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Abstract

Background

Gut colonization by ESBL-producing Enterobacteriaceae (ESBL-PE) is widespread and is

promoted by antibiotic exposure. Higher fecal abundance of ESBL-PE promotes the dis-

semination of the bacteria in the environment and is associated with increased risk of infec-

tion. Ceftriaxone and temocillin are commonly used antibiotics with a different activity on gut

flora. Their impact on fecal abundance of ESBL-producing Enterobacteriaceae has not

been studied. The objective of this study was to compare the propensity of ceftriaxone and

temocillin to modify the abundance of ESBL-producing Escherichia coli in feces of colonized

mice.

Methods

Mice received broad-spectrum antibiotics in order to disrupt their normal gut flora. A CTX-M-

type ESBL-producing E. coli clinical isolate was then administered orally, leading to durable

colonization. Thirty days later, mice received either temocillin or ceftriaxone with drinking

water at a concentration simulating human intestinal exposure. Third-generation-cephalo-

sporin resistant (3GCR) E. coli were enumerated in feces on selective medium before, 2

days and 10 days after the end of antibiotic exposure. The experiment was performed with

two E. coli isolates with different temocillin minimum inhibitory concentrations.

Results

Exposure to ceftriaxone induced an increase in the fecal abundance of 3GCR E. coli. In con-

trast, temocillin had no effect or transiently decreased the number of 3GCR E. coli. Results

obtained with the two strains were similar.
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Conclusion

Contrary to ceftriaxone, temocillin does not promote expansion of ESBL-producing E. coli in

feces of colonized mice. Thus temocillin may be a therapeutic of choice when a temocillin-

susceptible strain infection is suspected or proven to prevent the expansion of ESBL-PE in a

previously colonized patient.

Introduction

The global prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae
(ESBL-PE) gut colonization is estimated to have increased by 5% every year between 1990 and

2015 [1]. Colonization is the first step leading to ESBL-PE infection, which carries a higher

risk of treatment failure and mortality than infections due to non-ESBL producing bacteria

[2,3]. The relative abundance (RA) of ESBL-PE is a predictor of ESBL infection [4], and could

be positively correlated with the risk of dissemination to the environment [5]. One of the most

important factors associated with a high ESBL-PE RA is a recent antibiotic exposure [6]. Few

studies have evaluated the differential effect of various antibiotic exposure on the RA of

ESBL-PE [7]. Antibiotics with an activity against anaerobes could have a greater effect on the

expansion of antibiotic-resistant enterococci or Gram-negative bacteria [5]. In parallel, the

intrinsic activity of the antibiotic may also influence the RA of ESBL-PE in feces provided that

their intestinal concentration exceeds their minimum inhibitory concentrations (MIC) against

these bacteria. Third-generation cephalosporins (3GC) such as ceftriaxone are recommended

as first-line treatment for numerous infections such as severe pneumonia and urinary tract

infections [8,9]. Their activity against anaerobes may promote the emergence of ESBL-PE in

the gut of treated patients. On the contrary, temocillin is a ticarcillin analog with increased sta-

bility toward ESBL but devoid of activity against anaerobes and Gram-positive bacteria. It is

marketed in Europe where it is frequently used for treatment of ESBL-PE complicated urinary

tract infections [10]. This particular antimicrobial spectrum may confer to temocillin a low

propensity to select ESBL-PE in colonized patients. Here, we used an animal model to compare

the propensity of ceftriaxone and temocillin to modify the RA of ESBL-producing Escherichia
coli in the feces of colonized mice. Mice received the antibiotics orally at a concentration

reproducing the one observed in treated humans.

Materials and methods

Microbiological assay to determine human and murine fecal concentration

of ceftriaxone and temocillin

To reproduce in our murine model the conditions leading to expansion of antibiotic-resistant

bacteria within the intestinal microbiota of patients treated with antibiotics, we determined

the concentration of antibiotics in feces of treated patients by using the microbiological

method described below [11]. With this experiment, we determined the optimal ceftriaxone

and temocillin concentrations to be used in our mouse model to mimic concentrations in

human feces in mice feces. The same assay was performed on human and murine fecal sam-

ples. For mice, feces were collected after 2, 3, and 4 days of antibiotic administration in drink-

ing water. Fresh feces were weighed, resuspended in a saline solution, and centrifuged at

10,000 g for 10 min. The supernatant was filter sterilized using 4 mm disposable filter units

with a cut-off of 0.2 μm (Millipore). Twenty, 10 and 5 μL of the supernatant were loaded onto
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paper disks which were deposited on Mueller-Hinton agar plates inoculated with testing

strains highly susceptible to the antibiotics dosed. The testing strains were clinical isolates of

Moraxella catarrhalis for temocillin and E. coli for ceftriaxone, with antibiotic MICs of 0.03

mg/L. Disks loaded with known amounts of temocillin or ceftriaxone were deposited on the

same plates. Plates were incubated at 37˚C for 24 hours and the concentration of each antibi-

otic in the supernatant was deduced from the inhibition zone diameter around the paper disks

[12].

Colonization procedure

In a preceding study [13], we developed a model of stabilized gut colonization with ESBL-pro-

ducing E. coli in six-week old female Swiss mice (Janvier Labs). Briefly, the normal flora was

disrupted by oral administration of antibiotics and then, mice received a high inoculum of the

strain of interest by oral gavage as described below. A period of thirty days was considered

mandatory to stabilize the level of ESBL-producing E. coli as observed in human and in previ-

ous model [14]. This model was used in the present study with two E. coli clinical isolates: one

isolate with a temocillin MIC of 1 mg/L (TEMO-S) and one isolate with a temocillin MIC of

16 mg/L (TEMO-R). We used clinical isolates from our lab collection instead of reference iso-

lates to be able to more easily choose a temocillin-susceptible and a temocillin-resistant E. coli.
As currently recommended in animal experimentation, we aimed limiting the number of mice

as much as possible. Therefore, we used 33 mice (5 mice per experimental group in the temo-

cillin resistant group and 6 in the temocillin susceptible group because of unexpected death in

the first experimentation). A trial profile is provided in Fig 1. Normal gut flora was disrupted

following administration of ceftriaxone (25 mg/kg/day), metronidazole (25 mg/kg/day) and

vancomycin (50 mg/kg/day) by oral gavage once daily from day 1 to day 5 (the morning) [13].

Mice were randomly divided into two groups, and each group received one of the two ESBL-

producing E. coli clinical isolates (5 x 10e9 CFU/mL) by oral gavage once daily on days 4, 5

and 8 (the afternoon). Thereafter, mice were left untreated for thirty days. Colonization by

3GCR E. coli was assessed regularly by culture of serial dilutions of feces resuspended in saline

on a commercial selective chromogenic medium for isolation of 3GCR Gram-negative bacilli

and species identification (CHROMID ESBL, bioMérieux, France). Additionally, total abun-

dance of E. coli was evaluated by culture on a chromogenic medium allowing species identifi-

cation (Brilliance UTI, Oxoid, UK). Plates were incubated for 48 h at 37˚C under aerobic

atmosphere.

Fig 1. Trial profile. After gut flora disruption, mice are inoculated with the strain of 3GCR E. coli and left untreated for 30 days before exposure to

temocillin, ceftriaxone or saline. Numbers represent days.

https://doi.org/10.1371/journal.pone.0248177.g001

PLOS ONE Temocillin and ESBL fecal abundance

PLOS ONE | https://doi.org/10.1371/journal.pone.0248177 March 10, 2021 3 / 8

https://doi.org/10.1371/journal.pone.0248177.g001
https://doi.org/10.1371/journal.pone.0248177


Thirty days after the end of the colonization procedure, mice were randomly divided into

three groups of five mice. One group received temocillin and the other group received ceftriax-

one for three days in drinking water. The remaining mice were left unexposed to antibiotic

(control group with saline). During this period, drinking water with or without antibiotics was

changed every day. As mice drank this water for their usual need, we used tap water and not

sterile water. The mice included in the different groups had similar characteristics (Swiss type,

6-week old, 25±3g) and had been provided by the same company (Janvier Labs, feeding by

industrial granules). Fresh feces were collected (the morning) two and ten days following the

end of antibiotic exposure to enumerate 3GCR E. coli as previously described. Abundance of

3GCR E. coli was expressed as CFU/g of feces. The lower limit of detection was dependent on

feces weight.

The protocol was ethically reviewed and approved by the Ethical Committee in Animal

Testing, Pays de la Loire, France (AFAPIS 11747-2017101111159930v2). Mice were bred in

cage by four or five. All animals in the same cage received the same antibiotic.

Statistical analysis

Results of bacterial counts are given as medians. Variations in bacterial counts are expressed as

Δlog10 CFU/g of feces. Whenever no 3GCR bacteria could be detected, the lower limit of detec-

tion was used for all calculations. Statistical paired differences between treatment groups were

assessed by 2-way ANOVA for repeated measures. We used the False Discovery Rate method

to take into account the multiple comparisons.

Results

Determination of optimal ceftriaxone and temocillin concentration in mice

drinking water

Temocillin concentrations in feces of three patients treated for complicated urinary tract infec-

tion were 0.25, 0.7, and 1 mg/g of feces 3, 3, and 5 days after antibiotic initiation, respectively.

It has been shown previously that mean concentration of ceftriaxone in feces of treated

patients ranges between 0.15 and 0.26 mg/g [15].

Using the same microbiological method, we assessed the proportion of each antibiotic

excreted in feces after oral ingestion in drinking water (bottles). Fecal concentration of the

active form of both antibiotics was approximately 70% (median result of 20 measurements) of

the concentration ingested with drinking water. This proportion remained stable over time

(no difference between day 2, 3, and 4), with limited interindividual variations (interquartile

range of the proportion 60–120%). Therefore, mice received ceftriaxone and temocillin in

drinking water at a concentration of 250 and 650 mg/L, respectively, in subsequent

experiments.

Impact of ceftriaxone and temocillin on the abundance of ESBL-producing

E. coli in feces of colonized mice

During the first thirty days, the fecal abundance of 3GC-resistant (3GCR) bacteria decreased,

and then stabilized at a low level similar to the level observed in colonized humans. After the

end of the colonization procedure, all mice colonized with TEMO-S and TEMO-R strains had

detectable 3GCR E. coli in feces. For the TEMO-S strain, thirty days after the end of coloniza-

tion procedure, the median density of 3GCR E. coli was 3.5 log10 CFU/g of feces (Fig 2A).

After a three-day oral antibiotic challenge, no change in the density of 3GCR bacteria was

observed in the control group (P-adjusted = 0.24 and 0.49 at day 2 and 10, respectively). In
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Fig 2. Effect of ceftriaxone and temocillin on the fecal abundance of 3GCR E. coli in a mouse model. Mice were

colonized either with a temocillin-susceptible (A) or temocillin-resistant (B) CTX-M type ESBL-producing E. coli.
Black horizontal bars represent medians of bacterial counts. Empty symbols represent the lower limit of detection in

mice without detectable 3GCR E. coli.

https://doi.org/10.1371/journal.pone.0248177.g002
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contrast, the density of 3GCR E. coli in feces of mice exposed to ceftriaxone increased by a

median of 3.5 and 4.6 log10 CFU/g at day two and ten, respectively, in comparison with

bacterial density observed at baseline (P-adjusted = 0.03 and 0.03). Exposure to temocillin

led to a non-significant decrease in the density of 3GCR E. coli bacteria at day 2, in compar-

ison to baseline (median Δlog10 = -1.50 log10 CFU/g, P-adjusted = 0.12). At day ten, no dif-

ference was observed in comparison with baseline (median Δlog10 = 0.51 log10 CFU/g,

P = 0.55). Ceftriaxone increased the number of 3GCR E. coli in feces of exposed mice sig-

nificantly more than temocillin at day 2 (P-adjusted < 0.001 and < 0.01 for day 2 and day

10, respectively).

The colonization procedure with TEMO-R led to a non-different fecal abundance of 3GCR

E. coli to that observed with TEMO-S. One mouse in the ceftriaxone and one in the control

group died during the colonization procedure. No difference in the number of 3GCR bacteria

was observed in mice exposed to temocillin at two and ten days (Fig 2B). In contrast, ceftriax-

one significantly increased the abundance of 3GCR E. coli at day two (median increase 2.97

log10 CFU/g of feces, P-adjusted < 0.01). No significant difference was observed at day ten

(median variation +0.52 log10 CFU/g, P-adjusted = 0.08).

Discussion and conclusion

In this study, we assessed the impact of temocillin and ceftriaxone on the fecal abundance of

3GCR E. coli in a mouse model of ESBL-producing E. coli gut colonization. For this purpose,

antibiotics were given orally in order to reproduce antibiotic concentrations observed in

treated humans. Our results show that ceftriaxone leads to a major increase in the excretion of

3GCR E. coli after the end of antibiotic exposure, whereas temocillin does not. This may arise

from two major differences between these two antibiotics. Contrary to ceftriaxone, temocillin

lacks activity against anaerobes, and is active against most ESBL-producing E. coli. A vast liter-

ature supports the hypothesis that activity against anaerobes is a major determinant of the abil-

ity of an antibiotic to promote gut colonization by antibiotic-resistant bacteria [16,17]. The

impact of antibiotic intrinsic activity on excretion of resistant bacteria has been less studied. In

our study, a non-significant decrease in the number of the temocillin susceptible strain of

3GCR E. coli was observed during temocillin exposure (Δlog10 = -1.50 log10 CFU/g) suggesting

that temocillin may have a direct effect on the resistant bacteria. Moreover, several reports

show that carbapenems, despite their activity against anaerobes, decrease the fecal density of

ESBL-producing bacteria or do not promote gut colonization [7,18], suggesting that antibiotics

with activity against resistant bacteria could have a favorable profile. The differences between

human and mouse gut microbiota may query the conclusions of our study. However, most

conclusions of animal models assessing the impact of antibiotics on selection of resistant bacte-

ria have been confirmed in human clinical studies [19]. Another limitation is the number of

mice included in the protocol, but this choice was justified by a balance between the minimum

number needed to provide significative results and the respect of ethic in animal

experimentation.

Third-generation cephalosporins are recommended as first-line therapy for treatment of

complicated urinary tract infections [20]. Our results, in line with others, suggest that prescrip-

tion of these antibiotics promotes ESBL-selection in the gut of treated patients, which is the

first step to infection and may be associated with an increased risk of transmission of resistant

clones. Temocillin is active against most E. coli isolates responsible for urinary tract infections

[21] and our study shows that it has minimal impact on the fecal abundance of ESBL-produc-

ing E. coli. Thus, in a context of growing ESBL burden, temocillin is an interesting option for

empirical therapy of complicated urinary tract infections.
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