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Abstract
Most feature selection methods identify only a single solution. This is acceptable for
predictive purposes, but is not sufficient for knowledge discovery if multiple solutions
exist. We propose a strategy to extend a class of greedy methods to efficiently identify
multiple solutions, and show under which conditions it identifies all solutions. We
also introduce a taxonomy of features that takes the existence of multiple solutions
into account. Furthermore, we explore different definitions of statistical equivalence of
solutions, as well as methods for testing equivalence. A novel algorithm for compactly
representing and visualizing multiple solutions is also introduced. In experiments we
show that (a) the proposed algorithm is significantly more computationally efficient
than the TIE* algorithm, the only alternative approach with similar theoretical guar-
antees, while identifying similar solutions to it, and (b) that the identified solutions
have similar predictive performance.
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1 Introduction

Feature selection is an essential part of data analysis tasks which focus on knowledge
discovery and improvingunderstandingof the problemunder study.This is no accident,
as the solution has been shown to be directly related to the data-generating causal
mechanism (Koller and Sahami 1996; Tsamardinos and Aliferis 2003; Aliferis et al.
2010). In many domains, such as molecular biology or life sciences, feature selection
is often the main objective, not the resulting predictive model. Other advantages of
feature selection are that it may improve predictive performance, especially in high-
dimensional problems, and that it reduces the cost (monetary, computational, time and
effort of measuring features) of making a model operational.

A shortcoming of existingmethods is that they arbitrarily identify only one solution
to the feature selection problem. There is growing evidence however, that in practice,
multiple equivalent solutions often exist (Dougherty and Brun 2006; Roepman et al.
2006; Statnikov and Aliferis 2010; Statnikov et al. 2013; Karstoft et al. 2015). There
are several reasons for their existence. In finite sample cases, the difference in pre-
dictive performance between two solutions may not be statistically distinguishable.
In domains such as molecular biology there often exist multiple solutions, possi-
bly because of the inherent redundancy present in the underlying biological system
(Dougherty and Brun 2006; Statnikov and Aliferis 2010). In business applications,
features are constructed in a way that may be deterministically related and thus could
substitute one for the other in a solution. We argue that, while finding a single solution
may be acceptable for building a predictive model, it is not sufficient when feature
selection is employed for knowledge discovery. On the contrary, it may be misleading.
For example, if several sets of risk factors in a medical study are collectively equally
predictive of an event, then it is misleading to return only one of them and claim that
the rest are superfluous. Indeed, they are given the selected ones, but it should be noted
that there are other solutions that should also be considered. Ideally, a feature selection
algorithm should identify all solutions that are “equivalent” (for some reasonable def-
inition of equivalence). Another advantage of outputting multiple solutions is that one
could use any of them for building a predictive model. This is especially important
if measuring different features has different cost. The problem where each feature
is associated with a cost is called cost-sensitive feature selection (He et al. 2012).
Methods returning multiple solutions would deal with this by selecting the lowest-
cost feature set among all equivalent solutions, while retaining the predictive ability
of the model (Statnikov et al. 2013). Finally, it is important to note that the problem
of multiple feature selection is also directly tied to the stability of feature selection
methods. Stability is measured by how sensitive the output is when presented with
different datasets sampled from the same distribution; see (Kalousis et al. 2007) for a
study of stability of feature selection algorithms, and (Nogueira and Brown 2016) for
methods of measuring stability. A single-solution feature selection algorithm is free
to arbitrarily return any solution to the problem; when there are multiple solutions,
the algorithm exhibits large instability during cross-validation. However, this is an
artifact of how stability is measured: the algorithm is not to blame. Even an ideal
single-solution algorithm would appear unstable in this case. When multiple solutions
are present, measures of stability defined on single solutions become meaningless. We
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argue instead, that stability has to be defined in the context of multiple solutions. In this
case, the idealmultiple-solutions algorithm should exhibit full stability asymptotically.

There exists only little work on the problem of identifying multiple solutions, and
most existing algorithms are based on heuristic approaches with little to no theoretical
guarantees. Examples include methods that repeatedly apply a feature selection algo-
rithm with some element of randomness (e.g., by resampling the data) (Michiels et al.
2005; Peña et al. 2007), or methods that perform clustering to identify groups of highly
correlated features (i.e., trying to identify groups of features that give similar predictive
information) (Liu et al. 2010; Huang et al. 2014; Klasen et al. 2016); a more detailed
review can be found in (Statnikov et al. 2013). Another class of algorithms includes
causal-based methods that try to identify features that give the same information about
the target in the context of other features (Tsamardinos et al. 2013; Statnikov et al.
2013; Lagani et al. 2017). Finally, the only algorithm that is able to provably identify
all equivalent solutions (under certain conditions) is TIE* (Statnikov et al. 2013). Its
drawbacks are that it is computationally demanding, and quite complex to understand
and implement efficiently.

The main contributions of this work follow. In Sect. 3 we show that the taxon-
omy of features proposed by John et al. (1994) is counter-intuitive in the presence of
multiple solutions, and propose an alternative taxonomy that takes multiple solutions
into account. In Sect. 4 we state three definitions of statistical equivalence of feature
sets, show how they are related, and make connections to the problem of model selec-
tion. Then, in Sect. 5 we propose a general template for feature selection algorithms
that consist of a greedy forward phase and an optional backward phase. Examples of
such methods are forward selection (Kutner et al. 2004; Weisberg 2005) and varia-
tions thereof (Margaritis and Thrun 2000;Margaritis 2009; Tsamardinos et al. 2003b),
information-theoretic methods (Brown et al. 2012), as well as causal-based methods
(Aliferis et al. 2010). In Sect. 6 we propose a simple and computationally efficient
strategy to extend algorithms that fit into the proposed template for identifyingmultiple
solutions and show that, under certain conditions, it identifies all equivalent solutions.
In Sect. 7 we propose a method to compactly represent and visualize equivalent solu-
tions, improving the interpretability of the results, which is especially useful if the
number of equivalent solutions is high. Finally, in Sect. 8 we compare the proposed
strategy to TIE* (Statnikov et al. 2013) and show that both methods produce similar
results, with the proposed algorithm often being orders of magnitude faster.

2 Preliminaries

We use upper-case letters for single variables, and bold upper-case letters for sets of
variables. For an ordered set Z, Z1:n denotes the subset with the first n variables. The
terms variable or feature will be used interchangeably. The set of all variables present
in a dataset D except for T will be denoted as F. The dataset obtained by excluding
a set of variables E from D will be denoted as DE and is called embedded in D
(Statnikov et al. 2013). The target or outcome variable will be referred to as T . For
the reader’s convenience, we summarize all acronyms and mathematical notation used
throughout the paper in Table 1.
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1396 G. Borboudakis, I. Tsamardinos

Table 1 Common acronyms and mathematical notation with a short description

FBS Forward–Backward Selection algorithm

TFBS Template for Forward–Backward Selection

TIE* Target Information Equivalence algorithm

TMFBS Template for Multiple Forward–Backward Selection

PEQ Performance Equivalence of solutions

MEQ Model Equivalence of solutions

IEQ Information Equivalence of solutions

MSG Multiple Solutions Graph

X random variable

Z set of random variables

Z1:n subset of Z with the first n variables

D dataset - 2-D matrix

T outcome (or target) variable

F variables in D except T

DE embedded dataset without variables E

X⊥Y | Z X and Y are conditionally independent given Z

Test(X; Y|Z) conditional independence test of X with Y given Z

Pvalue(X; Y|Z) p-value Test(X; Y|Z)

α significance level threshold

S reference solution (set of features) to the single feature
selection problem

M set of multiple solutions equivalent to S

H predictive algorithm (or learner)

H∗(T |X) theoretically optimal model H for T using features X

Ĥ(T |X) model trained by H on dataset D
E[L(H∗(T |X))] expected loss of H∗(T |X) w.r.t. the true conditional

distribution of T given X

C set of candidates returned by OrderVariables

G a directed acyclic graph

s, t root and leaf of G
p a directed path from s to t in G
Ni i-th node of G
var [Ni ] set of variables associated with Ni

parents[Ni ] set of parents of Ni

children[Ni ] set of children of Ni

2.1 Conditional independence

Conditional independence of variablesX andY givenZ is denoted asX⊥Y | Z, the test
of conditional independence is denoted as Test(X; Y|Z), while the p-value returned
by the test is denoted as Pvalue(X; Y|Z). Two variables are deemed conditionally

123



Extending greedy feature selection algorithms to multiple… 1397

dependent (independent) if the p-value of the test is below (above) a pre-specified
significance level α.

Tests of conditional independence can be used to perform feature selection; see
Definition 1 of Markov blankets for the relation of conditional independence and
the optimal solution to the feature selection problem. Examples of such methods are
the Grow-Shrink feature selection algorithm (Margaritis and Thrun 2000; Margari-
tis 2009), the Max-Min Parents and Children algorithm (Tsamardinos et al. 2003a),
HITON (Aliferis et al. 2003) and the recently introduced Forward–Backward selection
with Early Dropping algorithm (Borboudakis and Tsamardinos 2019).

A general method for conditional independence testing is using nested likelihood-
ratio tests (Wilks 1938) (or asymptotically equivalent approximations thereof such
as F tests or score tests). For a given statistical model (e.g., logistic or linear regres-
sion), a likelihood-ratio test for conditional independence of X and Y given Z can be
performed by fitting two models for X , one using Z and one using Y ∪ Z. The test
statistic is computed as the difference in deviances, and is distributed as a χ2 with
degrees of freedom equal to the difference in number of parameters between the mod-
els (Wilks 1938). For example, the G-test for conditional independence (Agresti 2002)
is a likelihood-ratio test for multinomial data, while the partial correlation test (Fisher
1924) is a test for multivariate Gaussian data, which is asymptotically equivalent to
a likelihood-ratio test using linear regression (Christensen 2011). Interested readers
may refer to Sections 2.2 and 6.2 in Tsamardinos et al. (2019) for a more detailed
description of likelihood-ratio tests and how to implement them.

We note that the nested likelihood-ratio method assumes that the larger hypothe-
sis (statistical model) is correctly specified, i.e., that it can correctly model the data
distribution. If the model is misspecified, the statistic follows a different distribution
(Foutz and Srivastava 1977). Methods to deal with model misspecification have been
proposed in (White 1982; Vuong 1989). Hereafter, we will assume that the models
are correctly specified, and that the conditional independence tests can correctly iden-
tify dependencies and independencies. In practice this assumption is often violated,
especially for continuous data, where testing conditional independence is particularly
hard (Shah and Peters 2018) (in fact, it is shown that there is no uniformly valid test).
However, it is very useful for theoretical analysis, and is common for proving correct-
ness of algorithms using conditional independence tests (see Theorem 4 b in (Aliferis
et al. 2010) for example).

2.2 The single andmultiple feature selection problems

The solution S to the single feature selection problem can be defined as identifying
a minimal-size subset of the variables that is optimally predictive for an outcome
variable T of interest (Tsamardinos and Aliferis 2003), and is also called the Markov
blanket of T (Koller and Sahami 1996).

Definition 1 (Markov Blanket) A Markov blanket S of T is defined as S =
argmin

|S′|
{S′ ⊆ F : T⊥F \ S′ | S′}, that is, S is a minimal-size subset of F that ren-

ders T conditionally independent of all variables not in S.
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The above definitions only consider a single solution to the feature selection prob-
lem. A more general definition, accounting for the possibility of multiple solutions
follows.

Definition 2 (Multiple Feature Selection Problem) Let S be the solution to the sin-
gle feature selection problem (called the reference solution). The solution M to the
multiple feature selection problem consists of all minimal-size sets Si ⊆ F that are
statistically equivalent to S.

There are several ways to define and test statistical equivalence between feature
sets, each of which can lead to a different solution set M to the above problem, which
will be addressed in Sect. 4.

2.3 The JKP taxonomy of features

John et al. (1994) classify features into three categories: strongly relevant (also called
indispensable), weakly relevant and irrelevant features; we will refer to this as the
JKP taxonomy hereafter, based on the initials of the authors names (John, Kohavi and
Pfleger).

Definition 3 (Strongly Relevant Feature) A feature X is strongly relevant for T if
T �⊥X | F \ {X}.
Definition 4 (Weakly Relevant Feature) A feature X is weakly relevant for T if
T⊥X | F \ {X} ∧ ∃Z ⊆ F \ {X}, T �⊥X | Z.

Definition 5 (Irrelevant Feature) A feature X is irrelevant for T if ∀Z ⊆ F \
{X}, T⊥X | Z.

Intuitively, a feature X is strongly relevant if it still provides additional predictive
information for T given (conditioned on) all other features, weakly relevant if it is
not strongly relevant but still provides information for T that is redundant given other
features (X is informative for T given some subset Z), and irrelevant if it does not
provide any information for T (X is uninformative for T given any subset Z).

One would expect that an optimal feature selection method would only return the
strongly relevant features and filter out both the weakly relevant and the irrelevant
features, as they do not provide additional information in the presence of all strongly
relevant features. This is also what is suggested by the terminology of “strongly”
and “weakly”. In other words, one would expect that the strongly relevant features to
correspond to the Markov Blanket features. Indeed, this is correct but only when there
is a single, unique solution. However, as we describe in the next section, when the
solution to the problem is not unique, then there is not a single Markov Blanket and
correspondence of strongly relevant features with the Markov Blanket breaks down.

3 A taxonomy of features in the presence of multiple solutions

In the presence of multiple solutions, the JKP taxonomy of features (John et al. 1994)
is counter-intuitive and misleading. Intuitively, we’d expect that keeping only the
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strongly relevant features should be enough for optimal prediction using an optimal
classifier, as weakly relevant features are superfluous. Consider however the case
where, feature X is in a reference solution and X ′ is a copy of X (or a one-to-one
deterministic transformation). Now, both features are weakly relevant (one makes the
other redundant); one expects that both should be filtered out (not selected). However,
at least one of them should be selected for optimal prediction. In fact, if all members
of a reference solution have a copy in the dataset, then no feature is strongly relevant
for the given problem, which is counter-intuitive. The problem stems from the fact that
the JKP taxonomy does not distinguish between weakly relevant features that carry
superfluous information, and features that carry information necessary for optimal
prediction but this information component is shared among many features or feature
subsets. The above considerations led us to define the following taxonomy of features:

Definition 6 (Irrelevant Feature) A feature X is irrelevant if it provides no information
for T in any context Z, i.e., if ∀Z ⊆ F \ {X}, T⊥X | Z.

Definition 7 (Indispensable Feature) A feature X is indispensable if it belongs in all
solutions for T , i.e., ∀Si ∈ M, X ∈ Si .

Definition 8 (Replaceable Feature) A feature X is replaceable if it is not indispensable
and belongs in some solution for T , i.e., ∃Si , S j ∈ M, Si �= S j ∧ X ∈ Si ∧ X /∈ S j .

Definition 9 (Redundant Feature) A feature X is redundant if it provides information
for T in some context but does not belong in any solution, i.e.,∃Z ⊆ F\{X}, T �⊥X | Z∧
∀Si ∈ M, X /∈ Si .

The proposed taxonomy is related to the JKP taxonomy as follows: (a) irrelevant
features are defined the same in both taxonomies, (b) strongly relevant features coin-
cide with indispensable features, (c) a weakly relevant feature is called replaceable
if it is present in some solution, and is called redundant otherwise. Thus, when there
is a single solution, then irrelevant, strongly relevant, and weakly relevant features
coincide with irrelevant, indispensable, and redundant features respectively.

4 Statistically equivalent feature sets

In this section, we will provide several definitions and tests for statistical equivalence
of feature sets. Such tests are used by the main algorithm proposed in Sect. 6 for
identifying multiple statistically equivalent solutions. Specifically, given the reference
solution S (see Definition 2 of the multiple feature selection problem), tests of feature
set equivalence can be used to identify the set of solutions M which are statistically
equivalent to S. We review methods from related statistical literature on model selec-
tion, and show how they can be used to test different types of statistical equivalence
of feature sets. Finally, we provide some advice for performing such tests in practice.

We proceed with some definitions used hereafter. Let H be a predictive algorithm
(also called learner). Examples are linear and logistic regression, as well as support
vector machines and random forests, where hyper-parameter values (such as the kernel
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and cost for support vector machines) are fixed. For a given target T and set of random
features X, we denote withH∗(T |X) the optimal model attainable in the sample limit
using algorithm H and features X for predicting T . Given a dataset D sampled from
the joint distribution of T and F (the set of all features), we denote with Ĥ(T |X) the
model obtained by trainingH on the dataset D for T using only features X. Let L be
a loss (or performance) function, such as the squared error for regression tasks and
the deviance for probabilistic classification (such as logistic regression), or penalized
versions of the above such as the Akaike (Akaike 1973) and Bayesian information
criteria (Schwarz et al. 1978). We use E[L(H∗(T |X))] to denote the expected loss of
H∗(T |X) with respect to the true conditional distribution of T given X.

4.1 Definitions of statistical equivalence of feature sets

We proceed by listing different definitions for assessing equivalence of feature sets.
Tests for them are presented in the subsequent section.

Definition 10 (Performance Equivalence (PEQ) (see also Fig. 11 in (Statnikov et al.
2013)) Feature sets X and Y are performance equivalent relative to an algorithm H
and loss function L if E[L(H∗(T |X))] = E[L(H∗(T |Y))].

PEQ requires that the optimal predictive models obtained by two sets features have
the same expected loss, and depends both on H and L. A drawback of performance
equivalent feature sets is that it is not guaranteed that they are Markov blankets (i.e.,
optimal solutions). PEQ can hold even if the feature sets predict separate parts of the
outcome’s distribution equally well. For example, let X � N (0, 1), Y � N (0, 1) and
T = X+Y . It can be seen that the feature sets {X} and {Y } are PEQ for T relative to any
performance measure and linear models. However, none of them is a Markov blanket;
the Markov blanket of T is the union of both feature sets. Another problematic case is
if the loss function used is not a proper scoring function, i.e., if the minimum loss is
not achieved for optimal feature sets. This can be the case for performance functions
such as the classification accuracy. For example, let T and X be binary features, and let
P(T = 1|X = 1) = 0.9, P(T = 1|X = 0) = 0.6 and P(X = 1) = 0.5. Any optimal
model optimizing accuracy would always predict T = 1, irrespective of the value of
X , attaining an accuracy of 75%. Thus, both feature sets {∅} and {X} are performance
equivalent using classification accuracy. However, only {X} is a Markov blanket, as
X clearly gives information about T (X is dependent with T ). Therefore, if the main
goal is knowledge discovery, the PEQ definition for identifying equivalences may not
be preferable.

Definition 11 (Model Equivalence (MEQ)) Feature setsX andY aremodel equivalent
relative to algorithm H if H∗(T |X) and H∗(T |Y) make the same predictions for any
sample of the j.p.d. of X ∪ Y.

MEQ requires that T can be modeled using H equally well with either set of
features. Note that, given the same algorithmH, MEQ implies PEQ, regardless of the
loss function L. Naturally, the reverse does not necessarily hold.
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Definition 12 (InformationEquivalence (IEQ))1 Feature setsX andY are information
equivalent if both T⊥X | Y and T⊥Y | X hold.

IEQ (Lemeire 2007; Statnikov et al. 2013) is the strictest definition of equivalence,
and is independent of bothH and L. It requires that feature sets are interchangeable:
they have to contain the same information about the outcome. For example, let X �
N (0, 1), Y = βX and T = X+Y . In this case we say that {X} and {Y } are information
equivalent, as Y depends deterministically on X . Intuitively, choosing any of them
gives the same information about T . In the taxonomy proposed previously, X and Y
are called replaceable.

While in theory IEQ does not depend on H, in practice the definition of IEQ
may also implicitly depend on some predictive algorithm. The reason is that the tests
of conditional independence used for testing IEQ also use a predictive algorithm
or statistical model internally (e.g., the logistic regression algorithm used by nested
likelihood-ratio tests). Because of that, it is not clear if and under which conditions
MEQ and IEQ differ, or whether IEQ always implies MEQ, assuming both use the
same algorithm H; if not, it is trivial to construct examples were only one of MEQ
and IEQ holds.

Surprisingly, even for the same algorithm H, MEQ does not always imply IEQ.
This happens if combining both feature sets leads to a better set of features (i.e., if
the feature sets were not Markov blankets). For example, let X ,Y and W be binary
variables, and T = W ∨ (X ⊕ Y ), where ⊕ is the logical XOR operator. Assuming
an optimal classifierH, {X ,W } and {Y ,W } are MEQ relative toH, as knowing only
X or Y does not provide information for T , and thus models constructed using either
variable set will give the same predictions based on W . The feature sets are not IEQ,
as X and Y provide information for T conditional on X or Y respectively. The reason
for the above is that neither of the feature sets is a Markov blanket, and combining
them leads to a better feature set (which is the Markov blanket in this example).

4.2 Testing statistical equivalence of feature sets and its relation to themodel
selection problem

The problem of model selection can be defined as identifying the best fitting model
out of a set of candidate models. Most approaches address the more general problem
of selecting among two or more competing models (e.g., choosing between a normal
and log-normal distribution), whereas in our case we are interested in the special case
of comparing two sets of features relative to the same model (e.g., selecting the best
feature set for linear regression); we will focus on the latter hereafter. Testing for
equivalence is related to model selection, as it deals with the problem of identifying
models that fit the data equallywell instead of identifying the better one.Wewill briefly
mention some approaches that are related to the problems of equivalence testing;
interested readers may refer to (Pesaran and Weeks 1999) for an in-depth overview,
as well as a discussion on the similarities of model selection and hypothesis testing.

1 This definition is essentially identical to the one given in (Lemeire 2007; Statnikov et al. 2013). Their
definition requires also that T �⊥ X and T �⊥ Y hold which always holds in the context of feature selection,
and thus can be dropped.
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4.2.1 Vuong’s variance test

In the context of model selection, Vuong (1989) proposed the variance test to test if
two models fit the data equally well, that is, if they are MEQ. The statistic is computed
as the variance of the log likelihood-ratio 2 of the models (that is, the variance of the
difference of log likelihoods). Let LL denote the log-likelihood function. For two sets
of features X and Y, and predictive algorithmH, the statistic is defined as follows.

Statistic ≡ var[LL(H∗(T |X)) − LL(H∗(T |Y))]

The variance is defined with respect to the true joint distribution of T , X and Y.
In practice it can be estimated using the sample variance of the log-likelihood ratio
of the estimated models Ĥ(T |X) and Ĥ(T |Y). In case MEQ holds the statistic equals
zero, and follows a sum of scaled chi-squares otherwise. As no closed-form expression
for a sum of scaled chi-squares exist, it is hard to compute. Furthermore, in practice
the statistic is also hard to estimate accurately, especially for small sample sizes (Shi
2015). One way to overcome those problems is to use resampling-based methods
(see Section 7.2 in Pesaran and Weeks (1999) for an example of using bootstrap tests
(Efron and Tibshirani 1994)). A disadvantage of resampling-based methods such as
bootstrapping is that it requires fitting two models and computing their log-likelihood
for each bootstrap sample, which is very computationally demanding. Another, com-
putationally faster approach, is to use a permutation test instead; the test is described
in more detail in Sect. 4.3.

4.2.2 The comprehensive approach

Atkinson (1970) proposed the comprehensive approach, which constructs a third
model that contains both initial models as special cases. When comparing feature sets
relative to the same model, this reduces to creating a third model Ĥ(T |X ∪ Y), and
testing whether it provides additional information compared to Ĥ(T |X) and Ĥ(T |Y)

(see Section 3.1 in (Atkinson 1970)). This is done by performing two likelihood-ratio
tests, comparing the original models with the combinedmodel. In case the tests are not
rejected, the sets X and Y can be considered equivalent. Note that, the likelihood-ratio
tests between Ĥ(T |X ∪ Y) and the models Ĥ(T |X) and Ĥ(T |Y) corresponds to the
conditional independence testsTest(T ; Y|X) andTest(T ; X|Y) respectively (assum-
ing the models are correctly specified; see Sect. 2.1). Thus, this is a direct application
of the IEQ definition using likelihood-ratio based conditional independence tests.

4.2.3 The J-test

Davidson and MacKinnon (Davidson and MacKinnon 1981; MacKinnon 1983) pro-
pose several methods for choosing among two competing models, similar in spirit
to Atkinson’s approach. One such method is the J-test, which we describe next. Let

2 Extensions for other loss functions also exist (Golden 2003; Shi 2015).
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P̂(T |X) denote the predictions of model Ĥ(T |X) on the dataset D used for learn-
ing it. The idea of the J-test is similar to the comprehensive approach, but instead
of testing Test(T ; X|Y) and Test(T ; Y|X), the J-test tests Test(T ; P̂(T |X)|Y) and
Test(T ; P̂(T |Y)|X), (i.e., it tests whether the predictions of the models provide addi-
tional information for T ). Basically, the J-test uses the predictions of the model as
proxies for the information provided by the feature sets. That way, it avoids fitting
models using the union of feature sets, and may have higher power than the compre-
hensive approach. However, it may not be as accurate, as it only uses the predictions
of one set instead of all features, and thus interactions between feature sets X and
Y may be missed. Thus, it can be seen as a more sample efficient alternative to the
comprehensive approach for (approximately) testing IEQ. An overview of the J-test
can be found in (Bremmer 2003).

4.2.4 Paired two-sample tests

Other methods for testing PEQ or MEQ, not based on model selection, are paired
two-sample tests such as paired t-tests or the Wilcoxon signed rank test. MEQ can be
tested by comparing the predictions of models Ĥ(T |X) and Ĥ(T |Y), while PEQ can
be tested using the losses of each prediction. We note that, the latter is only applicable
for loss functions which can be computed on a per-sample basis (e.g., mean squared
error), and thus is not applicable for measures like the area under the ROC curve.

4.3 Practical considerations and recommendations

4.3.1 Discovering multiple Markov blankets

Although all definitions and tests of statistical equivalence are for arbitrary feature sets
and not restricted toMarkov blankets, in practice we are often interested in identifying
multiple solutions that are Markov blankets, i.e., solving the multiple feature selection
problem (see Definition 2). Recall that the solution to the multiple feature selection
problem M consists of all feature sets that are statistically equivalent to the reference
solution S (a solution to the single feature selection problem).

In order to identify multiple Markov blankets, it is necessary to be able to test
whether a feature setX is aMarkov blanket.Wewill assume thatX already is minimal,
i.e., no features can be removed from it without losing information about T . Given a
reference solution S (which is aMarkov blanket by definition), a way to test whetherX
is aMarkov blanket is by performing a test of statistical equivalencewith S. Depending
on the type of equivalence (PEQ, MEQ and IEQ) there are different guarantees for
X. If X is a Markov blanket all equivalences are implied, but the opposite is only
guaranteed for IEQ. Thus,when the goal is identification of multiple Markov blankets,
we recommend using tests of information equivalence.

4.3.2 Tests with feature sets that are not Markov blankets

While theoretically the reference solution should be a Markov blanket, in practice
this might not be the case due to statistical errors or violations of assumptions of the
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tests. A reference solution that is not a Markov blanket may lead to missing candidate
solutions which are Markov blankets, as they provide more information about the
target than the reference solution. We note that the algorithm will still return solutions
that are equivalent to the reference solution.

Another problem is if the reference is a Markov blanket, and a candidate solution X
is a superset of a Markov blanket (i.e., not minimal). Technically X contains the same
information as any Markov blanket, and therefore might be identified as equivalent to
the reference solution. Thismight be acceptable for some practical applications (e.g., if
the focus is predictive performance), but not for applications requiring interpretability.

Both of the above are hard to detect in practice. We propose to perform exten-
sive hyper-parameter tuning, in order to identify reasonably good approximations of
Markov blankets, minimizing the chance of the above problems occurring.

4.3.3 Power of IEQ tests

Recall that in order to perform a test of IEQ between two feature sets X and Y, one
has to perform two tests on all of the features (Test(T ; Y|X) and Test(T ; X|Y)). For
instance,when likelihood-ratio tests are used, amodel using the union of featuresX∪Y
has to be created to test for IEQ. Because of that, tests of IEQ require significantly
larger sample sizes than PEQ or MEQ tests, which do not fit models using the union
of feature sets. When tests of IEQ are performed with small sample sizes, they may
not have enough power to distinguish between non-equivalent feature sets, and will
falsely consider them equivalent. To avoid this problem,we recommend using tests for
PEQ or MEQ as a “safe lock” before applying the IEQ test. To further reduce false
positives, we recommend to combine the above with a high significance level (relative
to the available sample size) for all tests.

4.3.4 Reliability of PEQ andMEQ tests

To improve the reliability of the two-sample and variance tests (due to violations of
assumptions or low sample size) we recommend using permutation-based variants
instead. Another advantage is that permutation tests are not limited to any specific
class of loss functions, and can be also applied to performance measures such as the
area under the ROC curve, which are computed using the a vector of predictions.
Under the null hypothesis of PEQ or MEQ, the losses or predictions can be permuted
across paired samples (i.e., exchange randomly whether a prediction comes from
model Ĥ(T |X) or Ĥ(T |Y)). Thus, a permutation test can be performed as follows: (a)
compute the statistic s on the original sample, (b) randomly permute the input vectors
(predictions or losses) across the same (paired) samples, each one with probability 0.5,
(c) compute the statistic si (of the i-th permutation) of interest on the permuted sample,
and (d) repeat (b-c) B times (e.g., 1000 times). For the variance test, the p-value is
then computed as the proportion of permutation statistics (including the statistic on
the original sample from step (a) (Davison and Hinkley 1997)) smaller than or equal
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Algorithm 1 Template for Forward–Backward Feature Selection (TFBS)
Template Parameters: Functions OrderVariables, BackwardPhase

Input: Dataset D, Current Solution S′ Output: Solution S
C ← OrderVariables(D, S′)
if C = ∅ then //Check if forward phase terminated.

return BackwardPhase(D, S′)
//Select the first variable in the ordering C1 and call TFBS recursively.
return TFBS(D, S′ ∪ {C1})

to the sample statistic s

p-value ≡ 1 + ∑B
i=1 I (si ≤ s)

B + 1

where I is the indicator function.

4.3.5 Summary

For knowledge discovery purposes, we recommend aiming for information equivalent
solutions. In order to reduce the chance of false positive equivalences, we recommend
to (a) perform extensive tuning of the hyper-parameters3 of the feature selection algo-
rithm, in order to increase the chance of identifying Markov blankets, (b) first apply
a permutation-based variance test for PEQ or MEQ to quickly filter out false equiv-
alences and (c) afterwards apply an IEQ test using the comprehensive approach to
decide for equivalence, and (d) use relatively high significance levels to further reduce
the number of false positives. In anecdotal experiments we found that all of the above
were important to reduce the number of non-equivalent solutions, which inmany cases
was extremely high otherwise.

5 A general template for forward–backward algorithms

We propose a general template for greedy feature selection algorithms, called Tem-
plate for Forward–Backward Feature Selection (TFBS), which wewill later extend
to select multiple, statistically equivalent solutions. This template can express a class
of stepwise methods, namely algorithms that consist of two phases: (a) a greedy for-
ward phase, where features are selected one at a time, and (b) an optional backward
phase, applied after the forward phase terminates, to remove false positives.

The algorithm is shown in Algorithm 1, and will be referred to as TFBS hereafter.
We present a recursive version of the algorithm, as it will lead to a natural extension

3 For algorithms using conditional independence tests, such as forward–backward selection, the set of
hyper-parameters contains the hyper-parameters of the algorithm (e.g., the significance threshold and the
conditional independence test), as well as the hyper-parameters of the conditional independence test. While
linear tests such as ones based on linear or logistic regression do not have any hyper-parameters to tune,
other tests do have hyper-parameters. One such example is the kernel width of kernel-based conditional
independence tests (Zhang et al. 2011).
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Algorithm 2 Instantiation of TFBS for the Forward–Backward Selection Algorithm
using Independence Tests

function OrderVariables(D, S′) //Returns dependent variables ordered by p-value
//Sort all non-selected variables that are conditionally dependent given S′ by p-value
C ← SortAscending({Ci ∈ {F \ S′} : Pvalue(T ,Ci |S′) ≤ α})
return C

function BackwardPhase(D, S′)
while S′ changes do

Si ← argmax
Si

Pvalue(T , Si |S′ \ {Si }) //Find Si with highest p-value given S′ \ {Si }
if Pvalue(T , Si |S′ \ {Si }) > α then

S′ ← S′ \ {Si } //Remove Si if conditionally independent given S \ {Si }
return S′

for multiple solutions. For the sake of brevity, constant input arguments like the target
variable T and hyper-parameter values are omitted. TFBS has two main components:
(a) a variable ordering strategy OrderVariables, and (b) a function Backward-

Phase that performs the backward phase of the algorithm. In order for those functions
to be admissible, they have to satisfy the following conditions. OrderVariables
must return an ordered set of candidate variables C for selection, such that: (a) C is
empty if no more variables should be selected, (i.e., if S′ ⊇ S) (b) C does not contain
any already selected variable (i.e., C ∩ S′ = ∅), and (c) C contains all variables that
could be selected at that iteration, in order of preference. An alternative way to look at
(c) is that any variable C j+1 would be selected if the algorithm were to be executed on
the embedded dataset DC1: j (i.e., after excluding variables C1: j ). The Backward-

Phase function must remove all and only the false positive variables. We note that,
for the single solution case OrderVariables does not have to provide a complete
ordering, but can only return the next variable to select. That presentation was chosen
to allow for an easier extension for multiple solutions.

A large class of feature selection algorithms can be expressed as instantiations of
TFBS. Examples include the forward–backward selection (FBS) algorithm (Kutner
et al. 2004; Weisberg 2005) and variations or extensions of it (Margaritis and Thrun
2000; Tsamardinos et al. 2003b;Margaritis 2009), information-theoretic feature selec-
tion methods (Brown et al. 2012), as well as causal-based algorithms (Aliferis et al.
2010) like theMMPC (Tsamardinos et al. 2003a) andHITON-PC (Aliferis et al. 2003)
algorithms. An instantiation of FBS using p-values of conditional independence tests
to order variables is shown in Algorithm 2. The forward phase tests for each variable
Ci ∈ {F \ S′} if it is dependent with T given S′, and selects the one with the lowest
p-value. Thus, the OrderVariables function for FBS returns all variables that are
conditionally dependent dependent given the current set of selected variables S′ in
ascending order of p-values. The backward phase removes at each iteration the least
dependent variable given all selected variables (i.e., the one with the highest p-value
which is higher than the significance level α), until no more variables can be removed.
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6 Extending TFBS for multiple solutions

The forward phase of TFBS can be seen as a search on the space of feature sets (Kohavi
and John 1997). Each state of the search space contains a set of selected variables S′,
and its neighbors are all states which additionally contain one of the variables in C. As
the search is only in one direction (i.e., only when variables are added), we will refer
to the neighbors of a state t containing an extra variable as its children, the previous
state as its parent, and all children of its parent (except for t itself) as its siblings.
Thus, TFBS traverses that search space by only visiting the first child (i.e., the one
where C1 is selected). Given this view, we use a simple idea to extend it for multiple
solutions: instead of exploring a single child at each iteration, we use backtracking
(Russell and Norvig 2003) to explore all children and consider multiple solutions. A
candidate solution is then returned if it is equivalent with the reference solution (i.e.,
the one obtained by TFBS).

The naive approach is not very practical, as it may consider the same solutions
multiple times. For example, the state containing S′ = {X ,Y } can be reached twice by
selecting the variables in different order. In general, each solution can be obtained in
m!ways, wherem is the size of the solution. Thus, in the worst case, up to p! solutions
(where p is the number of variables) may be considered, even though there are only
2p unique combinations! An example is shown in Fig. 1. Next, we propose a strategy
to avoid such repetition.

6.1 A strategy to avoid repeating states

Let S′ be the current set of selected variables, C = {C1, . . . ,Ck} be the set of candi-
date variables returned by OrderVariables and {t1, . . . , tk} be the respective states
obtained after selecting one of the variables in C. To avoid repeating states, each
variable Ci is excluded from consideration in all subsequent sibling states of ti (i.e.,
ti+1, . . . , tk). Therefore, ti+1, . . . , tk will never lead to the same feature sets as ti , as
Ci is selected in all explored child states of ti but in none of the ones explored by
ti+1, . . . , tk . On a more intuitive level, once Ci is selected and all children states of
ti are fully explored, the algorithm is given the opportunity to consider all feature
sets that contain S′ ∪ {Ci }, and thus there is no need to further consider Ci from that
point on. Note that, Ci may still be considered in other tree branches which contain a
different set of variables, i.e., where the set of variables is not a subset of S′. Figure 2
shows how this strategy can avoid repeating states in the previous example of Fig. 1.

The above strategy is equivalent to executing the algorithm twice with different
input datasets, starting both times with the set of selected variables initialized to S′:
once with D (which contains Ci ), and once with the embedded dataset DCi (which
does not contain Ci ). This can be shown by simply noting that, up to that point, the
algorithm would select the exact same variables S′ using DCi , and then would select
Ci+1 instead of Ci , as Ci is not contained in the dataset (unless of course Ci was the
last variable, in which case it would terminate). The above observation is summarized
in the below.
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Fig. 1 An example showing that naive backtracking can explore the same state twice. The set of currently
selected variables is denoted as S′, and C denotes the set of candidate variables returned by Order-

Variables using S′. For simplicity, we consider only 4 variables, assume that OrderVariables does
not remove any variables, and only show part of the search space. We can see that there are two states
(highlighted in red) with the exact same set of selected variables (Color figure online)

Lemma 1 Let D be the input dataset, S′ be the current set of selected variables,
C = {C1, . . . ,Ck} be the current set of candidate variables and {t1, . . . , tk} be the
respective states obtained after selecting one of the variables in C. Excluding Ci from
consideration from states ti+1, . . . , tk is equivalent to re-running the algorithm on the
embedded dataset DCi .

6.2 The TMFBS algorithm for multiple solutions

We propose the Template for Multiple Forward–Backward Selection algorithm
(TMFBS), an extension of TFBS which uses backtracking, as well as the proposed
strategy for avoiding repeated states, in order to identify multiple statistically equiv-
alent solutions. For each identified candidate solution, TMFBS performs a test for
statistical equivalence of feature sets, to test if it is equivalent with the reference solu-
tion S, which is assumed to be known. In practice, S is initialized to the first solution
identified during the search (which coincides with the reference solution returned by
TFBS). The algorithm is shown in Algorithm 3.
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Fig. 2 An example showing how the proposed strategy can avoid repeating states on the example considered
in Fig. 1. Note that the set of candidate variables C of any state does not contain the selected variables of
any of its siblings that come before that (i.e., are above it). For example, variable F1 is selected only once
(top state in the middle column), and variable sets containing it are explored only in its children states, but
not on any of its siblings. However, variable F2 which is selected in the top right state is also considered
for selection in the bottom state, as they are neither children nor siblings of each other

Algorithm 3 Template for Multiple Forward–Backward Selection (TMFBS)
Template Parameters: Functions OrderVariables, BackwardPhase, Equivalent
Input: Dataset D, Current Solution S′ Output: Set of Solutions M
1: //Let S be a reference solution returned by TFBS onD using OrderVariables and BackwardPhase

2: C ← OrderVariables(D, S′)
3: if C = ∅ then //Check if forward phase terminated.
4: S′ ← BackwardPhase(D, S′

)

5: //Return the candidate solution S′ if it is equivalent to the reference solution S
6: if Equivalent(S, S′) then
7: return {S′}
8: else
9: return ∅
10: M ← ∅
11: //For each candidate variable in the order given by OrderVariables.
12: for Ci ∈ C do
13: //Let DC1:i−1 be the dataset D without variables C1, . . . ,Ci−1
14: M ← M ∪ TMFBS(DC1:i−1 , S′ ∪ {Ci }) //Exclude C1:i−1 and find all solutions.

15: return M
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6.2.1 Theoretical properties of TMFBS

We proceed with the theoretical properties of TMFBS. LetA be an admissible pair of
functions 〈OrderVariables,BackwardPhase〉. We show that TMFBS identifies
all equivalent solutions if the following assumption4 holds.

Assumption 1 TFBS instantiated with A identifies the Markov blanket of T in any
dataset D.

It is important to notice that Assumption 1 refers to any dataset D, and therefore
implies that TFBS using A can also find a Markov blanket of T in any embedded
dataset in D (or any dataset which contains D); however, note that a Markov blanket
in an embedded dataset is not necessarily a Markov blanket in the original D.

Depending onA, the distributions for which Assumption 1 holds differ. For exam-
ple, for FBS5 it has been shown that Assumption 1 holds (assuming an oracle for
testing conditional independence) for distributions that satisfy the local composition
property (Statnikov et al. 2013), i.e., if T⊥X | Z ∧ T⊥Y | Z ⇒ T⊥X ∪ Y | Z holds
for any sets X, Y and Z. Conditions under which HITON-PC (Aliferis et al. 2003)
identifies all solutions are given in (Statnikov et al. 2013). We note that, there is no
general recipe to identify for which distributions Assumption 1 holds for arbitraryA.
However, for algorithms that can be connected to probabilistic graphical models (such
as FBS and HITON-PC), one can use the theory of probabilistic graphical models as a
guide to find conditions under which it holds (see (Statnikov et al. 2013)). We proceed
with the main result.

Theorem 1 TMFBS using A will identify all and only the solutions equivalent with
the reference solution in any dataset D, if (a) A satisfies Assumption 1 and, (b) it has
access to an oracle for deciding equivalence.

Proof Let S ⊆ F be an arbitrary solution equivalent to the reference solution. We will
show inductively that any such solution can be obtained by running TMFBS.

LetS j be the current solution after j steps, and letC j be the corresponding candidate
variables returned byOrderVariables given S j . Assume that S j ⊆ S. We will show
that, if progress can be made (i.e., if S j is not a solution), then there is a neighbor state
such that S j+1 ⊆ S.

If S j equals S, then C j is empty (condition (a) of admissibility of), and the algo-
rithm would terminate and return the solution. We will prove the S j ⊂ S case by
contradiction. Assume that C j does not contain any variable of S. Because of that,
C j could be excluded without altering the solution, which is equivalent to executing
the algorithm on DC j

by Lemma 9. After j steps this would lead to a state where
C j is empty, and the algorithm would terminate. However, as S j is a subset of S it
can’t be a solution, given that S is a solution, otherwise S wouldn’t be minimal. This
would violate Assumption 10 for DC j

which contains S, leading to a contradiction.

4 This assumption is basically identical to admissibility rule I made by TIE* (see Figure 7 in Statnikov
et al. (2013))
5 The proof is for IAMB (Tsamardinos et al. 2003b), which is FBS with a different, but provably correct,
backward phase.
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Therefore C j must contain some variable from S \ S j , and consequently there is a
neighbor state such that, after j + 1 steps, S j+1 ⊆ S holds.

Finally, because TMFBS has access to an oracle for deciding statistical equivalence,
any false positive solutions identified during the search will be discarded, retaining
only equivalent solutions. ��

6.2.2 Sound rules for pruning the search space

In this section we will introduce several sound rules for speeding TMFBS up, which
are direct consequences of Theorem 1, and will prove their correctness.

Theorem 1 states that TMFBS will find all solutions in any D, and therefore also
in any embedded dataset DE in D. An immediate consequence of this is that, if no
solution is found in some dataset DE, no solution can be found in any embedded
dataset of DE∪E′

; if there was one in DE∪E′
, it would also be contained DE as DE∪E′

is embedded in DE.

Corollary 1 Let DE and DE∪E′
be two datasets, where the latter is embedded in the

former. If no equivalent solution is contained in DE, then no equivalent solution is
contained in DE∪E′

.

Basedon this,wepropose and incorporate the following rules inTMFBS for pruning
the search space and speeding it up.

Pruning Rule 1 If TMFBS(DC1:i−1 , S ∪{Ci }) does not return any equivalent solution,
stop and return M.

Pruning Rule 2 Before calling TMFBS(DC1:i−1 , S ∪ {Ci }), check if for someDE, E ⊆
C1:i−1 no equivalent solution was returned, and if so stop and return M.

In TMFBS, Rule 2 is checked before the recursive call toTMFBS(DC1:i−1 , S∪{Ci })
(Line 14 in Algorithm 3), while Rule 1 is checked afterwards. We note that Rule 2 is
one of the conditions of the IGS procedure used by TIE* (see fourth bullet and step 1
of Figure 9 in (Statnikov et al. 2013)).

Recall that, after including a variable Ci in state ti , none of its subsequent siblings
ti+1, . . . , tk will consider Ci again, and thus increasingly smaller embedded datasets
are explored. Thus, if TMFBS(DC1:i−1 , S∪{Ci }) does not lead to a solution, by Corol-
lary 1 neither can any call to TMFBS with datasets embedded in DC1:i−1 . Although
Rule 1 identifies many cases implied by Corollary 1 that can be pruned, it does not
necessarily identify all of them. Combining it with Rule 2, which is basically a direct
application of Corollary 1, ensures completeness. We note that, theoretically Rule 1 is
not required; however, in contrast to Rule 2, which requires to keep track of all embed-
ded datasets that did not lead to any solution, Rule 1 can be implemented trivially and
efficiently.

The previous rules only consider the forward phase of TMFBS. We identified
another pruning rule, which regards the backward phase of the algorithm.

Pruning Rule 3 If no solution returned by TMFBS(DC1:i−1 , S∪{Ci }) contains Ci , stop
and return M.
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Rule 3 is checked after the recursive call to TMFBS(DC1:i−1 , S ∪ {Ci }) (after Line 14
in Algorithm 3).

Pruning Rule 3 regards cases where variable Ci is selected at some step but is not
in any solution in DC1:i−1 , which can happen if Ci is removed during the backward
phase from all of them. Basically, if including Ci leads to some solutions (i.e., Rule 1
does not apply), but none of them actually contains Ci , Ci was a false positive which
got removed by the backward phase. Thus, the call TMFBS(DC1:i−1 , S ∪ {Ci }) would
give the same results as TMFBS(DC1:i , S), which is the same as the results of all
remaining states in the current recursive call (i.e., TMFBS(DC1:i , S ∪ {Ci+1}), . . .,
TMFBS(DC1:k−1 , S∪{Ck})) Because of that, there is no reason to consider the remain-
ing candidates Ci+1:k , which have already been implicitly considered, and M can be
returned.

Despite all attempts to speed-up TMFBS, the number of candidate solutions may
still be exponential in the number of variables, and thus TMFBS may not terminate in
a reasonable time frame. This is not a weakness of TMFBS, but an inherent property
of the problem. Thus, to avoid such cases in practice, we recommend setting a limit
on the number of candidate states to consider, the number of solutions to return, or
a combination of both. This problem also motivated us to develop an algorithm for
summarizing and visualizing multiple solutions, presented in Sect. 7.

6.2.3 Computational complexity

In this section we present an analysis of the complexity of TMFBS. Due to the nature
and inherent intractability of the problem, it is hard to quantify accurately and in a
useful manner the computational complexity of TMFBS. The complexity depends on
many factors, such as (a) the cost of OrderVariables and BackwardPhase for the
specific instantiation of TMFBS, (b) the cost of testing whether a candidate solution
is equivalent to the reference solution using Equivalent, (c) the search strategy
of TMFBS induced by OrderVariables, which affects when TMFBS encounters
equivalent solutions, (d) the total number of solutions, (e) the size of solutions, (f)
whether the pruning rules trigger or not, and (g) the properties of the input dataset (e.g.,
number of samples and variables). To simplify analysis, we will make the following
assumptions.

First, the costs of BackwardPhase and Equivalent are negligible compared
to the cost of the forward phase, which is dominated by OrderVariables. We use
f (n) to denote the time taken by OrderVariables to rank n variables. To make
things even simpler, we will implicitly assume that n is set to the total number of
variables in the input dataset, and will simply refer to the cost as f . Also, in practice
the backward phase typically removes only a small number of variables, compared
to the ones selected during the forward phase (see also Section 4.4 in (Statnikov
et al. 2013)). Given the above, and because pruning rule 3 will trigger for variables
which were removed during the backward phase, avoiding further search, we will only
focus on variables which were added during the forward phase and are not removed
afterwards. Next, we will ignore any pruning, unless stated otherwise, as this depends
on OrderVariables and the search space it produces. Finally, we will use an upper
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bound on the size of the candidate solutions, denoted as L , allowing us to focus on
the worst case scenario. We proceed with the analysis.

Finding the next candidate solution. An interesting and useful way to look at
the problem, is to measure the time required for identifying a new candidate solution
given the previous candidate solution at a search tree node N . The exact cost depends
on the location of N on the search tree. First, note that after backtracking the algorithm
will continue from some node on the path from the root of the search tree to N . Each
such node already contains a set of selected variables, with the size depending on the
position of the node on the path (e.g., the i-th node already has i selected variables). As
the maximum size of any candidate solution is L , the cost of finding the next candidate
solution is between f and L · f . Specifically, for the i-th node on the path, the cost is
(L − i) · f .

Proving there are no more solutions. Another interesting aspect is the cost of
decidingwhether there are additional equivalent solutions.Again, assume that TMFBS
arrived at some root node N . TMFBS will backtrack from the leaf node N to the root
node, one node at a time. In case there are no more solutions, TMFBS will explore at
most one candidate solution from each node to some leaf node, as the pruning rules
will trigger. As each node on the from the root to N is considered, the total cost equals∑L

i=1 i · f = O(L2 · f ). Using this result, one can show that, in case of a single
solution, the total cost equals the cost of finding the reference solution (O(L · f )) plus
the cost of proving there are no more solutions, i.e., O(L2 · f ).

6.3 Relation to the TIE* algorithm

TIE* (Statnikov et al. 2013) is another general algorithm for identifying multiple
solutions. It uses three components: (a) a Markov blanket discovery algorithm X , (b)
a function Y that generates embedded datasets, and (c) a criterion Z that tests if a
solution is a Markov blanket in the original distribution. The TIE* algorithm, along
with the IGS method for creating embedded datasets (adapted to use similar notation
with TMFBS) are shown in Algorithm 4. As a criterion Z , any test for equivalence of
feature sets can be used.

The main idea of TIE* is to (a) identify the reference solution S on the original
dataset D, (b) remove variables of S from D and run X on the embedded datasets to
identify additional solutions, and (c) repeat (a,b) for each new solution found, until no
more solutions can be found. All of this is done without running X on a dataset (a)
more than once, and (b) if no solution was found in a superset of the dataset (same as
Pruning Rule 2). We proceed with a comparison to TMFBS.

TIE* and TMFBS have the same theoretical properties, that is, both identify all
equivalent solutions if Assumption 1 holds and they have access to an oracle for
deciding equivalence.6 The main advantage of TIE* is that it is more general than
TMFBS, in the sense that it can be used with any Markov blanket discovery algorithm
that satisfies Assumption 1, while TMFBS is limited to forward–backward type meth-
ods. We’d like to remind the reader that many popular algorithms can be expressed
with TFBS (see Sect. 5 for examples), making this limitation less restrictive in prac-

6 TIE* also assumes that Y generates embedded datasets in a way allowing all solutions to be identified.
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Algorithm 4 TIE* (Figure 6 in (Statnikov et al. 2013))
Input: Dataset D, Target T , Markov blanket induction algorithm X , Procedure to generate embedded
datasets Y , Criterion Z to verify Markov blankets for T
Use X to find the reference Markov blanket S in D
repeat

Use Y to generate dataset DE by removing variables E from D
Use X to find a candidate Markov blanket Scandidate from DE

Use Z to determine if Scandidate is a Markov blanket in the original distribution
until All datasets DE generated by Y have been considered
return All identified Markov blankets equivalent to S according to Z
function IGS(instantiation of Y for TIE*; see Figure 9 in (Statnikov et al. 2013))

Inputs:

– Markov blankets M = {S1, . . . , Sn} obtained so far by TIE* and ordered by the time of discovery
from earliest (S1) to latest (Sn )

– Subsets E1, . . . , En that were used in previous calls to IGS to generate embedded datasets that led
to the discovery of the above Markov blankets (E1 = ∅)

– Subsets E∗
1, . . . , E∗

m that were used in previous calls to IGS to generate embedded datasets that did
not lead to Markov blankets

Generate the smallest subset of variables E s.t.:
- Ei ⊂ E ⊆ (Si ∪ Gi ) for some i = 1, . . . , n,
- E is not equal to any E j , j = 1, . . . , n,
- E does not contain any E∗

k , k = 1, . . . ,m,

Return embedded dataset DE

tice. On the other hand, because TMFBS is a more specialized algorithm than TIE*,
it can take advantage of the specific search strategy of the underlying Markov blanket
algorithm used. This allows TMFBS to safely avoid re-computation of conditional
independence tests, and to forget any unneeded results, using the fact that the search
strategy is a greedy forward–backward type.

TIE* could also avoid re-computing conditional independence tests between dif-
ferent runs of the underlying Markov blanket algorithm. However, in order to be able
to handle any such algorithm, using any arbitrary order of performing the tests, the
only way to avoid re-computation is by caching the results of the tests. This is also
proposed by the authors in Section 4.4 in (Statnikov et al. 2013). Unfortunately, the
number of tests could increase polynomially with the number of features leading to
large computational overheads in storing and retrieving from the cache, as well as
large memory overheads.

Finally, we note that implementing TIE* efficiently is not trivial. For example, the
choice of data structures and algorithms to implement algorithm Y for generating
embedded datasets in TIE* is particularly important for the algorithm to become
practical.

Next, we take a closer look at the computational costs of TMFBS and TIE*. In
order to compare the algorithms, we assume that X used by TIE* fits into the TFBS
framework, i.e., it uses OrderVariables internally to select the next variable. For
simplicity, we will also assume that both algorithms explore all candidate solutions
in the same order, and that no pruning is performed. We use f to denote the cost
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of OrderVariables, ignoring the number of input variables. Recall that TMFBS
requires between 1 and L calls to OrderVariables for identifying a new candidate
solution. TIE* on the other hand needs to execute X from scratch, and therefore
always requires L calls. If there is only a single solution, both algorithms have a cost
of O(L2 · f ). We proceed with a worst case scenario, assuming a balanced search
tree with a maximum depth of L and that the whole search tree is explored. Note that
TMFBS will call OrderVariables exactly once for each node on the search tree.
The number of nodes in a balanced tree of depth L can be computed as the partial sum

of the geometric sequence
∑L

l=0 n
L = nL+1−1

n−1 = O(nL), where n is the total number
of variables. Therefore, the cost of TMFBS is O( f · nL). This is interesting as, even
though the cost of finding a new candidate solution is between O( f ) and O(L · f )
for TMFBS, on average it is O( f ) (one call toOrderVariables for each candidate).
The complexity of TIE* is O(L · f · nL), as there are nL leaf nodes (i.e., the number
of candidate solutions) in a balanced tree of depth, and each call of X has a cost of
O(L · f ). While it is unlikely that the search tree will have that form, the example
demonstrates that the speed-up of TMFBS over TIE* is not trivial. We’d like to point
out that the analysis favors TIE* over TMFBS, as we assumed that TIE* explores
the same candidate solutions as TMFBS and in the same order. The search strategy
of TMFBS is dynamic and depends how variables are ranked by OrderVariables

at each step, the input dataset and the set of already selected variables. In contrast,
the algorithms for generating embedded datasets for TIE* (i.e., its search strategy)
lead to predetermined search strategies. We argue that this gives TMFBS an edge over
TIE*, as any reasonableOrderVariables function is likely to lead to amore efficient
exploration of the search space in practice.

Finally, we would like to note that TMFBS is not a simple instantiation of TIE*.
While TMFBS can be technically expressed using TIE*, by running TMFBS and using
the results M in Y to generate embedded datasets (one dataset per Markov blanket,
containing only those variables), there is no natural way achieve that. TMFBS could
perhaps be derived from TIE* by having X and Y communicate their internal state
in order to simulate TMFBS, but this would be non-trivial and would require the
introduction of additional constructs and data structures (e.g., cache).

7 Summarizing and visualizingmultiple solutions

The more solutions are identified, the harder it is to interpret them. Typically, most
solutions have some overlap (features that are indispensable) and only differ for a few
features (replaceable features), enabling a more compact representation. We propose
a data structure for compactly representing feature sets, as well as an algorithm to
construct it next.

7.1 Multiple solution graphs

Let M denote a set of solutions M = {S1, . . . , Sk}. We propose to represent them
with a multiple solution graph (MSG), which is a directed acyclic graph G with the
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1416 G. Borboudakis, I. Tsamardinos

Fig. 3 An example of a multiple
solution graph. All nodes except
s and t contain one or multiple
feature sets. As nodes with
multiple features sets represent
OR relations, solutions can be
reconstructed by taking a path
from s to t and picking exactly
one feature set from each node.
This MSG has two paths from s
to t , and encodes 4 solutions in
total: {F1, F2, F3},
{F1, F2, F4, F5},
{F1, F2, F5, F6, F7}, and
{F1, F2, F5, F6, F8}

Algorithm 5 Feature Set Compression
Input: Solutions M
Output: MSG G representing M
1: G ← {s, t}
2: for each Si ∈ M do
3: G ← G ∪ Si
4: G ← G ∪ (s → Si)
5: G ← G ∪ (Si → t)

6: G ← ForwardCompression(G, s)
7: G ← BackwardCompression(G, t)
8: G ← ORCompression(G, t)
9: return G

following properties: (a) G contains exactly one root and leaf node, called s and t , (b)
each other node in G is associated with one or more sets of features, and has in and out
degree at least one (c) each directed path p from s to t represents a solution, which
can be obtained by choosing one of the feature sets of each node on p and taking the
union of the chosen feature sets, and (d) G does not encode any additional solutions.
An example of an MSG is shown in Fig. 3.

Hereafter, we will use the names Ni to refer to the i-th node in G and var [Ni ]
to refer to the sets of features associated with Ni . In case var [Ni ] contains only a
single set of features, it will directly refer to that set. If it is clear from the context,
we will refer to a node with its associated feature set. We will use parents[Ni ] and
children[Ni ] to refer to the parents and children of Ni in G respectively.

7.2 An algorithm for constructingmultiple solutions graphs

We propose a greedy algorithm to construct an MSG G to compactly represent a
set of solutions M = {S1 . . . , Sk} (see Algorithm 5). First, k nodes are created, one
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for each feature set in M. Then, edges from s into each of those nodes, as well as
edges into t out of them are included in G. It is easy to see that G exactly represents
M, as it contains k paths from s to t , one for each feature set. Afterwards, forward
and backward compression steps are performed to reduce the size of G. Both are
performing operations on G with the goal of simplifying it. Until that step, all nodes
contain a single feature set. The final step is tomerge nodes, creating nodes that contain
multiple feature sets. Before describing everything in detail, we proceed by presenting
the operations used, along with proofs of correctness.

7.3 Compression operations

Operation 1 (Forward Merging) Let N = N1, . . . , Nn be a set of nodes. If F′ =⋂
Ni

var [Ni ] �= ∅ and all of them have exactly the same set of parents P, then, a new
node N ′ is created with var [N ′] = F′, parents[N ′] = P, children[N ′] = N, and
remove all incoming edges from N, as well as all features F′ from N.

Operation 2 (Backward Merging) Let N = N1, . . . , Nn be a set of nodes. If F′ =⋂
Ni

var [Ni ] �= ∅ and all of them have exactly the same set of children C, then, a new
node N ′ is created with var [N ′] = F′, parents[N ′] = N, children[N ′] = C, and
remove all outgoing edges from N, as well as all features F′ from N.

Operation 3 (OR Merging) Let N = N1, . . . , Nn be a set of nodes. If all nodes have
the same sets of parents P and children C, then, a new node N ′ is created with
var [N ′] = {var [N1], . . ., var [Nn]}, add edges from P to N ′ as well as edges from
N ′ to C, and remove all nodes N from G.

Figure 4 shows examples of the forward merging and OR merging operations; the
backward merging operation is not shown, as it is symmetric to the forward merging
operation, requiring common children instead of common parents. In the example of
the forward merging operation, the nodes N1, N2 and N3 share the same parents and
have the feature F1 in common. The resulting node N ′ contains F1, which is removed
from the feature sets of the other nodes. The OR merging operation requires that the
nodes share the same parents and children. If so, the nodes can be merged into a single
node, containing as feature sets all features sets of the merged nodes, as shown in the
example. As can be seen in the previous examples, all operations simplify the graph
by removing nodes, features and edges. Next we will quantify those effects for all
operations.

We start with the forward and backward merging operations. Without loss of gen-
erality, we consider the forward merging operation; the same also holds for backward
merging. Before its application on node set N and their parents P, the graph contains
|N| · |P| edges between them. The resulting graph contains |P| edges from P to N ′, and
|N| edges from N ′ to N, much fewer than the ones in the initial graph. In addition, the
total number of features contained in the graph is reduced by (|N|−1) · |F′|. Note that
application of those operations may result in a node containing no features. In this case
the node can be removed, and edges from all its parents to all its children have to be
added. Finally, OR merging always decreases the number of nodes and edges, while
maintaining the total number of features. Specifically, for node set N, the number of
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Fig. 4 Examples of the forward merging (left) and OR merging (right) operations

nodes is reduced by |N−1|, and the edges are reduced by (|P|−1)|N|)+(|C|−1)|N|),
where P and C are the sets of parents and children of N respectively. Next, we will
show that all operations are preserve the number of represented solutions.

Theorem 2 Application of Operation 1 and 2 does not affect the set of represented
solutions by G

Proof Without loss of generality, we only prove the correctness of Operation 1. The
correctness of Operation 2 can be shown following the same reasoning.

To prove correctness, it suffices to show that all paths into any node in P and
out of any node Ni contain the same set of features. Let Pj be some parent of Ni .
Initially, the set of features on the path through Pj and Ni are var [Pj ] ∪ var [Ni ].
After performing the forward merging operation, the set of represented features is not
affected, as var [Pj ] ∪ var [N ′] ∪ (var [Ni ] \ var [N ′]) = var [Pj ] ∪ var [Ni ]. Since
the set of incoming edges of each Pj as well as the set outgoing edges of each Ni do
not change, the set of represented solutions of the initial DAG is not altered. ��

A proof sketch for the OR merging operation follows. Observe that OR merging
basically only groups some nodes together into one “super-node”. Based on this obser-
vation, it can easily be shown that it does not alter the solutions represented by the
graph, as nodes are merged if and only if they have the same parents and children.
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Furthermore, this operation can be applied locally and independently to any part of
the graph in any order, without affecting the final outcome.

Next, we will present algorithms that perform the forward and backward compres-
sion steps, using the respective merging operations. We do not provide any algorithm
for the OR compression, as it simply is repeated application of OR merging until no
more nodes can be merged.

7.4 Algorithms for forward and backward compression

The forward compression starts from the root node s and separates its children into
groups as follows. First it identifies the feature with the most occurrences among
all its children and groups together all children that contain that feature (function
SplitChildrenByFeatures in Algorithm 6). This is repeated for all children that
have not been grouped yet, until none remains. Next, after all children have been
grouped, Operation 1 is performed on each such group Gi (lines 3–9 in Algorithm 6).
Application of Operation 1 is possible since all nodes in each group share common
features and because all of them share the same parents, by construction. The afore-
mentioned steps are repeated recursively for each newly created node N ′ in place of
s, until the leaf node t is reached. The procedure is summarized in Algorithm 6.

Algorithm 6 Forward Compression
Input: Graph G, Node N
Output: Graph G
1: Groups ← SplitChildrenByFeatures(G, N )

2: for each Gi ∈ Groups do
3: F′ ← ⋂

N j∈Gi
var [N j ]

4: var [N ′] ← F′ //Create node N ′ with features F′
5: G ← G ∪ N ′ //Add N ′ to G
6: ∀N j∈Gi var [N j ] ← var [N j ] \ F′ //Remove common features from Gi

7: G ← G ∪ (N → N ′) //Add edge from N to N ′
8: ∀N j∈Gi G ← G ∪ (N ′ → N j ) //Set N

′ as parent of each N j
9: ∀N j∈Gi G ← G \ (N → N j ) //Remove N as parent from N j

10: G ← ForwardCompression(G, N ′)
11: return G

After completing the forward compression, an additional step is employed to further
reduce the size of theDAG. This step is very similar to the forward compression, with a
small modification. The backward compression starts from the leaf node t and groups
all parents of t such that all nodes in the same group have the same children (function
SplitParentsByChildren in Algorithm 7). This is necessary in order to perform
the backward operation. It was not required for the forward compression, as there it
was guaranteed by construction that all nodes always have the same parents. Here
however, it may happen that some parent of t is also a parent of some other parent of t ,
complicating things. Next, each such group is further split into sets of nodes that have
common features, similarly to the forward step (function SplitsGroupsByFeatures
in Algorithm 7). Thus, after both splitting steps, nodes in each group have the same
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Algorithm 7 Backward Compression
Input: Graph G, Node N
Output: Graph G
1: Groups ← SplitParentsByChildren(G, N )

2: Groups ← SplitGroupsByFeatures(Groups)
3: for each Gi ∈ Groups do
4: F′ ← ⋂

N j∈Gi
var [N j ]

5: var [N ′] ← F′ //Create node N ′ with features F′
6: G ← G ∪ N ′ //Add N ′ to G
7: ∀N j∈Gi var [N j ] ← var [N j ] \ F′ //Remove common features from Gi

8: G ← G ∪ (N ′ → N ) //Add edge from N ′ to N
9: ∀N j∈Gi G ← G ∪ (N j → N ′) //Set N ′ as child of each N j
10: ∀N j∈Gi G ← G \ (N j → N ) //Remove N as child from N j

11: //Iterate over all parents. Additional parents may be created after BackwardCompression and must also
be considered.

12: for each Ni ∈ Parents(N ) do
13: G ← BackwardCompression(G, Ni )

14: return G

children and share features, allowing application of Operation 2 (lines 4–10 in Algo-
rithm 7). Again, this procedure is applied recursively for all parents of t , including the
ones that are created after a recursive call of backward compression,7 until the root
node s is reached.

7.5 Relatedmethods

The problem of compactly representing feature sets is closely related to several other
problems that have appeared in the computer science literature, which we briefly
summarize and compare below.

Binary decision diagrams (BDDs) (Bryant 1986; Andersen 1997) are directed
acyclic graphs that are used to compactly represent a Boolean function. Each node is
associated with a Boolean feature and has two outgoing edges, one labeled “0” (or
false) and one labeled “1” (or true), corresponding to the respective assignment of x . It
has one root node,which is one of theBoolean features, and two leaf nodes “0” and “1”.
Each path from the root node to one of the leaf nodes represents a feature assignment
for the represented Boolean function. Depending on the leaf node, this assignment
evaluates the represented Boolean function to true or false. Ordered binary decision
diagrams (OBDDs) (Bryant 1986) are a special type of BDDs. They have the property
that there is a unique structure for a given feature ordering, which is not necessarily
the case for BDDs. The size of the OBDD highly depends on the feature ordering.
The problem of finding the minimal OBDD is NP-complete (Bollig and Wegener
1996).8 There are various heuristics to find a good feature ordering; see (Rice and
Kulhari 2008) for a survey on such methods. Another interesting type of BDDs are

7 In an actually implementation of Algorithm 7, the set of parents of N at line 12 has to be updated after
each recursive call in the loop, as it may change during the loop.
8 Specifically, the decision version of the problem is NP-complete
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zero-suppressed binary decision diagrams (ZDDs) (Minato 1993). Often, especially
when there are only a few solutions for a Binary function, ZDDs can be much smaller
than OBDDs. It is straightforward to use BDDs to represent feature sets (which are a
set of sets). Feature sets can be represented with Boolean functions by converting each
set to an AND function and use an OR function between all such sets. For example,
if M = {{F1, F2}, {F2, F3, F4}}, the Boolean function (F1 ∧ F2) ∨ (F2 ∧ F3 ∧ F4)
represents all solutions inM. In fact, OBDDs and ZDDs have already been used in this
context (Minato 2001). The reason we chose not to use BDDs for our case is that they
aren’t as easy to interpret, and it is harder to identify represented solutions visually.
A path may contain “0” edges, which have to be filtered out in order to retrieve the
respective feature set.

Acyclic deterministic finite-state automata (ADFA) (also known as directed
acyclic word graphs (DAWG)) (Hopcroft et al. 2006; Revuz 1992; Daciuk et al. 2000)
are used to represent a set of strings (called lexicon) in a compact way. ADFAs are
directed acyclic graphs with nodes representing states and edges representing tran-
sitions between them. They contain one root and one leaf node, and each edge is
associated with a letter. Each directed path from the root node to the leaf node rep-
resents a string, by concatenating the letters associated with each edge on that path.
There are fast algorithms to incrementally construct a minimal size ADFA (Daciuk
et al. 2000), or to minimize a given ADFA (Revuz 1992); see (Daciuk 2002) for a
review and comparison of such methods. In our case, ADFAs could be used by con-
verting each feature set to a string, and then using them to encode the whole set of
feature sets. One way to do this is to choose a feature ordering, and to convert feature
sets to strings by sorting them according to that ordering. This however is sub-optimal,
as it unnecessarily restricts the resulting DAG to some feature ordering, which is not
needed to actually represent feature sets. On the other hand, ADFAs also allow the
repetition of letters, which is not needed in our problem as we deal with sets. Both
of those reasons may potentially reduce their efficiency for compactly representing
feature sets, which is why we decided to not use them.

We did not further investigate the possibility of using one of those data structures
for our problem. We note that, due to their similarity with our proposed data structure,
it may be that techniques used for minimization of BDDs or ADFAs could be applied
in our case.

8 Experimental evaluation

WeevaluatedTMFBSand compared it to the TIE* algorithm (Statnikov et al. 2013),
the only alternative general algorithm for multiple solutions, with similar theoretical
properties to TMFBS. For TIE* we used the IGS method for generating embedded
datasets (see Sect. 6.3); we will refer to that specific TIE* instantiation as TIE*-IGS
hereafter.

In our first experiment we compared (a) the number of solutions returned by each
algorithm, as well as how many of them are statistically equivalent, (b) the predictive
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Table 2 Summary of the
datasets used for the
experimental evaluation

Dataset #Samples #Variables

Regression

CnC Non-violent 2118 102

CnC Violent 1994 102

BlogData 60021 276

CT Slice 53,500 379

UJI Latitude 21,048 520

UJI Longitude 21,048 520

Classification

Ada 4562 46

Musk 6598 166

Sylva 14,394 213

Madelon 2600 500

Gina 3468 970

We used 6 regression datasets and 5 binary classification datasets, with
number of variables ranging from46 to 970, and samples sizes between
1994 and 60,021

performance of the returned solutions,9 and (c) how the algorithms compare in terms
of computational performance. Then, we investigated how the number of solutions
and running time of both algorithms is affected by sample size. Finally, we show some
examples of multiple solution graphs obtained on solutions returned by TMFBS.
Data. We considered binary classification and regression datasets. The data were
collected from the UCI ML repository (Dietterich et al. 1994), using the following
criteria: (a) they contain at least 1000 samples, to ensure that the equivalence tests have
sufficient power, and (b) they contain at most 1000 features, so that all algorithms can
terminate in a reasonable time frame. The datasets are shown in Table 2. More details
about the data collection and pre-processing are given in “Appendix A”.
Feature Selection Algorithms and Hyper-parameters. For a fair comparison, we
instantiated both TIE*-IGS and TMFBS with the FBS algorithm, as presented in
Sect. 5. For continuous outcomes, we used the partial correlation test, and for binary
outcomes we used a likelihood-ratio test based on logistic regression (see Sect. 2).
For the significance level α of the conditional independence tests we considered 100
values uniformly spaced in the exponent of 10[−8,...,log10(0.05)], (i.e., the minimum α is
10−8 and the maximum is 0.05). A wide range of values for α is considered to allow
for better tuning of FBS (see Sect. 4.3.2 for the motivation behind this).

9 We note that it is not the goal of this comparison to evaluate the performance of the single feature
selection algorithm used by TMFBS and TIE*-IGS. Stepwise selection algorithms, such as the forward–
backward selection algorithm used in the experiments, have been compared numerous times to other types
of algorithms and have been shown to be competitive. See (Hastie et al. 2017; Borboudakis and Tsamardinos
2019; Tsamardinos et al. 2019) for recent comparisons of FBS and stepwise selection methods with lasso,
Markov blanket discovery and information-theoretic algorithms.
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Predictive Modeling. As predictive algorithms, we used ridge logistic and linear
regression for binary classification and regression outcomes respectively.10 For the
regularization parameter λ of ridge regression we considered values 2[−30,...,30], with
a step size of 0.5 on the exponent (a total of 121 values).
Equivalence Test for Solutions. The goal of the experiments is to identify multi-
ple, statistically equivalent Markov blankets. Following the recommendations given
in Sect. 4.3, we combine a PEQ test with an IEQ test. Specifically, we (a) use a
permutation-based variant of the variance test (Vuong 1989) for PEQ with 1000 per-
mutations (see Sect. 4.3.4 for details), and (b) an IEQ test based on likelihood-ratio
tests using logistic and linear regression models for classification and regression out-
comes respectively. As sample sizes are relatively large, we set the significance level
to 0.05 for both tests to minimize the number of false solutions.
Analysis Protocol. We employed a train/validation/test protocol, splitting the data to
60%/20%/20% respectively. As performance metrics we used the out-of-sample R2

for regression and the area under the ROC curve for classification.Mean absolute error
and root mean squared error for regression, as well as accuracy and balanced accuracy
for classification have also been considered, and are presented in “Appendix B”. We
used the following procedure: (a) on the training set, we trained a ridge regression
model using the features identified by FBS for each combination of λ and α (a total
of 121 · 100 = 12100 combinations), (b) we selected the best combination based on
its performance on the validation set, (c) we executed TMFBS and TIE*-IGS on the
combined training and validation set using the best α and trained one model for each
solution using the best λ, and (d) estimated their predictive performance on the test
set.
Implementations. All algorithms were implemented by us inMatlab, except for ridge
logistic regression, for which we used the implementation provided by the LIBLIN-
EAR package (Fan et al. 2008).

8.1 Evaluation of TMFBS and comparison with TIE*

For the first experiment we employed the aforementioned analysis protocol on
the datasets shown in Table 2 datasets. In order to measure the speed-up of TMFBS
over TIE*-IGS, we used the number of independence tests performed by each algo-
rithm as a proxy of running time.11 For each solution, we compute the predictive
performance obtained on the test set, as explained previously. Ideally, all identified
equivalent solutions should have similar predictive performance. In order to verify
that, we performed a test of performance equivalence for each identified solution with
the reference solution on the test set. As a performance equivalence test we employed
the permutation-based variance test, as described above. As the significance level is

10 We chose those models to compare equivalent solutions on an equal footing, as the conditional inde-
pendence tests used by FBS only identify linear (or monotonic) dependencies. Using non-linear predictive
models might obfuscate the results, as they would favor solutions which happen to identify variables that
are non-linearly related to the outcome.
11 The number of tests is used instead of running time, as this is independent of the implementations used
for the algorithms and tests. This is common practice when comparing algorithms based on independence
tests (see (Aliferis et al. 2010) for example)
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set to 0.05, we expect around 5% of equivalent solutions to be rejected on average.
The results are summarized in Table 3.

First of all, we notice that both algorithms return a similar number of solutions. In
fact, the solutions are identical, except for the UJI Longitude dataset, where TMFBS
returned 12 solutions while TIE*-IGS returns 13. Those results agree with what we
would expect from theory, as both algorithms have the same theoretical guarantees,
although the results might differ in practice (see Sect. 6.3).

In terms of total number of returned solutions, we see that in most cases the algo-
rithms identify only a single solution (7 out of 11 datasets), while in the rest the number
of additional solutions is at most 19.Most of them are statistically equivalent, and even
the ones that are not have very similar predictive performance (the difference is less
than 0.1% in all cases). The same also holds for other performancemetrics; see Table 5
in “Appendix B” for additional results.

Even though the number of solutions is low, it is important evidence that multiple
solutions indeed exist in practice. It is unlikely that those are false positives, given that
the analysis is designed so that the number of false positive equivalences is minimized:
we used large sample sizes, a relatively high threshold for the equivalence tests, filtered
out solutions using aPEQ test, andused extensive tuningof the algorithms (seeSect. 4.3
for explanations of how the above affect the number of solutions). Furthermore, we
there is no reason to believe a priori that the selected datasets do contain equivalent
solutions, as the criteria used for selecting them are based on their size.

Finally, regarding speed-up, in all cases TMFBS is around 1.5–2.5 times faster than
TIE*-IGS, showing that TMFBS is able to successfully take advantage of the search
structure of FBS; larger speed-ups are expected with increasing number of features
and solutions (see also the results of the next experiment, where speed-ups of 1–2
orders of magnitude are the norm).

8.2 Number of solutions and speed-up with increasing sample size

Next, we performed an experiment to investigate how the number of solutions is
affected by lower sample sizes, where more false positive solutions are expected
due to lower power of the equivalence tests. Furthermore, we also check how the
increased number of solutions affects the speed-up of TMFBS over TIE*-IGS. For
this experiment, we only used the regression datasets, as the experiment is too time
consuming for the classification datasets. The reason is that the logistic regression
based test are significantly more computationally expensive than partial correlation
tests, making such a large experiment infeasible.

We used the same experimental setup as before, but instead of using the full training
set (i.e., the 60% of the original samples), we sampled 10%, 20%, . . ., 90% of the
training data and used that as a training set to tune the hyper-parameters of FBS.
The sampling was performed 20 times for each value, i.e., we performed a total of
20 · 9 = 180 runs of the analysis protocol for each dataset, and we report averages
over the 20 runs. A limit of 1000 solutions was set, as in some small sample cases
the TIE*-IGS algorithm would not terminate otherwise (the number of solutions often
ranged in the millions).
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Fig. 5 The figures show the average number of solutions over 20 runs with increasing sample size for
TMFBS (left) and TIE*-IGS (right). First of all, we see that both algorithms return an almost identical
number of solutions. We also see that the number of solutions tends to decrease with increasing sample
size, as expected

Figure 5 shows how the number of solutions identified by TMFBS and TIE*-IGS
varieswith sample size. As before, the results are very similar for both algorithms. First
we notice that, as expected, the number of solutions tends to decrease with increasing
sample size. The only exception is for the CnC Non-violent dataset, where the number
of solutions increases a bit for 70% of the samples or higher. Furthermore, for some
cases (e.g., 40 and70%for theUJILongitude dataset) the number of solutions increases
temporarily, and decreases afterwards. We were not able to identify the cause of this,
but believe it may be an artifact of the experimental setup. Specifically, we believe it is
due a combination of the relatively small number of runs (we used only 20 repetitions,
due to the large computational cost) and the limit of 1000 solutions (again, to reduce
the total computational cost). In any case, even though the number of solutions is not
strictly monotonically decreasing with sample size, overall there is a clear monotonic
trend for most datasets.

Figure 6 shows the speed-up of TMFBS over TIE*-IGS, computed as the ratio of
statistical tests performed by TIE*-IGS over TMFBS, and averaged over all runs. We
see that, on average, TMFBS significantly outperforms TIE*-IGS, typically being 1-2
orders of magnitude faster. The largest speed-ups are observed for lower sample sizes,
where the number of identified solutions is also larger. Thus, the more solutions are
identified, the larger the speed-up of TMFBS over TIE*-IGS is. Recall however that
we set an upper limit of 1000 solutions for each run and, given that TIE*-IGS requires
more tests per solution, we expect the speed-up to be even larger if no limit is enforced.
Those results were expected, and can be explained by the search strategy of TMFBS
which efficiently reuses computations, in contrast to TIE*-IGS which has to restart
the search for each candidate solution.

8.3 Multiple solutions graphs

We show two multiple solution graphs (constructed using Algorithm 5) on the
solutions of first experiment for the CnC violent and CT slice datasets in Fig. 7. The
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Fig. 6 The figure shows the speed-up of TMFBS over TIE*-IGS with increasing sample size. We can see
that TMFBS is typically 1–2 orders of magnitude faster than TMFBS on average

Fig. 7 Multiple solutions graphs for the solutions on the CnC violent (left) and CT slice (right) datasets.
The graphs contain 3 and 20 solutions, and require only 5 and 15 nodes respectively to represent them
(excluding s and t). The first node contains 5 and 212 variables respectively, which correspond to variables
that are contained in all solutions, i.e., variables that are indispensable
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number of solutions are 3 and 20 for the CnC violent andCT slice datasets respectively.
We see that the multiple solution graphs are able to efficiently encode all solutions,
requiring only 5 and 15 nodes respectively. They also allow us to quickly identify
interesting patterns. Recall that a solution can be read-off the graph by taking the
union of features present in a path from s to t . Thus, the first node, which in both cases
contains most of the features, corresponds to indispensable features. An example of
replaceable features can be seen for the CnC dataset (graph on the left), where features
11 and 73 can be interchanged in all solutions. Another example can be seen on node
12 (graph on the right), which contains three sets of features (features 168, 186 and
196), which are replaceable for all solutions obtained by paths passing through node
12 (e.g., 1 → 2 → 6 → 9 → 11 → 12).

9 Conclusion

We presented a novel strategy for extending feature selection algorithms to identify
multiple statistically equivalent solutions, and proved under which conditions the
algorithm is able to identify all solutions. Furthermore, we extended the taxonomy of
features proposed by John et al. (1994) to also take multiplicity into account. We also
proposed three definitions of statistical equivalence of solutions, aswell asmethods for
testing them. In experiments, we showed that the proposed algorithm is significantly
faster than the TIE* algorithm (Statnikov et al. 2013), the only other method with the
same theoretical guarantees, while returning similar solutions. This happens because
our algorithm directly takes advantage of the computations performed during the
search, while TIE* does not.

As presented, the strategy can be used to extend greedy algorithms that consist of
a forward and a backward phase. However, similar ideas could be used for a more
general class of algorithms, namely methods that search in the space of solutions by
adding or removing one or multiple features at each iteration. This would allow the
extension of methods like recursive feature elimination, lasso (Tibshirani 1996), and
stepwise selection (Kutner et al. 2004; Weisberg 2005) methods, to name a few.

A limitation of the experimental evaluation is that the algorithms have only been
evaluated on regression and binary classification tasks. A more extensive evaluation,
including larger numbers of datasets and other common tasks, such as multiclass
classification, survival analysis and time course analysis, would be a valuable future
research direction.
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Appendices

A: Dataset collection and preparation for the evaluation of TMFBS

Table 4 shows the list of all datasets, containing information about their number of
samples n and features p, the type of features and outcomes, domain and sources.
12 For all datasets, we performed the following pre-processing steps: (a) we removed
all constant features as they do not provide any information about the outcome, (b)
we removed features related to sample ids and other types of metadata, and (c) we
removed samples containing missing values. Missing values were only present in a
few datasets, and only for a few samples. In a real-world application, this should be
handled appropriately to avoid biased results, using either missing value imputation
or predictive algorithms that can handle missingness. However, for our purposes it
would only unnecessarily complicate the tuning procedure and is not that important
given the rare presence of missing values.

The communities & crime data contain a total of 18 continuous outcome features.
Out of those, 8 measure the total number of committed crimes, 8 measure the number
of crimes per 100K population, and 2 measure the number of violent and non-violent
crimes per 100K population (by appropriately summing over the other outcomes).
We chose to create two datasets, one measuring the violent and one the non-violent
crimes. Note that, the number of samples differs, as there were missing values in the
outcome features.

The UJIIndoorLoc datasets also contain multiple outcome values, such as the loca-
tion (longitude and latitude), the floor of the building, the building ID and others.
Again, we chose to create two datasets, one using the latitude outcome and one for
the longitude.

The CT Slice data consist of samples obtained from CT scans on 97 patients. In
this case, the training/validation/test splits where performed on the patients, and not
directly on the samples (i.e., stratified on the patient id). This was done to avoid having
data from the same patients both on the training and on the held-out data.

12 The communities & crime data were originally collected from: (a) U. S. Department of Commerce,
Bureau of the Census, Census Of Population And Housing 1990 United States: Summary Tape File 1a & 3a
(Computer Files), (b) U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC
and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992), (c) U.S.
Department of Justice, Bureau of Justice Statistics, Law Enforcement Management And Administrative
Statistics (Computer File) U.S. Department Of Commerce, Bureau Of The Census Producer, Washington,
DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992), and
(d) U.S. Department of Justice, Federal Bureau of Investigation, Crime in the United States (Computer File)
(1995).
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B: Additional results for the comparison of TMFBS with TIE*

Table 5 The table shows additional performance metrics for the experiment in Sect. 8.1

Dataset Metric Reference Range

Regression

CnC Non-violent R2 0.585 –

MAE 1303 –

RMSE 1841 –

CnC Violent R2 0.588 [0.583, 0.590]

MAE 254.0 [252.3, 255.4]

RMSE 360.1 [359.0, 362.2]

BlogData R2 0.304 –

MAE 9.27 –

RMSE 32.54 –

CT Slice R2 0.834 [0.834, 0.834]

MAE 7.56 [7.56, 7.56]

RMSE 9.96 [9.96, 9.96]

UJI Latitude R2 0.911 –

MAE 14.91 –

RMSE 20.29 –

UJI Longitude R2 0.938 [0.938, 0.938]

MAE 22.95 [22.93, 23.02]

RMSE 30.91 [30.89, 30.98]

Classification

Ada AUC 0.904 –

ACC 0.85 –

BACC 0.762 –

Musk AUC 0.991 –

ACC 0.95 –

BACC 0.946 –

Sylva AUC 0.999 –

ACC 0.992 –

BACC 0.982 –

Madelon AUC 0.646 –

ACC 0.633 –

BACC 0.633 –

Gina AUC 0.932 [0.932, 0.934]

ACC 0.862 [0.862, 0.863]

BACC 0.861 [0.861, 0.862]

The performance of the reference solution is shown separately, while a performance range is shown over all
equivalent solutions (if multiple). The table shows the R2, mean absolute error (MAE) and root mean squared error
(RMSE) for regression, and the area under the ROC curve, accuracy (ACC) and balanced accuracy (BACC) for
classification. As the performance metrics are identical for TMFBS and TIE*, results are shown only once. We see
that, the performance of all equivalent solutions is very close to the reference solution, regardless of task, dataset
and metric
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