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Simple Summary: Distant metastases derive from the shedding and dissemination of single cancer
cells (CTCs) or circulating tumor emboli (CTMs) into circulation. Previous studies on CTMs were
mainly run in patients with metastatic disease; however, we observed that CTMs are more frequently
detected in patients with early-stage breast cancer. Here, we collected single CTMs and their relative
primary tumor tissue samples in early-stage patients. By studying genomic aberrations, present in
tumors cells and absent in normal cells, we predicted the tumor fraction thanks to a statistical model
developed from a calibration curve with breast cancer cell lines. The tumor fraction ranged from
8% to 48% and CTMs contained specific and shared alterations with respect to tissue. Thus, CTMs
may derive from different regions of the primary tumor or from occult micrometastases. Moreover,
CTM-private mutations may inform us about specific metastasis-associated functions of involved
genes that should be further explored in follow-up and mechanistic studies.

Abstract: Circulating tumor microemboli (CTMs) are clusters of cancer cells detached from solid
tumors, whose study can reveal mechanisms underlying metastatization. As they frequently comprise
unknown fractions of leukocytes, the analysis of copy number alterations (CNAs) is challenging.
To address this, we titrated known numbers of leukocytes into cancer cells (MDA-MB-453 and
MDA-MB-36, displaying high and low DNA content, respectively) generating tumor fractions from
0–100%. After low-pass sequencing, ichorCNA was identified as the best algorithm to build a linear
mixed regression model for tumor fraction (TF) prediction. We then isolated 53 CTMs from blood
samples of six early-stage breast cancer patients and predicted the TF of all clusters. We found
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that all clusters harbor cancer cells between 8 and 48%. Furthermore, by comparing the identified
CNAs of CTMs with their matched primary tumors, we noted that only 31–71% of aberrations were
shared. Surprisingly, CTM-private alterations were abundant (30–63%), whereas primary tumor-
private alterations were rare (4–12%). This either indicates that CTMs are disseminated from further
progressed regions of the primary tumor or stem from cancer cells already colonizing distant sites. In
both cases, CTM-private mutations may inform us about specific metastasis-associated functions of
involved genes that should be explored in follow-up and mechanistic studies.

Keywords: breast cancer; circulating tumor microemboli; metastatic dissemination; tumor fraction;
copy number alteration; low-pass whole genome sequencing

1. Introduction

Despite considerable progress in early diagnosis as well as in the loco-regional and
systemic treatment of cancer, the outgrowth of distant metastasis remains responsible
for the majority of breast cancer-related deaths [1,2]. Our knowledge on the biology of
tumor cell dissemination and metastatic outgrowth is still limited, and molecular key
events fundamental for the process need to be identified. These would be valuable as
diagnostic tools to predict metastatic spread and as therapeutic targets for personalized
treatment strategies.

In patients with solid tumors, hematogenous dissemination plays a major role in the
onset of metastatic disease. Circulating tumor cells (CTCs) released from the primary
tumor into the bloodstream during the course of the disease have been considered for
a long time to be the culprits for metastatic dissemination [3]. However, in addition to
single CTCs, numerous studies performed in clinical case series have reported the presence
of CTC clusters, also known as circulating tumor microemboli (CTMs), in the blood of
metastatic breast cancer patients [4]. The presence of CTMs was found to be associated
with overall survival (OS) and progression-free survival (PFS) [5–9], and some studies also
reported evidence for added prognostic values of CTM quantification in addition to that of
single CTCs [10,11].

Most studies addressing the clinical role of clusters in breast cancer have been con-
ducted in metastatic patients, applying CTC enrichment and detection based on the expres-
sion of epithelial markers. More recently, by employing a direct approach relying on the
use of filtration devices that enrich clusters from whole blood based on their size and by
adopting cytomorphological criteria for their identification, we reported that CTMs are
over three-times more frequent in women with early breast cancer (EBC) than in metastatic
patients [12,13]. This biologically intriguing observation is in line with the hypothesis that
dissemination occurs early, allowing the nesting of cancer cells at distant sites a long time
before the onset of clinically overt metastases [14,15]. Thus, studying CTMs in EBC may
offer an unprecedented chance for both acquiring key knowledge on the initial steps of the
metastatic process as well as identifying possible strategies for therapeutic interference.

The remarkably high number of CTMs detected in EBC based on morphological
criteria and the variable dimensions of the observed clusters raise questions on their
actual cellular composition and in particular on the relative proportion of tumor cells
compared to attached non-malignant cells. Evidence for a higher metastatic potential
by clusters compared to single CTCs deriving from functional studies has addressed
possible mechanisms for this phenomenon by both considering homotypic clusters [16] and
underlining the importance of the interaction with accessory cells occurring in heterotypic
clusters [17,18]. Different accessory cells have been described to interact with tumor cells
within clusters. Among them, neutrophils that interact with tumors cells promoting cell
cycle progression [19,20], and myeloid-derived suppressor cells (MDCS) that promote CTC
proliferation and immune evasion play a major role [21,22].
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Here, we hypothesize that characterizing single CTMs at the genomic level will
allow us to estimate their cellular composition, evaluate the intra-patient heterogeneity of
individual clusters and, in comparison to the primary tumor tissue, highlight subclonal
genomic alterations involved in dissemination. Building on a calibration experiment, in
which known proportions of breast cancer and blood cells were admixed, we created
a weighted mixed regression model for predicting tumor fractions in single CTMs by
comparing two algorithms for copy number alteration (CNA) estimation based on low-
pass whole genome sequencing (lpWGS). Thereafter, we developed an approach based
on the direct isolation of single CTMs by micromanipulation, DNA amplification and
CNA profiling by lpWGS and provided evidence, in a small series of EBC patients, that
individually isolated CTMs contain tumor cells admixed in variable proportions with
accessory non-malignant cells. Finally, by comparing CNAs of CTMs with those of tissue
biopsies, we showed that CTMs share genomic aberration with the primary tumor tissue,
but also acquire specific alterations.

2. Results
2.1. Establishment of a Method for Accurate Estimation of Tumor Fraction (TF) in CTMs

To better understand the composition and gain insights into the biological role of
CTMs that are frequently detected in EBC [12,13], we developed a model to predict CTMs’
tumor fraction (TF) based on CNA data. First, using a calibration curve of samples formed
by breast cancer cell lines admixed with leukocytes, we compared two algorithms for the
estimation of tumor genome fraction (TGF) starting from the samples’ CNA profiles. Then,
we validated the developed bioinformatic pipeline in tumor samples from EBC patients
comparing stroma and tumor fractions. Finally, based on the calibration curve data, we
built the statistical model for TF prediction.

2.1.1. Building of a Calibration Curve for Tumor Genome Fraction (TGF) Estimation

For an objective assessment of TGF, defined as a tumor fraction value depending on
the relative amount of genomic aberrations in relation to the complete human genome, we
have compared the control-FREEC and the ichorCNA algorithms, which to the best of our
knowledge are the only ones that compute TGF using CNA data obtained from lp-WGS.

In order to assess the sensitivity and specificity of ichorCNA and control-FREEC
in establishing TGF in mixtures of tumor and normal cells, artificially-generated mixed
samples with a known proportion of two cell types were created. For this purpose, we have
chosen two breast cancer cell lines characterized by distinct grades of hyperdiploidy and
genomic aberrations, MDA-MB-361 (copy average of 2.65) and MDA-MB-453 (copy average
of 4.2), and generated cell mixtures containing cancer cells at different ratios to peripheral
blood lymphocytes (PBL), ranging from 10% to 100% (pure population considered as
benchmark control for aberration calls). Raw sequencing data have been analyzed for
quality and compared with the two different bioinformatic pipelines.

All titration curve replicates passed the pre-alignment and the post-alignment quality
control. The median number of aligned reads per sample was 802,875 (range 415,519–1,955,726),
with a median samples coverage and median samples mapping quality of 0.04 (range 0.02–0.09)
and 51.33 (range 51.98–51.55), respectively. TGF computed by control-FREEC ranged from 0 to
100% with a median value of 78%, whereas the same measurement performed by ichorCNA
ranged from 0% to 98.7% with a median of 44.7% (Table S1). Such data suggest a possible
overestimation of TGF values by control-FREEC, as discussed in the following section.

2.1.2. Comparison between Control-FREEC and ichorCNA for TGF Estimation

The comparative analysis between the two algorithms showed that ichorCNA allows
a more reliable assessment of TGF than control-FREEC, with an overall concordance
correlation coefficient (CCC) between real TF and the computed TGF values of 88% and
28%, respectively. When the two cell lines were considered separately, CCC values were
87% (ichorCNA) and 10% (control-FREEC) for MDA-MB361, or 86% (ichorCNA) and 11%
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(control-FREEC) for MDA-MB-453. The distinct performance in TGF assessment by the two
methods was maintained within each replicate, with CCC values of 85% (Rep1), 89% (Rep2),
89% (Rep3) and 44% (Rep1), 28% (Rep2), 4% (Rep3) for ichorCNA and control-FREEC,
respectively (Table S1). To better illustrate the difference between the two CNA algorithms,
we report in Figure 1 a direct comparison of CNA profiles obtained by the two algorithms
in the case of some MDA-MB361/PBL mixed samples.
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Figure 1. Comparison between ichorCNA and control-FREEC. Copy number alteration (CNA) profiles obtained with
low-pass whole genome sequencing (lpWGS) from samples formed by 100% MDA-MB-361 cells (top row), 100% peripheral
blood lymphocytes (PBL, bottom row), and artificially-generated mixed samples containing 60% and 20% MDA-MB-361
cells mixed with PBL (second and third row from the top, respectively). CNA profiles reported on the left-hand side were
obtained with control-FREEC algorithm; CNA profiles on the right hand side were obtained with ichorCNA. In the case of
control-FREEC profiles, different colors refer to loss, gain or their absence (normal) in each genomic region; in the case of
ichorCNA, color codes refer to 1 copy, 2 copies, 3 copies, more than 4 copies for each single genomic region. Color codes are
reported at the bottom of the figure.

When looking at the agreement between real and computed TGF at single points in
the titration curve, each algorithm showed a specific behavior. Indeed, using a Bland–
Altman plot, we identified different limits of agreement for ichorCNA and control-FREEC
ranging from −0.32 to 0.28 and from −0.33 to 0.84, respectively (Figure 2). Globally, a slight
underestimation was observed for ichorCNA (−0.02), whereas a significant overestimation
was detected for control-FREEC (0.25). Moreover, a clear trend is present in control-FREEC,
with a substantial overestimation for low-medium true values and an underestimation
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for high values (intercept = 0.72). While this trend is also present in ichorCNA, it is much
reduced (Figure 2A).
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Figure 2. Bland–Altman plot describing the agreement between tumor genome fraction (TGF) measures obtained with
ichorCNA (A), control-FREEC (B) and the real tumor fractions (TFs). Differences between triplicate TGF measures and real
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averages. Linear fit for each cell line is reported with intervals of confidence. Dashed lines from top to bottom represent the
mean of difference plus two standard deviations, mean of difference and mean of difference minus two standard deviations.

Despite the wide overestimation performed by the control-FREEC algorithm, the
TGF assessment by this algorithm was similar between the two cell lines (Figure 2B). A
slightly higher divergence was evident between cell lines in ichorCNA with different trends
(MDA-MB-361slope = −0.53; MDA-MB-453 slope = −0.52), resulting in an overestimation
at real TF = 0 for the MDA-MB-361 and an underestimation at real TF = 1 for MDA-MB-453.

Notably, each method produced an underestimation at real TF = 1, with a median
difference of −0.01 and 0.18 for ichorCNA and control-FREEC, respectively. Considering
the performance and the better accuracy for the TGF computation by the ichorCNA than
the control-FREEC algorithm, ichorCNA was used to analyze tumor and stromal samples
collected from patients with EBC.

2.1.3. Validation of TGF in Stroma and Tumor Fraction from Microdissected Tissues

To further explore the reliability of TGF values in predicting tumor purity, we applied
the protocol developed to compute TGF values in the calibration curve experiment to pure
tumor samples obtained from six patients with EBC. Patients’ characteristics are reported
in Table 1.

Table 1. Tumor pathological characteristic.

PT1 PT2 PT3 PT4 PT5 PT6

pT 1.5 2.2 2.5 1.2 / 1.7
Histotype IDC IDC IDC IDC muc IC IDC

Histological grade G2 G3 G3 G2 G3 G2
pN N+ N+ N+ N0 / N+
ER Pos Neg Pos Pos / Pos

PgR Pos Pos Pos Pos / Pos
HER2 2+ 3+ 1+ 0 / 1+
Ki67 35% 70% 75% 30% / 22%
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To achieve tumor purity, each tumor sample was microdissected to separate stromal
from tumor cells.

Briefly, tissue slices were dissociated and cell suspensions were isolated using a digital
cell sorting approach [23] based on labeling with DAPI and antibodies against vimentin
(VIM) and cytokeratin (CK). Here, we isolated pure fractions of VIM+/CK−stromal cells (S)
and VIM−/CK+ tumor cells (T). As CK+ cells could originate from non-malignant breast
tissue as well, DAPI staining was used to estimate DNA ploidy of sorted cell fractions by
calculating a DNAIndex. For this, stromal cells of each sample were used for an internal
normalization reference for diploid cells and DNAIndex was set to 1. For epithelial cells, we
applied DNAIndex to distinguish between pseudodiploid cells (T1, DNAIndex around 1)
and hyperdiploid cells (T2, DNA index > 1 and > T1). These two populations could be
identified in all but patient 3, where we could only detect hyperdiploid cells. The cells
were then sorted according to DNAIndex into two separate reaction tubes for subsequent
molecular analysis. Details on yields and quality control scores are reported in Table S3.

After lpWGS, all the isolated cell populations passed the pre-alignment and the post-
alignment quality controls, allowing us to perform CNA analysis and TGF estimation
by ichorCNA. As expected, stromal samples showed TGF values lower than 1% (median
TGF = 0.009). TGF values were instead definitely higher in both the pseudodiploid and
hyperdiploid tumor fractions (range 0.24 to 0.85). In particular, in three out of five samples,
TGF values were higher in the hyperdiploid than in the pseudodiploid fraction, whereas in
the remaining two samples the TGF in the pseudodiploid fraction was higher than in T2 in
tumor cells (Table 2). Overall, the high TGF values obtained in the pure tumor fractions
and the low values of the stromal fractions support the accuracy of TGF estimation for
tumor purity evaluation.

Table 2. TGF values of Stromal and Tumor tissue samples for each patient.

Patient Stromal Tumor 1 * Tumor 2 *

PT1 0.01 0.25 0.53
PT 2 0.004 0.24 0.72
PT 3 0.01 NA 0.35
PT 4 0.006 0.66 0.64
PT 5 0.009 0.31 0.53
PT 6 0.01 0.85 0.67

* Tumor 1 and Tumor 2 terms refer to pseudodiploid cells (T1, DNAIndex around 1) and hyperdiploid cells (T2,
DNA index > 1 and > T1) population, respectively.

2.1.4. Building of a Statistical Model to Predict TF in Clinical Samples Starting from
TGF Values

TGF titration data derived from ichorCNA analysis were used to build a model based
on linear regression fitted using the linear mixed model (LMM) in order to predict the TF
of aberrant CTMs isolated from clinical samples. As opposed to TGF, TF was defined as
tumor fraction value corrected for the different degree of genomic aberration (represented
by breast cancer cell lines with different ploidies) and for sequencing coverage.

For such a purpose, the cell lines used in the calibration curve were set as a mixed
variable of the model to mimic the biological condition of breast cancer CTMs and the mean
absolute error associated with samples coverage as weights (see Materials and Methods
Section 4.7).

The model was characterized by a slight overestimation at real TF = 0 (intercept = 0.049)
and a slope of 0.99. Thus, the statistical model is able to take in and input the TGF values
and return the corresponding TF.

2.2. Genomic Analysis of CTMs Isolated from Blood of Women with EBC

Next, we applied the technical and bioinformatic pipeline developed above to evaluate
the TF in mixed samples to CTMs isolated from the blood of early-stage breast cancer patients.
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2.2.1. Predicted TF in CTMs of EBC Patients

The six patients with EBC described above were included in this analysis (Table 1).
Blood samples were collected prior to surgery for primary tumors, except for case PT5,
whose blood was collected prior to biopsy of a loco-regional relapse occurring following
quadrantectomy without any adjuvant systemic treatment. The six blood samples were
processed for CTM enrichment by filtration. CTMs, defined as clusters of at least two
tumor cells (see Section 4.4 in Material and Methods for details), were individually isolated
(either as entire CTMs or divided in parts) by using a micromanipulator. All collected
samples, including entire CTMs, parts and single cells isolated from CTMs, were subjected
to lpWGS for CNA profiling (Figure 3).

A total of 68 samples (54 entire CTMs, 9 parts of CTMs, and 5 single cells from CTMs)
were collected and analyzed for CNA (Table S2). A CONSORT plot for the analyzed
samples is reported in Figure 4.

Considering the 53 CTMs with a confirmed aberrant genome, the LMM model pre-
dicted TF values ranging from 0.08 to 0.48 (median 0.21), with a different distribution within
each single patient. Patient PT5 had the highest number of aberrant CTMs (14 CTMs, two
of them disaggregated into two parts), whereas the lowest numbers of CTMs were de-
tected in patients PT6 and PT1 (2 CTMs, one disaggregated into two parts, and 5 CTMs,
respectively). The remaining patients presented comparable numbers of CTMs. For some
patients (PT2/PT3/PT4), TF values seem to vary among the collected CTMs, whereas
for others (e.g., PT1), all CTMs presented remarkably similar TF values or, as in the case
of patient PT5, there were subgroups of CTMs with similar and others with different TF
values. Overall, the sample size was too small to draw any conclusion. However, it is
interesting to note that in the case of four “splitted CTMs” (PT2, PT5, PT6), different TFs
were observed. In general, the CTMs detected in each patient showed a wide level of
heterogeneity, suggesting their variable relative proportions of normal and cancer cells
(Figure 5 and Table S2).

2.2.2. Comparison of Genomic Alterations of CTMs with Primary Tumor Tissue

In all the patients, TGF values estimated in the two tumor fractions were higher
compared to those of the CTMs, confirming the purity of the former ones and the presence
of accessory cells in the latter. The two tumor samples (Tumor 1 and Tumor 2) for each
patient shared most aberrations as they were strictly correlated despite their distinct DNA
indexes. Conversely, the correlations between CTMs from the same patients suggested
a high degree of heterogeneity, which is certainly linked to variable TF values (variable
presence of normal cells), but also to a variable number of shared alterations (Figure S1).

Next, we focused on altered genomic regions shared among CTMs and tumor tissue
from the same patients (Table 3). For all the patients, genomic alterations exclusively
detected in the tumor tissue, but not present in any of their CTMs, represented low
percentages of the genome (range 1–12%). Indeed, when considering the sum of alterations
of all CTMs from a given patient, 31% up to 71% of alterations were shared between CTMs
and the tissue. Nonetheless, although to a different degree, the CTMs contained higher
percentages of private alterations with respect to the primary tumor. Thus, our data suggest
that CTMs are definitely representative of the tumor of origin, but also that they contain
peculiar alterations possibly linked with the dissemination process.

Figure 6 shows for each patient the CNA profile of the tissue and of the correspond-
ing CTMs. CTMs show a remarkable variability in CNA profiles, which can possibly
suggest that they originate from distinct regions in the tumor or from occult systemic
micrometastatic sites.
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Figure 3. Circulating tumor microemboli (CTMs) isolation and CNA profiling by low-pass whole genome sequencing
(lpWGS). Enriched and individually isolated CTMs (either as entire CTMs or divided in parts) (A) were subjected to lpWGS
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Table 3. Private and shared genomic regions between CTMs and Tumor tissue for each patient.

Patient CNA Private (Tumor) CNA Private (CTM) Sum of CNA Shared

PT1 0.08 0.52 0.44
PT2 0.04 0.62 0.39
PT3 0.05 0.3 0.71
PT4 0.12 0.63 0.37
PT5 0.01 0.44 0.56
PT6 0.04 0.62 0.31

Legend

CNA Private (Tumor) Number of CNA exclusive of the tumors/total of genome
CNA Private (CTM) Number of CNA exclusive of the CTMs/total of genome

Sum of CNA shared Sum of CNA shared between both tumors and at least 1
CTMs/total of genome
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Regions of loss are colored blue and regions of gain are colored red. The gray/black lane at the bottom represents the
chromosomes from 1 to X and chromosome boundaries are indicated by vertical lines. Tumor 1 and Tumor 2 terms refer to
pseudodiploid cells (T1, DNAIndex around 1) and hyperdiploid cells (T2, DNA index > 1 and > T1) population, respectively.

A further step was taken to gain some insight into the specific alterations frequently
borne by tumors and by CTMs. The top (>70%) shared amplification in tissue samples fell
on chromosomes 8, 17 and 20, whereas the top deletions involved chromosomes 11 and 16.
In the case of CTMs, the top frequently (>50%) shared amplifications fell on chromosomes
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8, 16 and 20, whereas deletions were on chromosome 17 (Table S4). Intriguingly, a search
for private alterations of CTMs (i.e., alterations not present on the related tissues) identified
numerous alterations on chromosome 2, which deserve further studies (Table S5).

3. Discussion

In the current study, we report that CTMs isolated from early-stage breast cancer pa-
tients contain genomically aberrant cells and describe the development of a bioinformatic
workflow which exploits lpWGS to derive genome-wide copy number profiles and to esti-
mate the tumor fraction (TF). Through the implementation of a weighted-mixed regression
model, which relied on the TGF data obtained from an ad hoc calibration experiment to
predict the TF, we were able to estimate the TFs of single CTMs isolated in the blood of
cancer patients. When applied to 53 aberrant CTMs collected from six women with early
breast cancer, our model predicted that 100% of the CTMs contained bona-fide tumor cells
with an aberrant DNA, mixed at variable proportions with normal accessory cells.

Unlike previous studies focused on metastatic breast cancer (MBC), here we collected
and molecularly analyzed CTMs from EBC patients, proving their malignant origin. This
was made possible by using an innovative model for TF estimation based on CNA data.

The use of lpWGS offers a convenient way to derive genome-wide copy number
profiles informing on the presence of cells with aberrant genomes. Indeed, lpWGS of
circulating-free DNA (cfDNA) is already a routine procedure for screening fetal anomalies
by the detection of large-scale aneuploidy events [24], a procedure that, thanks to its
sensitivity, can even lead to the incidental detection of previously unknown maternal
malignancies [25,26].

More recently, lpWGS has been used to estimate the tumor fraction of cfDNA iso-
lated from the plasma of patients with advanced tumors including breast and prostate
cancer [27–30], as well as in limited and extensive-stage small cell lung cancer [31]. Thus,
bioinformatic tools to perform such a type of extrapolation have already been developed
in the field of cfDNA. Indeed, previous studies have shown that, even without prior
knowledge of mutations, by using ichorCNA or control-FREEC the tumor fraction can be
estimated [28,32]. Here, we exploited these already known bioinformatic tools for a novel
application defining a model to estimate the tumor fraction of isolated CTMs.

In our calibration curve experiment using breast cancer cell lines, IchorCNA showed
a superior performance with respect to control-FREEC. Its reliability for TGF estimations
was further supported by the analysis of stromal and epithelial/tumor cells collected
from primary tumors, showing TGF values close to 0 in the case of stromal cells, and
ranging from 24% up to 85% for epithelial/tumor cells (including both pseudodiploid and
hyperdiploid cells).

The comparison between control-FREEC and ichorCNA tools in the estimation of TGF
value was instrumental for the construction of a prediction model. Taking advantage of
the use of two breast cancer cell lines characterized by different degrees of DNA aberra-
tion, an LMM model allowed us to predict the TF of CTMs considering our sources of
random variability weighted by mean coverage error associated with each point in the
titration curve.

To better understand the model, it is important to remember the difference between
TGF and TF as defined in our study. Whereas TGF refers to an estimation of the fraction
of tumor DNA only depending on the amount of genomic aberration as computed by
control-FREEC or ichorCNA tools, TF is instead defined as a tumor fraction value corrected
for the different degree of genomic aberration as modeled using two breast cancer cells
lines and for sequencing coverage.

Thus, a possible limitation could be linked to the specific choice of cell lines used
for the model. Although we chose cell lines that are representative of breast tumors with
different degrees of aberration and of DNA content, the model will change if using different
cell lines, and we do not know if it can still be valid when isolating CTMs from patients
with other tumor types. Moreover, all reported TF values depend on these two cell lines,
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and cells with low numbers of aberration may escape detection. Indeed, microdissected
tissue samples did not present a 100% TGF value.

Overall, CTMs collected from six patients with early breast cancer showed TF values
ranging from 0.08 to 0.48, indicating that accessory cells are widely present in CTMs. The
heterotypic nature of CTMs was further supported by the observation that the single cells
that were isolated from CTMs showed both aberrant and normal CNAs.

Having proven that our CTMs do actually contain tumor cells, we asked ourselves
to what extent our clusters were representative of the tumor of origin. Notwithstanding
the low number of patients, the availability of the primary tumor and the use of a dig-
ital microdissection approach [23] that permits the isolation of pure tumor fractions of
hyperdiploid and diploid tumor cells allowed us to gain some insight into the genomic
comparison between primary tumors and CTMs.

DNA alterations detected in the two tumor fractions were almost identical, and when
compared with the sum of alterations detected in the corresponding CTMs, 30 to 70% of
alterations were shared between primaries and CTMs. Thus, tumor cells contained in the
clusters are representative of the tumor of origin, but as later discussed, there is a great
variability among CTMs from the same patient, suggesting interesting interpretations on
their origin.

Noteworthy, genomic gains and losses that were common to all primaries fell on
chromosomes 8, 16 and 17, which have been described in the literature as carriers of the
highest CNA burden in breast cancer [33,34]. Chromosome 17 deletions were among the
alterations shared in CTMs, in addition to amplification on chromosome 8 and 16. CTMs
also shared amplifications on chromosome 20, a long-time known hotspot alteration in
breast cancer [35,36].

However, an interesting finding that deserves further studies was that clusters also
contained some private alterations, which might help to uncover specific subclones present
at a low percentage in the primary tumor, but that can have a role in the dissemination
process. Since breast cancer represents a typical DNA copy number-driven tumor [37],
it is tempting to speculate that with a larger case series, some interesting suggestions
on new mechanisms or candidate genes to be targeted may arise thanks to a systematic
study of genome regions altered in CTMs only. It should be noted that the data are
also consistent with the interpretation that CTMs stem from hidden metastases where
CTM-private alterations had some role in metastatic colonization. Further mechanistic
studies are impeded by the fact that within and between individual patients, CTMs do
not display uniform patterns of alterations, but are rather heterogeneous. However, as
more genomic data on CTM are generated, we may become able to identify candidate
genomic regions/genes to be explored in functional studies, and to distinguish them from
alterations due to the whole genome amplification (WGA) process.

So far, CTMs have been poorly studied in EBC. Our previous studies [12,13] showed
that CTMs are frequently present in the blood of women with stage II and III breast cancer,
and now we report that CTMs in M0 patients are mostly heterotypic with a variable content
of normal cells. Since pre-clinical data from the literature support the idea that heterotypic
CTCs have stronger metastatic potential with respect to homotypic clusters or to single
CTCs [16], exploring the association between TF and clinical outcome can offer new insight
into tumor dissemination and possibly new ways to interfere with it.

4. Materials and Methods
4.1. Cell Lines and Generation of Cell Mixtures

Breast cancer cell lines MDA-MB-361 (passage number 22) and MDA-MB-453 (passage
number 13) [38] were obtained from the American Type Culture Collection (ATCC). Cells
were cultured in RPMI (GibcoTM Thermo Fisher Scientific, Waltham, MA, USA) supple-
mented with 10% fetal calf serum (GibcoTM Thermo Fisher Scientific, Waltham, MA, USA)
and 1% penicillin-streptomycin (EuroClone, Pero (MI), Italy)), and maintained at 37 ◦C and
5% CO2. Cell lines were subcultured twice a week at a ratio of 1:2 to 1:6 depending on the
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confluency. Before isolation, cells were detached using 0.25% trypsin for 5 min. The cells
were collected and centrifuged at 4 ◦C for 5 min and 500× g; the pellet was washed once
with 1× Phosphate Buffered Saline Solution (PBS), centrifuged again and resuspended in
1–2 mL of 1× PBS [39]

For the generation of cell mixtures that resemble CTMs, cancer cells from MDA-MB-361
and MDA-MB-453 were isolated and admixed together with peripheral blood lymphocytes
(PBLs). Single PBLs were collected after centrifugation with Percoll 60% (GE Healthcare)
from the blood sample of a healthy female donor after obtaining written consent [40]).
Mixtures of 10 cells were generated in order to obtain different ratios of cancer versus
normal cells, ranging from 1:10 to 8:10. In addition, a pool of only 10 cancer cells, as well as
10 normal cells, was isolated. Three replicates for each ratio were generated (Table S1). Each
time, the exact number of cancer cells and normal cells was transferred to a new field of the
chamber slide to ensure the correct titration ratio. The cell mixtures were then isolated by
micromanipulation as previously described [41]. Moreover, a negative control consisting
of isolation buffer only was generated to exclude any external DNA contamination.

4.2. Case Series

Women with a histologically confirmed diagnosis of stage I–III EBC were recruited at
Fondazione IRCCS Istituto Nazionale dei Tumori (INT, Milan, Italy) prior to surgery. Hor-
mone receptor status was evaluated according to the American Society of Clinical Oncology
guidelines [42]. HER2 status was considered negative when the immune-histochemical
score was 0–1, or 2+ with a negative chromogenic in situ hybridization result [43]. Ki-67
labeling index was assessed by the MIB-1 monoclonal antibody by counting invasive can-
cer cells at the tumor periphery, without focusing on hot-spots, as recommended by the
International Ki-67 in Breast Cancer Working Group [39].

4.3. Blood Sample Collection from Breast Cancer Patients

A peripheral blood draw (12 mL) was collected into two 6 mL-K2EDTA BD Vacutainer
tubes after discarding the first 1–2 mL of blood to avoid contamination by cutaneous
cells. Fresh samples were stored at 4 C in the dark and processed within 1 h from with-
drawal. All patients provided written informed consent before undergoing any procedures
and the CTC/CTM study was approved by the INT Institutional Review Board and
Ethics Committee.

4.4. CTM Enrichment by a Size-Based Approach

CTM enrichment by size was performed using the ScreenCell® Cyto kit (ScreenCell,
Sarcelles France) according to the manufacturer’s instructions, with slight modifications
with respect to what was previously described [12–44]. Briefly, for each patient, three
3.0 mL aliquots of whole blood were separately mixed with 4 mL of a proprietary red blood
cell lysis and fixation buffer (ScreenCell® FC2 filtration buffer) and incubated for 8 min at
room temperature. Samples were filtered through three distinct isolation supports (ISs),
consisting of a microporous membrane. At the end of the enrichment, ISs were rinsed with
PBS, air-dried overnight at room temperature and stained with May Grunwald (Merck
Millipore, Burlington, MA, USA). Incubation at room temperature for 2.5 min followed
by a second incubation for 2.5 min in May Grunwald diluted 1:2 with water and Giemsa
(Merck Millipore; diluted 1:10 with water, 10 min incubation) was performed to allow
for the identification of enriched CTMs. CTMs were defined as clusters of at least two
cells showing the criteria of malignancy: nuclear size ≥20 µm, nuclear-to-cytoplasmic
ratio ≥0.75, irregular nuclear contours and nuclear hyperchromatism. In case the cyto-
plasm edges were not clearly visible inside the cluster (preventing nuclear-to-cytoplasmic
ratio evaluation), malignancy identification was mainly based on nuclei appearance: nuclei
scattered irregularly through the cluster and anisokaryosis (i.e., nuclei of variable sizes and
shapes), in addition to nuclear size ≥20 µm and irregular nuclear membrane. ISs were
stored at 4 ◦C for 1–2 weeks, until the isolation procedure.
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4.5. Cell Isolation, Ampli1TM Whole Genome Amplification, DNA Library Construction and
Whole Genome Sequencing

Cell mixtures, single cells and CTMs were either isolated from suspension (for genera-
tion of cell mixtures for calibration experiments) or from IS using an inverted microscope
with micromanipulator (Eppendorf International, Hamburg, Germany). DNA of cell mix-
tures, single cells and CTMs was amplified using the Ampli1TM WGA kit (Menarini Silicon
Biosystems, Castelmaggiore (BO), Italy) based on a published adaptor-ligation-mediated
whole genome amplification protocol [45]. The quality of Ampli1TM WGA products was
checked as previously described [46], and only products with at least 3 amplified markers
were used to prepare sequencing libraries. Five microliters of Ampli1TM WGA product was
transferred into a new tube and cleaned up with 1.8X SPRIselect Beads (Beckman Coulter,
Brea, CA, USA) according to manufacturer instructions and eluted in 22 µL of nuclease free
water. Barcoded libraries for low-pass WGS were prepared either with Ampli1TM LowPass
kit for Illumina® platforms or for Ion TorrentTM (Menarini Silicon Biosystems) starting
from 10–50 ng of purified Ampli1TM WGA product. The libraries were quantified using
Qubit dsDNA HS Assay kit and Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA). Additionally, the average fragment sizes of the libraries were assessed using
the Agilent High Sensitivity DNA Kit on the Agilent 2100 Bioanalyzer System (Agilent
Technologies, Santa Clara, CA, USA). Sixteen to thirty libraries were pooled in equimolar
concentrations to obtain a 4 nM final pool ready for direct sequencing. Ampli1TM LowPass
libraries sequencing was performed in single read (SR) mode on a MiSeq System with
MiSeq Reagent Kit v3 (150-cycle) (Illumina®, San Diego, CA, USA) or on the IonTorrent
Ion S5TM system (Thermo Fisher Scientific, Waltham, MA, USA) using the Ion530 chip as
per manufacturer’s instructions.

4.6. Isolation of Cancer Cell Populations from Human Formalin-Fixed, Paraffin-Embedded
Tissue Sections

Formalin-fixed paraffin-embedded (FFPE) primary tissues from breast cancer patients
were dissociated with the DEPArrayTM FFPE Sample Prep Kit (Menarini Silicon Biosystems,
MSB) and cell number was detected by analyzing 30 µL of sample stained with Hoechst33342.
Five hundred thousand cells were stained with a Vimentin/Cytokeratin/DAPI mixture
included in the Kit. The quality of DNA for each single sample was determined by
analyzing 1500 cells (in triplicates, all presorting measurements performed with Countess®

II FL Automated Cell Counter, LifeTech) with the DEPArrayTM FFPE QC Kit (MSB), a qPCR
based assay using a long and a short primer pair. The ratio between the quantification
of the long and the short amplicon, the so called QC score, gives the first DNA quality
information about the samples, which should be best higher than 0.2. Eighty thousand cells
from each sample were incubated in the DEPArrayTM buffer for the recommended time
between 16 and 72 h before isolation of cells. Up to 24,000 cells in a final volume of 12 µL
were loaded to a DEPArrayTM Nxt Cartridge where pictures of each cell were taken for
an individual cell selection. From all samples, one population of Vimentin+/Cytokeratin-
and one or two populations of Cytokeratin+/Vimentin-cells have been recovered with
the DEPArrayTM Nxt. The number of cells per population depends on a combination
of the QC score and the so called DNAIndex, which is the ratio of DNA content of all
cell populations referred to the DNA content of normal, diploid cells in the same sample
source (as described in the manufacturer’s manual). It is measured indirectly from the
system using the integral intensity of the DAPI signal as a stoichiometric relationship
to the cellular DNA content. For the diploid stromal cell population, the DNAIndex is
per definition 1 and used as an internal normal reference for DNA content assessment of
the cytokeratin positive fraction (see pdf as user manual from Silicon). For Cytokeratin
positive cell populations, the DNAIndex can vary from close to one (=near diploid) called
pseudo-diploid fraction, whereas cells with a DNAIndex < 1 might be fragmented, necrotic,
apoptotic cells but cells with a DNAIndex > 1 and higher than the DNAIndex of the
pseudo-diploid cells are the hyper-diploid cells. This information together allows us to
calculate the effectively amplifiable template (EAT = QC score × ploidy(=DNAIndex) ×
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number of cells), which has a predictive value for the outcome of library preparation and
should be at least 30 for processing the sample with the FFPE LowPass sequencing kit (see
previous section). The size of the collected cell population varies as a function of actual
population numbers, available cell numbers per population and free parking positions
(max. 1000 in total for the FFPE application) in the DEPArrayTM Nxt cartridge.

4.7. Sequencing Data Analysis

Illumina raw sequences were checked for quality using fastQC tool (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc. accessed on 15 January 2019) (Table S6),
aligned to the human reference genome (hg19) with Burrows-Wheeler Aligner (BWA-MEM
algorithm) and subjected to Qualimap2 [47] for alignment quality control.

IonTorrent raw sequences were checked for quality as well as for Illumina samples
(Table S6) and aligned to the human reference genome (hg19) with tmap aligner tool using
Torrent_Suite 5.10.0. Samples with aligned reads counts lower than 400,000 were excluded
from the analysis.

For titration curves, the tumor genome fraction estimations (TGF) were obtained from
copy number alteration (CNA) profiles by using control-FREEC [32] and ichorCNA [28]
tools with the following settings:

• control-FREEC. coefficientofVariation = 0.05, mateOrientation = 0, normal control = TRUE,
window = 1 Mb, ploidy = 2.65 (MDA-MB-361) or 4.2 (MDA-MB-453);

• ichorCNA. Window = 1 Mb, ploidy = 2.65 (MDA-MB-361) or 4.2 (MDA-MB-453),
estimatePloidy = FALSE, estimateNormal = TRUE, normalPanel = TRUE, normal
state = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

For single, cluster, and tissue cell populations obtained from clinical samples, TGF
estimations were obtained using ichorCNA tool with window = 1Mb, ploidy = 2, esti-
matePloidy = TRUE, estimateNormal = TRUE, normalPanel = TRUE and normal state
= c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). CTMs were finally classified based on criteria
reported in the following table (Table 4).

Table 4. Private and shared genomic regions between CTMs and Tumor tissue for each patient.

TGF + CNA Profile = Final Output

0 ≤ TGF ≤ 0.05 + Normal/Aberrant/Unclear = Normal CTM
0.05 < TGF ≤ 1 + Aberrant = Aberrant CTM
0.05 < TGF ≤ 1 + Unclear = Unclear CTM

Considering the evaluation of the CNA profile, chr19 was not considered due to its
biased deletion associated with the high CG base percentage [48]. Unclear CNA profiles
were related to samples that showed one of the following features:

• Normal profile but only 1 genomic region with amplification/deletion lower than
125 Mb;

• Normal profile but sum of amplification/deletion of different genomic regions lower
than 375 Mb.

All CNA profiles with alterations above these thresholds were classified as aberrant.
None of the normal controls (both single and pool of leukocites) presented an aberrant
profile, as already published [49].

4.8. Statistical Analysis

The concordance between standard curve real TF values and TGFs estimated by
control-FREEC and by ichorCNA tool was assessed using the concordance correlation
coefficient (CCC), which quantifies the agreement between two measures [50], and the
Bland–Altman method [51].

Starting from previously reported ichorCNA mean absolute errors associated with
sequencing depth of coverage [28], the specific error associated with each sample in titration

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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curve were compute by linear interpolation. These data were then considered as weights
within the fitted Linear Mixed Regression Model [52], setting a random intercept for each
cell line and transforming the proportion on logit scale before.

The LMM model was then used to predict TF and related intervals of confidence and
prediction of aberrant CTMs derived from clinical samples with an inverse estimation [53].
Patient-specific correlation matrices between the CNA profile of tissue cell populations
and CTMs were computed using Pearson’s coefficient and submitted to hierarchical cluster
analysis considering Euclidean distance and the Complete linkage method [54].

The shared and private CNA events among tumors and CTMs were derived from
CNA segmentation file of each sample. Depending on the different analysis performed,
genomic regions were defined as “shared” if characterized by the same type of alteration
(amplification/deletion) in one of the following conditions:

• Both tumor samples of the same patients (when possible);
• Both tumor samples and at least one CTM of the same patient;
• At least two CTMs of the same patients.

The “private” label was assigned to CNA events never shared between CTMs and
tumor samples of the same patients. Considering the detection of private alterations among
the 53 aberrant CTMs, genomic regions classified as “shared” even just in 1 patient or
altered in less than 55% of the CTMs were excluded from the analysis.

Genomic annotations associated with each genomic position were retrieved using
considering UCSC genome browser and Ensemble resources and hg19 as reference genome.
CancerIndex database was used to identify genes associated with breast cancer.

All the statistical analyses were performed using R software (see Table S6 for the R
packages detailed).

5. Conclusions

Our study reports a genomic proof for the presence of malignant cells admixed with
normal cells within CTMs isolated from six women with early breast cancer by exploiting
lpWGS to estimate the TF, thanks to the implementation of a linear mixed model. Moreover,
comparing CNA profiles from the corresponding primary tumors with those obtained
in CTMs, we show that although they are representative of the tumor of origin, CTMs
acquire specific alterations possibly involving genomic regions containing genes involved
in dissemination. Moreover, this suggests that CTMs may derive from a different region
from the primary tumor with a higher seeding ability or from occult micrometastases.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/6/1409/s1, Figure S1: Correlation between CNA profile of tumor tissue and CTMs within each
patient; Table S1A: Comparison between TGF computation performed by ichorCNA and control-
FREEC; Table S1B: ichorCNA fitted coverage error associated with each point of titration curve;
Table S2A: TF values and related intervals of prediction returned by LMM model; Table S2B: TF
values and related intervals of confidence returned by LMM model; Table S3: Yields and quality
control scores related to microdissected primary tumor samples; Table S4A: Top (>70%) shared
amplifications between Tumor tissue samples; Table S4B: Top (>70%) shared deletions between
Tumor tissues samples; Table S4C: Top (>50%) shared amplifications between CTMs; Table S4D:
Top (>50%) shared deletions between CTMs; Table S5A: Genomic regions associated with private
alterations of CTMs; Table S5B: Genomic regions associated with private alterations of CTMs involved
in Breast cancer (CancerIndex); Table S6A: Quality score associated with cell lines raw sequences;
Table S6B: Quality score associated with single and cluster of cells raw sequences; Table S6C: Quality
score associated with tissue cell populations raw sequences; Table S7: R packages considered for
statistical analysis.
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