesis Kit

(Catalog no. 18080-051, Invitrogen Life Science, USA) using

random hexamer primers. Quantitative Real Time PCR (RT-

PCRq) was performed in 96 well plate format using TaqMan

primers and probes in ABI PRISMH 7900HT Sequence

Detection System (Applied Biosystems, USA). The TaqMan

20 ml reaction mixture contained 1 ml of 4 mM probe (final

concentration, 0.2 mM), 1 ml of 10 mM forward primer and 1 ml

of 10 mM reverse primer (0.5 mM final concentration for each

primer), 10 ml of TaqMan Universal master mix, 6 ml of

nuclease-free water, and 1 ml of cDNA (50 ng of total RNA).

After sealing the plate with an optical adhesive cover, the

thermo-cycling conditions were initiated at 50uC for 2 min with

an enzyme activation step of 95uC for 10 min followed by 40

PCR cycles of denaturation at 95uC for 15 seconds and anneal/

extension at 60uC for 1 min. Sequence of primers and probes

used were: CYP1A1 (M26129a) forward 59-ccaaacgagttccggcct-

39, reverse 59- tgcccaaaccaaagagaatga-3, probe 59-ttctcactcag-

gtgtttgtccagagtgcc-39; CYP1A2 (K02422a) forward 59-cgccca-

gagcggtttctta-39, reverse 59-tcccaagccgaagagcatc-39, probe 59-

caatgacaacacggccatcgacaag-39; CYP2B1 (J00719a) forward 59-

aacccttgatgaccgcagtaaa-39, reverse 59- tgtggtactccaatagggacaa-

gatc-39, probe 59-ccatacactgatgcagttatccatgagattcaga-39; CYP-

2B2 (J00720–728a) forward 59-ccatcccttgatgatcgtacca-39, re-

verse 59-aattggggcaagatctgcaaa-39 probe 59-ccatacactgatgcagt-

catccacgagattc-39, CYP2E1 (J02627a) forward 59-aaagcgtgtg-

tgtgttggagaa-39, reverse 59-agagacttcaggttaaaatgctgca-39, probe

59-atagcagacaggagcagaaacaattccatgc-39 and Actin-b (V01217)

forward 59- ggaaatcgtgcgtgacattaaag-39, reverse 59- cggcagtggc-

catctctt-39, probe 59-agctgtgctatgttgccctagacttcgagc-39. Actin-b
was used as internal control to normalize the data. MCP-

induced alterations in mRNA for specific CYPs are expressed in

relative quantity keeping values of unexposed control groups as

basal, i.e., one. Real time reactions were carried in triplicate

well for each sample.

Real Time - PCR (SYBR Green Chemistry) analysis
Alterations in mRNA expression of oxidative stress and

apoptosis markers were studied in PC12 cells exposed to MCP

(1025 M) for 6 h. The methodology was same as used for mRNA

expression of CYPs except the use of SYBR Green instead of

TaqMan probes. Specificity of primer sets and genomic DNA

contamination were assessed for all the samples by analyzing by

melting curve analysis and running no template control (NTCs).

The primer sequences used in the study were similar as reported

by us earlier [7].

Western blot analysis
Western blot analysis was carried out for xenobiotic metabo-

lizing CYP P450s (CYP1A1, 1A2, 2B1, 2B2, & 2E1), oxidative

stress and apoptosis markers (GSTP1-1, p53, Bax, Bcl2, activated

Caspase-9, & activated Caspase-3) in PC12 cells exposed to MCP

(1025 M) for 6, 12, and 24 h. Following MCP exposure, cells were

pelleted and lysed using CelLyticTM M Cell Lysis Reagent

(Catalog no. C2978, Sigma, USA) in the presence of protein

inhibitor cocktail (Catalog no. P8340-5ML, Sigma, USA). Protein

estimation was done by BCA Protein Assay Kit (Catalog no.

G1002, Lamda Biotech, Inc., St. Louise, MO, USA). The equal

amount (50 mg/well) of denatured proteins was loaded in 10%

tricine-SDS gel and blotted on polyvinylidene fluoride (PVDF)

membranes (Santa Cruz, USA) using wet transfer system. After

blocking (2 h at 37uC), membranes were incubated overnight at

4uC with anti-protein primary antibodies specific for 1A1, 1A2,

2B1/2B2 & 2E1 (1:500, Chemicon, USA), GSTP1-1 (1:1000,

Calbiochem, USA), p53, Bcl2, Bax, Activated Caspase-9, Activat-

ed Caspase- 3 (1:1000, CST, USA) and Actin-b (1:2000, Santa

Cruz, USA) in blocking buffer (pH 7.5). The membranes were

then re-incubated for 2 h at room temperature with secondary

anti-primary immunoglobulin G (IgG)-conjugated with horserad-

ish peroxidase (Calbiochem, USA). The blots were developed

using luminol (Catalog no. 34080, Thermo Scientific, USA) and

densitometry was done for protein specific bands in Gel

Documentation System (Alpha Innotech, USA) having AlphaEa-

seTM FC StandAlone V. 4.0.0 software. Actin-b was used as

internal control to normalize the data. MCP induced alterations

are expressed in relative term fold change in expression by

comparing the data with respective unexposed controls. Auto-

recovery pattern of altered protein levels was also studied in a

parallel group exposed to MCP (1025 M) for 6 h followed by 18 h

incubation in fresh culture medium without MCP.

Immunocytochemical analysis
Immunocytochemical localization of early response marker

proteins such as c-fos and c-jun was carried out by using anti-

primary antibodies following the protocol of Siddiqui et al. [52].

Briefly, cells (16104 cells/well) were allowed to adhere on the

surface of Poly L-lysin pre-coated eight well chamber slides. Cells

were exposed to MCP (1025 M and 1026 M) for 6 h. Following

exposure, cells were fixed by using 4% paraformaldehyde for

10 min and blocked with PBS containing 0.02% Triton-X100 and

0.1% BSA for 2 h to block the non-specific binding sites. Cells

were then incubated with primary antibodies, viz., C-fos (1:200,

Santa Cruz, USA) and C-jun (1:200, Santacruz, USA) for 2 h at

room temperature followed by washing with PBS. Cells were re-

incubated with HRP conjugated goat anti-rabbit secondary

antibody (Calbiochem, USA) for 2 h at room temperature.

Finally, cells were washed with PBS to remove unbound antibody

and incubated with DAB (diaminobezidiene tetrahydrochloride,

Sigma, USA) for 5–15 min to develop the brown color. Cells were

visualized under upright microscope (Nikon Eclipse 80i equipped

with Nikon DS-Ri1 12.7 megapixel camera, Japan) and

quantification was done by measuring the change in percent area

of protein expression with the help of Leica Qwin 500 Image

Analysis Software (Leica, Germany).

Statistical analysis
Results were expressed as mean 6 standard error of mean

(SEM) for the values obtained from at least three independent

experiments. Statistical analysis was performed using one-way

analysis of variance (ANOVA) and post hoc Dunnett (two sided)

test to compare the findings in different groups. The values

p,0.05 were considered significant.
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