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Abstract

Genetic and genomic studies highlight the substantial complexity and heterogeneity of human cancers and emphasize the
general lack of therapeutics that can match this complexity. With the goal of expanding opportunities for drug discovery,
we describe an approach that makes use of a phenotype-based screen combined with the use of multiple cancer cell lines.
In particular, we have used the NCI-60 cancer cell line panel that includes drug sensitivity measures for over 40,000
compounds assayed on 59 independent cells lines. Targets are cancer-relevant phenotypes represented as gene expression
signatures that are used to identify cells within the NCI-60 panel reflecting the signature phenotype and then connect to
compounds that are selectively active against those cells. As a proof-of-concept, we show that this strategy effectively
identifies compounds with selectivity to the RAS or PI3K pathways. We have then extended this strategy to identify
compounds that have activity towards cells exhibiting the basal phenotype of breast cancer, a clinically-important breast
cancer characterized as ER-, PR-, and Her2- that lacks viable therapeutic options. One of these compounds, Simvastatin, has
previously been shown to inhibit breast cancer cell growth in vitro and importantly, has been associated with a reduction in
ER-, PR- breast cancer in a clinical study. We suggest that this approach provides a novel strategy towards identification of
therapeutic agents based on clinically relevant phenotypes that can augment the conventional strategies of target-based
screens.
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Introduction

Numerous advances have been achieved in the development,

selection and application of chemotherapeutic agents, sometimes

with remarkable clinical successes, as in the case of treatment of

leukemias and lymphomas with combined cytotoxic reagents,

testicular cancer with platinum, and estrogen receptor positive

breast cancers with Tamoxifen [1]. Recent work has also

demonstrated the value in targeting the specific molecular lesions

responsible for the development and maintenance of the

malignant phenotype. This is perhaps best illustrated by the

example of chronic myelogenous leukemia (CML), a disease

driven by the BCR-ABL oncoprotein common to virtually all

patients and sensitive to Gleevec, an inhibitor of BCR-ABL [2].

Nevertheless, in the vast majority of cancers, targeted therapies are

active in only a small fraction of patients [3]. An example is

Herceptin, which targets breast cancers with Her2 overexpression,

representing only 18–20% of all cases [4].

Conventional approaches for drug discovery have either used

biochemical, target-based assays or cell-based assays that focus on

a particular activity [5,6,7]. This continues to be an important

strategy that benefits from the use of genomic studies to identify

critical targets [8]. But, the same genomic technology can also be

used to broaden the potential target and develop new screening

methods that are grounded in relevant phenotypes. An alternative

strategy might focus on a cancer-relevant phenotype rather than a

specific molecular target. In fact, the past several years have seen

great advances in the use of DNA microarray data to develop

expression signatures that coincide with important cancer

phenotypes including tumor aggressiveness, metastasis, and

resistance to therapy [9,10,11,12,13,14]. The challenge is to

develop an assay system that both reflects the phenotype of interest

but is also high-throughput to afford an ability to utilize large

compound libraries for the identification of lead compound. We

have applied a strategy based on phenotype signature to the NCI-

60 drug screening dataset, taking advantage of the potential to link

relevant expression signatures with action of a large number of

potential cancer therapeutics. Importantly, of the 40,000 or more

compounds that have been used for screening of the NCI-60

panel, a substantial number of these have been used in clinical

studies. As such, a strategy that could identify therapeutics with

cancer activity from amongst this group of clinically-approved

agents, has the potential to rapidly move new therapeutics into

clinical practice.

Materials and Methods

Cell culture and drug application
Methods to culture and test the drug sensitivity of 19 breast

cancer cell lines are described previously [15]. We performed 12

independent in vitro cell proliferation assays for Simvastatin and

Peplomycin, and 8 for Tamoxifen, and then calculated GI50
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(growth inhibitory concentration of 50%) using GraphPad’s Prism

software. Averages of GI50 values were used for further statistical

analysis. Simvastatin (S3449) and Tamoxifen (T5648) were

purchased from LKT Laboratories and Sigma, respectively.

Peplomycin was provided courtesy of Nippon Kayaku. We

examined the relationship between drug response and phenotype

in experiments using the non-parametric Mann Whitney U-test

and linear regression using GraphPad’s Prism software.

Statistical analyses of microarray data
Analysis of expression data was described in detail previously

[16,17]. A metagene represents a group of genes that together

exhibit a consistent pattern of expression in relation to an

observable phenotype. Each signature summarizes its constituent

genes as a single expression profile, and is here derived as the first

principal component of that set of genes (the factor corresponding

to the largest singular value) as determined by a singular value

decomposition. Given a training set of expression vectors (of values

across metagenes) representing two biological states, a binary

probit regression model is estimated using Bayesian methods.

Applied to the NCI-60 expression data, this leads to evaluations of

predictive probabilities of each of the two states for each cell line.

When predicting the pathway activation or the evidence of the

phenotype of cancer cell lines, gene selection and identification is

based on the training data, and then metagene values are

computed using the principal components of the training data

and additional cell line or tumor expression data. Bayesian fitting

of binary probit regression models to the training data then

permits an assessment of the relevance of the metagene signatures

in within-sample classification, and estimation and uncertainty

assessments for the binary regression weights mapping metagenes

to probabilities of relative pathway status. Predictions of the

relative status of the NCI-60 cell lines are then evaluated,

producing estimated relative probabilities of the pathway activa-

tion or the evidence of the phenotype across the NCI-60 cell lines.

Signatures for cancer cell phenotypes
To generate a signature that distinguishes basal or luminal subtype

of breast cancer, we used a gene expression dataset E-TABM-157

[18] (ArrayExpress; http://www.ebi.ac.uk/arrayexpress/) that in-

cluded 26 samples with basal and 25 with luminal subtypes. To

validate the ‘‘basal-luminal’’ signature from cultured cell lines, we

used three independent datasets for human in vivo breast cancer

(GEO; http://www.ncbi.nlm.nih.gov/geo; GSE1456, GSE1561 and

GSE3744) [19,20,21]. Gene expression signatures for RAS and PI3K

used in this study were generated by adenoviral overexpression of a

constitutive active mutant of H-RAS (H-RAS V12) and wild type

p110a subunit of PI3K, respectively, in primary cultured human

mammary epithelial cells [14,17]. The conditions to generate the

signatures are dependent upon empirically determined multiple

parameters, particularly the number of genes to prioritize and the

number of metagenes. These detailed conditions are described in

Table S1. We also analyzed the influences of these factors to the

correlations between RAS signature and the sensitivity to Hypothe-

mycin, and between PI3K signature and the sensitivity to LY294002

(Figure S2).

Compound sensitivity data of NCI-60 cell lines
Drug response data for NCI-60 cell lines were available from

http://www.dtp.nci.nih.gov/. GI50 (drug concentration for 50%

growth inhibitory effects on cells) values were available for 44,653

compounds (Release September 2005). We found the data

includes many compounds that were assayed on a limited number

of cell lines or whose effects did not suffice for calculating GI50s.

To improve the validity of the data, we filtered the compounds

that were assayed on fewer than 30 samples and also the

compounds whose efficacy could not be measured at the assayed

concentrations in over 50% of the assayed samples. This yielded

21,603 compounds, among which 6,638 have chemical names (or

equivalents).

Conversion of gene expression signature to drug
response

We used the gene expression data of the NCI-60 on Affymetrix

U133A/B chips from GEO (GSE5720) [22] for the analyses in this

study. To select compounds, we calculate the Pearson correlation

between the predicted probability for the phenotype of interest

against the GI50 values of each of the compounds. To preserve the

structure of the distribution of the phenotype probabilities and

GI50 values, we calculated the p-values for the correlations by

permuting the labels for the phenotypes 16106 times and counting

the number of times we obtain the original correlation by chance.

We calculated the false discovery rate (FDR) using the method of

Benjamini & Hochberg to determine a cut-off value for the

selection of compounds [23]. GI50 values of correlated com-

pounds were centered and normalized by Gene Cluster 3.0

(http://bonsai.ims.u-tokyo.ac.jp/,mdehoon/software/cluster/),

then visualized by Matlab, R with Bioconductor software (http://

www.bioconductor.org/) or JavaTreeView (http://sourceforge.

net/projects/jtreeview/).

Mouse xenograft model
Athymic nude mice (nu/nu) were obtained from Charles River

Laboratories or the Cancer Center Isolation Facility at Duke

University and maintained in a sterile environment according to

guidelines established by the US Department of Agriculture and

the American Association for Accreditation of Laboratory Animal

Care. This project was approved by the Institutional Animal Care

and Utilization Committee of Duke University. Athymic mice

were inoculated with in vitro propagated MDA-MB-231 cells (106

in 100 ml) subcutaneously injected into each flank. Twelve days

after tumor inoculation, we initiated treatment. Day 0 marks the

first day of treatment. For Simvastatin treatment, tumors were

randomly divided into two groups of 10 mice; control and drug

treatment. Simvastatin tablets (Zocor, Merck) were mixed with

food and pressed into pellets by Harlan Tekland at 1 g

Simvastatin/1 kg diet to deliver a dose of 200 mg/kg mouse/

day, assuming a 25 g mouse consuming 5 g chow per day. The

dosage was reported to be equivalent to the maximal dosage for

humans and was well tolerated by mice in a previous study [24].

Untreated animals received pellets without Simvastatin. Tumors

were measured every 3 or 4 days with calipers in three dimensions.

The following formula was used to calculate tumor volume:

Tumor volume = WxLxHx0.5236 (W, the shortest dimension; L,

the longest dimension; H, the height). The growth curves are

plotted as the mean tumor volume +/2 s.e.m. Average tumor size

at day 0 was same between treated and control mice (Simvastatin

control; 36.23 +/2 8.359 mm3 vs Simvastatin treatment; 35.24 +/

2 5.274 mm3).

Results

Concept of an expression signature-based drug screen
To expand opportunities for cancer drug development, we have

explored the concept of using cancer-relevant gene expression

signatures as the basis for a screen, rather than the conventional

approach of utilizing well defined biochemical targets. The logic in

the use of signatures is the ability to greatly expand the number of

Drug Discovery by Genomics
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opportunities for identifying compounds that have anti-cancer

activity, recognizing the fact that a target-based approach is

limited by available targets that are amenable to conventional

drug screens. Pathways such as MYC and SRC represent one

opportunity but the concept can go well beyond to include other,

less defined, cancer relevant phenotypes that can be represented as

expression signatures including poor prognosis, metastasis, or

general resistance to therapies.

To explore this concept of using signatures as the basis for a

drug screening strategy, we have made use of several examples

that represent potential drug targets and coupled these with data

from the NCI-60 cancer cell line drug screening panel. Over

40,000 compounds have been assayed using the NCI-60 panel,

thus representing a series of cell-based drug screens done in

parallel [7]. Our approach uses signatures to identify cell lines

within the NCI-60 panel that strongly exhibit the signature, and

then identify compounds from the NCI-60 dataset that are active

against those specific cell lines (Figure 1). An important aspect of

the approach is the identification of multiple cell lines that exhibit

a given signature and that share sensitivity to a compound or

compounds.

A screen for pathway-specific drugs
In order to illustrate the concept in the context of cell signaling

pathways that are considered important cancer therapeutic

targets, we have focused on two well studied pathways: RAS

and PI3K. In each case, activation of these proteins and pathways

is known to contribute to the development of an array of cancers

[25,26,27]. Since each has been the subject of extensive drug

development, there are many compounds identified that target

components of the pathways, including compounds assayed in the

NCI-60 drug screen. This then provides an opportunity to validate

the concept of a signature based screen by determining if the

identification of NCI-60 cell lines that exhibit a RAS or PI3K

signature reveals compounds that are active against components of

the respective pathways.

We made use of previously developed expression signatures that

reflect the activity of RAS and PI3K to then profile the activity of

the pathways within the NCI-60 panel [14,17] (Figure 2A). One

point evident in this analysis is the distinction in cell lines

exhibiting activity of the two pathway signatures. These results

were then used to sort the NCI-60 cell lines based on the

predictions of RAS or PI3K activity to then identify compounds

that are most active against these cell lines. This result is shown in

Figure 2B as a heatmap displaying activity of the compounds,

sorting the cells by pathway prediction and the compounds by

relative activity for a given cell line. We identified compounds as

significant based on a multiple hypothesis corrected FDR (false

discovery rate),0.05. Using sequence information generated at

the Sanger Institute, we find that the predicted probabilities of

RAS pathway activation were indeed higher in cells with mutation

of BRAF or RAS (either N-, H- or K-RAS) than the wild type cells

for both loci with statistical significance [28] (RAS/BRAF wildtype

vs RAS or BRAF mutant; p = 0.0001 by Mann Whitney test),

further validating specificity of RAS prediction in NCI-60 cells.

An examination of the compounds showing a significant

correlation with RAS activity revealed 3616 positively correlated

compounds and 606 compounds in negative correlation. Positive

Figure 1. Strategy of a gene expression signature-based drug screen. A gene expression signature that reflects a clinical/biological
phenotype is used to profile the NCI-60 panel to identify cells that exhibit the phenotype of interest. The predicted probability for the signature is
correlated against the sensitivity to over 40,000 (21,603 after filtering) compounds to identify compounds that appear to be effective in cells
exhibiting the phenotype.
doi:10.1371/journal.pone.0006772.g001
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correlated compounds include Hypothemycin, a drug known to

target MAPK/ERK kinases (MEKs) [29] that are key downstream

effectors of the RAS pathway [25,26,27] (rank = 331, R = 0.4998

and FDR = 0.002639). In principle, the identification of Hypothe-

mycin in relation to RAS pathway activation is analogous to

observations linking sensitivity of cells to the same MEK inhibitor

based on the presence of B-RAF mutations [30] (Figure 2C and

2D). Of course, there were many additional compounds that also

exhibited a positive correlation with the RAS activation pheno-

type, although their utility will require further experiments.

The parallel analysis using the PI3K pathway signature revealed

three compounds with a positive correlation and ten with a negative

correlation with FDR,0.05. The cells exhibiting the PI3K signature

were largely distinct from those exhibiting the RAS signature and

thus the drug profile linked to these two pathways was distinct.

Indeed, there are no overlapping compounds identified in both of

RAS and PI3K positive correlation. Although there were mutations

in PIK3CA or PTEN in the NCI-60 cell lines, there was no correlation

between these mutations and the sensitivity of LY294002, which can

specifically inhibit PI3K including activity resulting from gain of

function mutations [31]. Nevertheless, LY294002 is positively

correlated with this PI3K signature (Figure 2C and 2E). Taken

together these observations suggest an ability of the phenotype-based

screen to identify relevant compounds.

Figure 2. Identification of RAS or PI3K pathway-specific drugs. A. Gene expression signatures previously developed to predict RAS or PI3K
pathway activation were used to predict the status of the pathways in the NCI-60 panel. The predicted probability for each oncogene activity is
shown in a heatmap (lower panels; red = high and blue = low). Samples are sorted according to the RAS activity. B. A heatmap displaying the pattern
of compounds correlated with RAS or PI3K pathway status. GI50s of correlated compounds with FDR less than 0.05 are shown in a heatmap
(green = less sensitive and red = more sensitive) with the heatmap of predicted probabilities for RAS or PI3K activity (red = high and blue = low).
Samples and compounds are sorted according to the predicted probabilities for each oncogene activity and to the correlation coefficient,
respectively. RAS is positively correlated to 3616 compounds and negatively correlated to 606. For PI3K, three compounds have positive correlation
and ten have negative correlation. C. Pattern of correlation of all compounds with RAS (left) or PI3K (right) predicted probability. Correlation
coefficients in Pearson correlation are shown in a heatmap (green = less sensitive and red = more sensitive). Bars adjacent to the heatmap are used to
indicate the compounds with FDR less than 0.05. Hypothemycin, a MEK inhibitor, is a highly correlated compound to cells with high RAS probability
(rank = 331, R = 0.4998 and FDR = 0.002639). LY294002 shows strong correlation to PI3K activity without evident statistical significance (rank = 121,
R = 0.3601 and FDR = 0.1463). The correlation coefficient may suggest the ‘‘strength’’ of the correlation. D and E. Relation between oncogenic
pathway activity and pathway specific inhibitors in NCI-60 cell lines. GI50 values were plotted in the function of the predicted probalities. P value and
R2 were calculated by linear regression analysis of GraphPad’s Prism. D. RAS pathway and hypothemycin. E. PI3K pathway and LY294002.
doi:10.1371/journal.pone.0006772.g002
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A screen for cancer phenotype-specific drugs
A second application of this approach is in a context of a

phenotype that lacks a defined molecular target. An example might

be a particular subgroup of cancer patients clearly at risk for disease

progression but lacking currently available therapeutics. Expression

data has been used to characterize human breast cancers into

subtypes that reflect the cell type of origin, with a particular focus on

basal and luminal subtypes. Basal type breast cancers tend to be

estrogen receptor negative and exhibit a poor prognosis whereas the

luminal subtype tends to be estrogen receptor positive and have a

better prognosis [10]. Importantly, expression studies of cultured

breast cancer cell lines have shown that these cells retain their

subtype characteristics [18]. It seemed reasonable that the

identification of drugs with specificity for the subtype could translate

into drugs effective for the patient. This could be particularly

important for the basal subtype given the general lack of effective

therapeutics for this group of breast cancer patients.

To identify compounds that potentially have activity specific for

the basal phenotype, we generated a signature to distinguish basal

or luminal phenotype using expression data derived from 26 basal

and 25 luminal subtype cell lines grown in in vitro tissue culture

(Figure 3A) [18]. As shown in Figure 3B–E, the signature derived

from the in vitro model has an ability to accurately predict the

status of human primary breast cancer samples from three

independent datasets, validating the predictive ability of the

signature. We then applied this ‘‘basal-luminal’’ signature to NCI-

60 expression microarray data to classify the cell lines according to

the degree of ‘‘basal-luminal’’ phenotype and identify compounds

that were most active against each cell type (Figure 4A). An

analysis of the significant associations revealed 5589 luminal

subtype correlated compounds while 568 compounds showed a

correlation to the basal subtype. Among the luminal phenotype

correlated drugs, Tamoxifen was identified as a high scoring

compound (Figure 4B) (rank = 57, R = 0.6140 and FDR = 0.0000).

In human breast cancers, the luminal subtype is known to be

largely estrogen receptor positive and sensitive to estrogen

antagonists, including Tamoxifen [10]. Indeed, the predicted

probability of each NCI-60 cell line for luminal subtype was

strongly correlated with estrogen receptor 1 (ESR1) mRNA level

(average of RMA normalized expression of 205225_at,

211233_x_at and 211234_x_at on U133A chip; R2 = 0.2551,

p,0.0001 by linear regression analysis).

Figure 3. Identification of breast cancer subtype specific compounds. A. Development of a gene expression signature to distinguish basal or
luminal cell type in breast cancers. Expression levels of selected genes are shown in a heatmap (high = red and low = blue). B. Validation of the ‘‘basal-
luminal’’ signature in three independent datasets of human primary breast cancers. The predicted probability for basal (blue) or luminal (red) are
shown in a heatmap with the labeling for the cell type classification by microarray (GSE1456), the immunoreactivity status for estrogen and
progesterone receptor (GSE1561) or the status for basal subtype by cytokeratin expression patterns (GSE3744). C, D and E. Prediction for basal and
luminal properties in in vivo tumor data sets. Predicted probabilities are plotted for the groups with the defined subtype and statistically evaluated
using Mann-Whitney U test. A bar indicates mean value for each group. The predicted probability for basal or luminal is shown with the labeling for
the cell type classification by microarray (C; GSE1456), the immunoreactivity status for estrogen and progesterone receptor (D; GSE1561) or the status
for basal subtype by cytokeratin expression patterns (E; GSE3744). Accuracy of the prediction was also shown. To evaluate the accuracy, 0.5 was used
as a cut-off value.
doi:10.1371/journal.pone.0006772.g003
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Although the association of the luminal phenotype with

Tamoxifen and ESR1 expression level provides an additional

validation of the specificity of the methodology, a more pressing

question in the context of breast cancer therapy is the basal

phenotype since effective treatments for this group of patients are

limited. An analysis of the compounds selected on the basis of the

basal type phenotype revealed three clinically used drugs with high

scores. Drugs already in clinical use are of highest priority since their

characteristics, such as side effects and toxicity, have been well

described. These included Simvastatin and Lovastatin, HMG-CoA

reductase inhibitors, and Peplomycin, an inducer of DNA double-

strand breaks [32,33] (Figure 4B–F) (Simvastatin; rank = 204,

R = 0.5050 and FDR = 0.006160, Lovastatin; rank = 442,

R = 0.3890 and FDR = 0.02795 and Peplomycin; rank = 329,

R = 0.3910 and FDR = 0.01478). In fact, previous studies have

indicated a role for lipophilic statins such as Simvastatin and

Lovastatin as inhibitors of farnesyl transferase activity and RAS/

RHO activity and to have the capacity to inhibit the growth of

breast cancer cells in vitro [34]. Based on these results, we then

further tested the activity of both Simvastatin and Peplomycin in

Figure 4. Relation between the ‘‘basal-luminal’’ phenotype activity and correlated drugs in NCI-60 cell lines. A. The predicted
probability of NCI-60 cells for ‘‘basal-luminal’’ subtype and the correlated compounds. The predicted probability of NCI-60 cells for the similarity to
basal (blue) or luminal (red) is shown in a heatmap and sorted according the similarity. Note that among 5 cell lines, which were characterized by the
previous study [18] and are included in NCI-60 cells, every cell line was classified accurately (basal subtype; blue arrowheads; BT549, MDA-MB-231 and
MDA-MB-435 and luminal subtype; red arrowheads; MCF7 and T47D). GI50 pattern for the compounds that correlated with the probability within 0.05
of FDR was shown in a heatmap (green = less sensitive and red = more sensitive). Luminal subtype correlated compounds include 5589, while 568
compounds showed correlation to basal subtype. B. Correlation pattern of all compounds with the predicted probability to ‘‘basal-luminal’’ signature.
Correlation coefficient in Pearson correlation is shown in a heatmap (green = less sensitive and red = more sensitive). Bars adjacent to the heatmap
are used to indicate FDR less than 0.05. Tamoxifen, an estrogen receptor inhibitor, is a highly correlated compound to cells with high luminal
probability (rank = 57, R = 0.6140 and FDR = 0.0000). Among 568 compounds, which basal phenotype correlated within FDR of 0.05, 85 compounds
have chemical names. Through Pubmed search of all 85 compounds, Simvastatin, Lovastatin and Peplomycin are found to be currently under clinical
use (Simvastatin; rank = 204, R = 0.5050 and FDR = 0.006160, Lovastatin; rank = 442, R = 0.3890 and FDR = 0.02795 and Peplomycin; rank = 329,
R = 0.3910 and FDR = 0.01478). Lovastatin is not shown in Figure 4B. C, D, E and F. Tamoxifen (C), Simvastatin (D), Lovastatin (E) and Peplomycin (F)
and the ‘‘basal-luminal’’ phenotype activity. GI50 values were plotted in the function of the predicted probabilities. P value and R2 were calculated by
linear regression analysis of GraphPad’s Prism.
doi:10.1371/journal.pone.0006772.g004

Drug Discovery by Genomics

PLoS ONE | www.plosone.org 6 August 2009 | Volume 4 | Issue 8 | e6772



growth inhibitory assays using a panel of breast cancer cell lines. As

shown in Figure 5A, each drug showed activity to those cells that

exhibited the basal phenotype with a discrimination in relation to

the luminal phenotype. As expected, assay of Tamoxifen using this

same collection of cell lines yielded the inverse pattern, showing

activity in cells exhibiting the luminal phenotype but not the basal

(see also Figure S1 and Table S2 and S3).

Given the potential for Simvastatin as a basal subtype-specific

drug, we evaluated the capacity of this compound to inhibit tumor

growth in vivo, using a xenograft model with a basal subtype cell line

[35]. As shown in Figure 5B, Simvastatin very effectively blocked

tumor growth in this model, while the untreated controls grew

rapidly. Indeed, after 25 days of treatment the tumor volume was

879.0+/2280.7 mm3 for untreated and 64.66+/226.68 mm3 for

Simvastatin treated (p = 0.0222 at Day 25 by unpaired t-test). Taken

together, these results suggest a capacity for a signature-based screen

to identify candidate drugs for new cancer therapeutics.

Discussion

There have been major successes in the discovery and

development of new cancer therapeutics based on a knowledge

of the biology of the tumors, exemplified by Gleevec, Herceptin,

and Tamoxifen. However, it is also true that for most of cancers,

there remains a critical shortage of effective therapeutics that can

match the complexity of these diseases [1,2,4,36]. Many studies

now provide compelling evidence that various genomic profiling

approaches do have the capacity to dissect the complexity of

cancers with the potential to then match drugs with patients

[14,37,38,39,40]. With these advances, what becomes limiting is

the availability of a sufficient repertoire of drugs that could

eventually match the complexity of the cancers and thus a critical

need to substantially increase the pipeline of new therapeutics to

match these needs and opportunities. We believe the strategy

outlined here represents one opportunity to address this need.

Although conventional drug screens have yielded many effective

drugs, there are nevertheless two primary limitations that restrict

the opportunity to increase the development of new drugs and for

which a signature-based approach might be successful. First, many

potential targets are deemed unlikely to yield drugs (not

‘druggable’), based on the biochemical properties of the protein.

Oncogenic transcription factors such as MYC represent one

example. MYC is known to be deregulated in a large number of

human cancers yet there has been little successful development of

Figure 5. Experimental validation of compounds predicted to be active on breast cancer subtype. A. Specificity of drug sensitivity
measures in breast cancer cell lines. A panel of breast cancer cell lines was classified into basal or luminal subtype based on the microarray
classification (shown in Figure S1) and used for measures of sensitivity to Simvastatin (A), Peplomycin (B), and Tamoxifen (C). GI50 values were
calculated after cell proliferation assays of these breast cells and averaged GI50s were plotted with p value (also shown in Table S3). A non-parametric
Mann-Whitney U-test was used to evaluate the result statistically. B. Confirmation of in vivo effect of Simvastatin on a basal-type breast cancer cell
line. MDA-MB-231 cells were inoculated by subcutaneous injection into mice and then the mice were treated with Simvastatin for 12 days after
injections. Tumor size at day 0 was the same (see Materials and Methods in detail). Sizes of tumors were plotted as a function of days after the
initiation of treatment. The unpaired t-test was used for statistical evaluation and p value is shown with the plot. Asterisks indicate statistically
significant differences (p value: day 4; 0.0373, day 7; 0.0569, day 11; 0.0162, day 14; 0.0280, day 18; 0.0393, day 21; 0.0416).
doi:10.1371/journal.pone.0006772.g005
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drugs that target this important activity [6,41,42]. A signature

reflecting MYC pathway activity could be employed to identify

drugs targeting other components of the MYC pathway that might

be more amenable to drug sensitivity. Indeed, various recent

studies suggest that pathway activation can be linked to sensitivity

to drugs targeting downstream components. As an example, cells

that harbor a RAF mutation exhibit sensitivity to MEK inhibitors

[30]. Also in our analysis, the identification of a MEK inhibitor

based on a screen with a RAS pathway signature provides a proof-

of-concept for this logic.

Second, the conventional approach that depends on the

identification and detailed biochemical understanding of the

nature of the target is a slow process and is limited by available

understanding of cancer mechanisms [5,6]. Once again, genomic

profiles provide further opportunities for identification of relevant

targets. For example, expression signatures that identify sub-classes

of cancers with aggressive characteristics or cancers resistant to

commonly used therapies represent therapeutic opportunities

[10,11,12,13,14]. In each instance, an ability to develop

therapeutics specific for these subtypes of cancer, whether breast

cancer, lymphoma, or others, would be a significant step forward

in expanding the arsenal of drugs that could be matched with

characteristics of the individual patient. Developing a phenotype

specific signature could be employed in a drug screen much like

the example of the basal specific breast cancer signature shown in

this work. In principle, this strategy could be expanded to virtually

any relevant cancer phenotype where there is a need for further

drug development, although the identification of the molecular

target may be needed in order to reduce or eliminate off-target

effects at further optimization step following to the initial drug

discovery phase.

The number of compounds identified by the expression

signatures varies considerably and may simply reflect the number

of similar compounds utilized in the NCI-60 screen; indeed, there

are a number of instances in which the NCI-60 compound library

contains many redundant chemicals with slightly modified residues

in their structures. Therefore it is not rare that the cellular

response to even a substantial number of the compounds show

similarity in the correlation with some molecular targets in the

previous study [43] or phenotypes such as the RAS activation and

luminal subtype in this study. On the other hand, only a very

limited number of compounds were correlated with the PI3K

signature. Nevertheless, the correlation of LY294002 with the

PI3K signature, but not with PIK3CA or PTEN mutational status,

suggests that the utilization of expression signatures can extend the

opportunities for identifying relevant candidate drugs and can

complement the previous NCI-60 drug screen methods relying on

mutational information [5,6,7,28,30].

We also note that other studies have provided related strategies

for drug discovery, again using expression signatures as the basis for

the screen. In one instance, genes that constitute a signature are

compared with genes that define response of cells to a variety of

drug treatments, thus connecting drug response with a phenotype.

In a second example, a signature reflecting the activity of a known

cancer target becomes the actual target for drug screening

[44,45,46,47]. This contrasts with the approach we describe that

makes use of the signature to identify cell lines that exhibit the

signature and thus the phenotype of interest that can then be scored

for drugs that selectively inhibit the proliferation of the cells. The

principal advantage of this approach is the ability to carry out a

screen where targets are not known. We do not suggest that one or

the other of these strategies is better but rather suggest that they

represent complementary approaches, along with conventional

target-based screens, to increase opportunities for drug discovery.

Many studies now point to the fact that most cancers are

extremely heterogeneous, likely reflecting a complex array of

disease mechanisms. Cancers such as breast cancer are not one

disease but rather a group of tens or even hundreds of diseases. As

such, the likelihood that one therapeutic or even one combination

of therapeutics will be effective in treating the myriad of breast

cancers is very low. Rather, the complexity of the disease must be

matched with an equally complex therapeutic arsenal if one hopes

to effectively treat the disease. Given this, an ability to substantially

increase the number of therapeutics moving through the

development process is critical and we suggest that the strategy

outlined could represent a key component of this process. We note

that a significant advantage of this approach is the potential to

identify new cancer therapeutics from a collection of drugs that

have already progressed through the initial stages of drug

development. As such, this greatly accelerates the process of

bringing new agents to clinical use. As with any example of a drug

screen, candidates identified by a signature-based screen must be

evaluated for their potential for further development. This can

involve a number of criteria typically used in the drug

development process but including other indications for potential

activity in a given context. As an example, the identification of

Simvastatin as a potential breast cancer therapeutic useful for

tumors of the basal subtype is interesting in light of previous work

that has shown a role for statins, including Simvastatin, in breast

cancer prevention [48]. Even more relevant with respect to the

potential specificity for breast cancer with a basal phenotype is a

recent population based study showing a reduction in ER/PR

negative breast tumors in women treated with lipophilic statins

such as Simvastatin [49]. The basal subtype is characterized by an

ER/PR negative status suggesting that the reduction in this form

of cancer could indeed reflect a selective effect on the basal

subtype. Given this connection, and the fact that Simvastatin is an

approved drug with known toxicity profiles, we suggest that a

clinical study is warranted to evaluate the activity of Simvastatin in

women with the basal subtype of disease.

Supporting Information

Figure S1 Classification of cultured breast cancer cell lines. A.

Unsupervised classification using the basal-luminal classifier genes.

For the classifier, we used gene sets (305 probes) described in the

original study (1). Expression values of RMA (robust multichip

average) normalized data for these probes were gene-centered and

normalized. We then performed hierarchical clustering by average

linkage. Expression levels of selected genes are shown in a

heatmap (high = red and low = blue). B. Supervised classification

using a binary regression method. The predicted probability of the

19 breast cancer cells for the similarity to basal (blue) or luminal

(red) is shown in a heatmap and sorted according to the similarity.

Note that the HCC1468 cell line, which was classified as a luminal

subtype in the original work (1), was predicted to belong to the

basal subtype by both the unsupervised and supervised methods.

We therefore have designated HCC1468 cells as basal phenotype

for this study. Reference 1. Neve RM, Chin K, Fridlyand J, et al.

A collection of breast cancer cell lines for the study of functionally

distinct cancer subtypes. Cancer Cell 2006; 10: 515–27.

Found at: doi:10.1371/journal.pone.0006772.s001 (10.20 MB

EPS)

Figure S2 Influence of empirical parameters used for prediction

on correlation with compounds. Pearson correlation analysis of the

RAS prediction with Hypothemycin sensitivity (A) and that of the

PI3K prediction with LY294002 sensitivity (B). We altered the

number of genes to prioritize (left panels) or the number of
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metagenes (right panels) and predicted the status of the phenotype

of the NCI-60 cell lines. We correlated the predicted probability

with sensitivity data and show the correlation coefficient with the

altered parameters. An arrow indicates the parameter used in this

study.

Found at: doi:10.1371/journal.pone.0006772.s002 (6.27 MB EPS)

Table S1 Detailed conditions for generation of cancer relevant

signatures. The parameters used in this study are shown.

Found at: doi:10.1371/journal.pone.0006772.s003 (0.03 MB

DOC)

Table S2 Compounds correlated with basal subtype in NCI-60

data. 85 compounds with chemical names (or equivalents), which

are correlated with the basal subtype, are shown in this table.

Clinically used drugs are labeled by bold font. NSC numbers are

IDs for each compound in NCI-60 data. Abbreviations: R;

correlation coefficient and FDR; false discovery rate.

Found at: doi:10.1371/journal.pone.0006772.s004 (0.14 MB

DOC)

Table S3 GI50s of Simvastatin, Peplomycin and Tamoxifen in

our breast cancer cell lines. GI50 values of Simvastatin,

Peplomycin and Tamoxifen for our 19 breast cancer cell lines

are shown with standard error of the mean. Microarray-based

subtype classification is also indicated in the table.

Found at: doi:10.1371/journal.pone.0006772.s005 (0.04 MB

DOC)
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