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Background. The potential impact of pre-exposure chemoprophylaxis (PrEP) on heterosexual transmission of HIV-1 infection
in resource-limited settings is uncertain. Methodology/Principle Findings. A deterministic mathematical model was used to
simulate the effects of antiretroviral PrEP on an HIV-1 epidemic in sub-Saharan Africa under different scenarios (optimistic,
neutral and pessimistic) both with and without sexual disinhibition. Sensitivity analyses were used to evaluate the effect of
uncertainty in input parameters on model output and included calculation of partial rank correlations and standardized rank
regressions. In the scenario without sexual disinhibition after PrEP initiation, key parameters influencing infections prevented
were effectiveness of PrEP (partial rank correlation coefficient (PRCC) = 0.94), PrEP discontinuation rate (PRCC = 20.94), level of
coverage (PRCC = 0.92), and time to achieve target coverage (PRCC = 20.82). In the scenario with sexual disinhibition, PrEP
effectiveness and the extent of sexual disinhibition had the greatest impact on prevention. An optimistic scenario of PrEP with
90% effectiveness and 75% coverage of the general population predicted a 74% decline in cumulative HIV-1 infections after
10 years, and a 28.8% decline with PrEP targeted to the highest risk groups (16% of the population). Even with a 100% increase
in at-risk behavior from sexual disinhibition, a beneficial effect (23.4%–62.7% decrease in infections) was seen with 90%
effective PrEP across a broad range of coverage (25%–75%). Similar disinhibition led to a rise in infections with lower
effectiveness of PrEP (#50%). Conclusions/Significance. Mathematical modeling supports the potential public health
benefit of PrEP. Approximately 2.7 to 3.2 million new HIV-1 infections could be averted in southern sub-Saharan Africa over 10
years by targeting PrEP (having 90% effectiveness) to those at highest behavioral risk and by preventing sexual disinhibition.
This benefit could be lost, however, by sexual disinhibition and by high PrEP discontinuation, especially with lower PrEP
effectiveness (#50%).
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INTRODUCTION
While the search is ongoing for a safe and effective HIV-1 vaccine,

encouraging data from animal studies [1–5] have ignited interest

in pre-exposure chemoprophylaxis (PrEP) with antiretrovirals as

a strategy to prevent HIV-1 infection [6]. The potential impact of

targeted or widespread PrEP on HIV-1 epidemics is uncertain and

major determinants of its utility have not been defined. Several

clinical trials to address the efficacy of PrEP are underway, but

these will take considerable time to complete and will not

specifically address the potential public health benefit [7,8]. We

therefore developed a mathematical model of a heterosexual HIV-

1 epidemic and analyzed the potential for HIV-1 prevention from

PrEP under different scenarios of effectiveness, duration of use,

population coverage, emergence and spread of drug resistance and

increased sexual risk behavior.

METHODS

Model Structure
We refined our previously described deterministic mathematical

model of HIV-1 disease progression and heterosexual transmission

by incorporating demographic and sexual behavioral details, and

by the introduction of PrEP [9]. Briefly, the model population was

stratified according to gender, age, sexual activity level, disease

state, PrEP status, and HIV-1 drug resistance. Model input

parameters were chosen to simulate a mature epidemic in

southern sub-Saharan Africa. Parameter assignments were made

from recent literature on HIV-1 disease progression [10,11],

infectivity [12], and sexual behavior [13–15]. The model consists

of coupled nonlinear differential equations describing the

population and epidemiological stratifications outlined in

Figure 1. Model parameters are shown in Tables 1 and 2, and

model equations and details are provided in the Appendix S1.

Model Output and Introduction of PrEP
The model’s dynamical behavior was investigated using numerical

methods. The key model outputs were: HIV-1 prevalence; HIV-1

incidence; cumulative new HIV-1 infections; and cumulative

deaths from AIDS. PrEP was introduced (as once daily oral

antiretroviral dosing) at endemic equilibrium when HIV-1

prevalence in sexually active adults (15–49 year-olds) was

approximately 20%. The implementation of PrEP was simulated

both in the absence and presence of sexual disinhibition of the
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individuals on PrEP, where disinhibition is defined as increased

rate of sex partner change. We summed over 20 years of PrEP

implementation the number of new infections and the total

number of persons on PrEP, to make comparisons between the

epidemics with and without PrEP at each simulation time-step.

The key output variables employed in these comparisons were: the

% change in the cumulative new HIV-1 infections; the ratio of

HIV-1 infections prevented to person-years of PrEP; the ratio of

HIV-1 infections prevented to persons enrolled in PrEP; and the

ratio of the cost of PrEP to the number of infections prevented.

Effectiveness of PrEP
Our model represents the transmission of HIV-1 as a Poisson

process [16–18]. The probability of transmission per heterosexual

partnership, b, between an individual (on PrEP) of gender g,

activity level k, and age i, with an (infected) individual of opposite

gender g9, activity level l and age j is given by:

bVH
g0lj ~1{ 1{cVH

g0lj 1{jhð Þ
n oYgg0klij

where Y is the number of sex acts within the partnership; c is the

probability of HIV-1 transmission per sex-act (infectivity) based on

the disease stage, V, and drug resistance status, H, of the infected

partner; and jh is the effectiveness of PrEP. Effectiveness is defined

as the probability of preventing HIV-1 transmission per sex-act

through PrEP and is given by the product of the average efficacy

of PrEP, j (the degree of protection provided, from HIV-1

transmission per sex-act) and the average level of adherence to

PrEP, h (assuming once daily dosing and that doses are missed at

random). In a partnership, where the infected partner harbors

major drug-resistant variants (discussed below), the probability of

transmission of resistant virus is ub, while that of wild-type virus is

(12u)b, and the effectiveness of PrEP against resistant virus is ijh.

The parameters j, h, u and i assume values between 0 and 1

(Table 2).

Modeling Drug Resistance
We sub-classified the HIV-1 infected individuals based on their

PrEP status (naı̈ve, on or off), type of drug resistance (primary or

secondary), and simplified population dynamics of drug-resistant

HIV-1 (persistence or reversion), to represent the individuals’ drug

resistance status (Figure 1 and Table 2). Our model assumptions

for HIV-1 drug resistance are as follows. In an infected individual,

the HIV-1 population is comprised of a set of related variants,

termed as viral quasispecies [19]. Before the introduction of PrEP,

all HIV-1 infected individuals harbor a dominant population of

wild-type (drug-sensitive) virus [20]. Drug-resistant mutants are

selected by drug pressure in a fraction (termed selection, p, having

a value between 50% to 100%) of those individuals who become

Figure 1. Simplified Flow Diagram of Model with PrEP Implementation.
doi:10.1371/journal.pone.0000875.g001
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infected by wild-type virus while on PrEP (e.g. emergence of

mutants with: K65R with tenofovir [21–23]; M184V with

emtricitabine [24]; and M184V+K65R with tenofovir+emtricita-

bine [25,26]). This type of resistance is termed secondary

resistance [27]. A proportion of susceptible individuals, both on

and not on PrEP, become infected by drug-resistant mutants

through transmission from their sexual partner. This type of

resistance is termed primary resistance [27]. Upon removal of

selection pressure, either by discontinuation of PrEP [23] or

transmission to a drug naı̈ve individual [28], the drug-resistant

mutants decline after a period of persistence, due to outgrowth by

wild-type virus (reversion) [29–31]. Prior to reversion, the drug-

resistant mutants are the dominant (major) viral variants [20,32],

whereas following reversion these become minor variants [32,33].

Compared to individuals with wild-type virus, individuals with

drug-resistant variants can have: i) decreased probability of

transmission per sex act (infectivity, cVH, having a relative value

of 50% to 100%) due to lower level viremia from PrEP use [23,24]

or from diminished viral replicative fitness [34–36]; and ii)

decreased viral transmission fitness (probability per partnership

that a resistant rather than wild-type virus will be transmitted, u,

with a value between 20% to 100%) [37–39]; but the same rate of

disease progression due to temporary predominance of drug-

resistant mutants. Individuals with minor drug-resistant variants

behave as individuals with wild-type virus in terms of infectivity

and disease progression and likewise do not transmit drug resistant

mutants. The re-emergence of major variants due to subsequent

drug challenge (e.g. antiretroviral therapy) [40,41] was not modeled.

Sensitivity Analyses
We performed sensitivity analyses [42] to determine the relative

influence of PrEP-related model input parameters (Table 2) on the

predicted decrease in new infections. For multivariate time-

dependent sensitivity analyses, we rank transformed input and

output data obtained using Latin hypercube sampling [43,44] and

1000 simulation runs for epidemic scenarios with and without

sexual disinhibition, and from this derived partial rank correlation

coefficients (PRCCs) and standardized rank regression coefficients

(SRRCs) [45,46].

PrEP Scenarios
The impact of PrEP was determined by simulating three different

scenarios: namely, optimistic, neutral and pessimistic (Table 2).

For each of these scenarios, we simulated: i) the implementation of

PrEP in the sexually active population in general (non-targeted

strategy); ii) PrEP targeted to the two highest sexual activity levels

(targeted-by-activity strategy); and iii) PrEP initiation targeted to

the group 15–20 years of age (targeted-by-age strategy). We

performed univariate sensitivity analysis for each scenario, in

which we measured the change in infections arising from variation

of each PrEP-related input parameter over its specified range

Table 1. Model Parameters for the Simulated HIV-1 Epidemic
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PARAMETER SYMBOL VALUE UNIT REFERENCE

Epidemiological

Average Duration of HIV-1 Disease by Stage of Infection*

Recent 1/v1 0.5 year [12]

Chronic 1/v2 7.5 year [10,11]

AIDS 1/v3 2.0 year [10,11]

HIV-1 Infectivity by Stage of Infection*

Recent c1 0.0082 per act [12]

Chronic c2 0.0010 per act [12]

AIDS c3 0.0036 per act [12]

Behavioral

Average rate of sexual partner change c 2 per year [13,15]

Average number of sex acts per partnership for sexual activity levels 1 to 4U Y 9, 23, 44, 120 per partner per year [12,53]

Assortativeness of mixing by age W1 0.75 [63]

Assortativeness of mixing by sexual activity level W2 0.75 [63]

Degree of preference for partner with 10 years age difference W3 0.5 [63]

Proportion of adult males in sexual activity levels 1 to 4 0.044, 0.089, 0.195, 0.672 [13–15]

Proportion of adult females in sexual activity levels 1 to 4 0.002, 0.026, 0.147, 0.825 [13–15]

Ratio of rates of sexual partner acquisition by activity level 1 to 4 100 : 65 : 5 : 1 [13–15,63]

Ratio of rates of sexual partner acquisition by age group 1 to 7 2 : 4 : 6 : 8 : 5: 3 :1 [63]

Average duration of sexual activity 35 year [13–15,63]

Demographic

Initial population size U 5.76106 person [72]

Initial life expectancy for males and females 1/m 49 and 53 year [72]

Total fertility rate 6.8 births per female [72]

Sex ratio at birth 1 [63,72]

*The superscripts represent the disease stage.
UIndividuals with AIDS were assumed to be sexually inactive during the last 6 months of their life [12,81,82].
doi:10.1371/journal.pone.0000875.t001..
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(Table 2). We also analyzed the interplay between key PrEP-

related input parameters and the number of infections prevented.

Finally, we estimated the potential reduction in the number of new

adult infections in all of southern sub-Saharan Africa, by

extrapolating our results to current epidemiological data from

that region [47].

Software: Model construction, simulations and sensitivity runs

were implemented concurrently in Berkeley Madonna (version

8.3.8; Robert I. Macey and George F. Oster) and Vensim DSS

(version 5.5d; Ventana Systems, Inc.). Data were analyzed using

Microsoft Excel (version 11.8; Microsoft Corporation) and Stata

SE (version 9.2; StataCorp LP).

RESULTS
Our mathematical model stratifies the population based on

gender, age, sexual activity level, disease state, PrEP status, and

HIV-1 drug resistance (Figure 1), and its dynamical behavior is

analyzed numerically. We introduced PrEP at endemic equilibri-

um and simulated optimistic, neutral and pessimistic scenarios

(Table 2). For each scenario we simulated three strategies of PrEP

implementation: i) in the sexually active population in general

(non-targeted strategy); ii) in the two highest sexual activity levels

(targeted-by-activity strategy); and iii) in the group15–20 years of

age (targeted-by-age strategy). Each strategy was simulated both

with and without sexual disinhibition of the individuals on PrEP.

To determine the epidemiological impact of PrEP, we compared

the epidemics with and without PrEP up to 20 years and

determined the % change in the cumulative new HIV-1 infections;

the ratio of HIV-1 infections averted to person-years of PrEP; the

ratio of HIV-1 infections averted to persons enrolled in PrEP; and

the ratio of the cost of person-years of PrEP to the number of

infections averted.

In the simulated epidemic, adult HIV-1 prevalence was 20% at

endemic equilibrium with the ratio of female to male prevalence of

1.66 [48]. Simulated trends in female prevalence are shown in

Figure 2. They mimic observed patterns among urban antenatal

clinic attendees in Zambia [49].

The results for both univariate and multivariate sensitivity

analyses of the predicted impact of PrEP were similar, thus only

multivariate results are presented. Table 3 shows sensitivity

analyses of the predicted decline in cumulative new HIV-1

infections for 20 years after PrEP implementation. In general,

coefficient (PRCC and SRCC) values near 1 indicate a strong

positive influence of the input variable on prevention of infections,

whereas values near -1 indicate a strong negative influence. Values

near 0 indicate little, if any, influence [50]. In the scenario without

sexual disinhibition occurring, the rate of PrEP discontinuation

(inverse of the average duration of PrEP use) was the strongest

determinant overall of reduction in infections and its effect

persisted over time (PRCC ranged from 20.94 at year 5 to 20.97

at year 20). The next most important determinants were the

effectiveness of PrEP (composite of efficacy and adherence) and

the fraction of individuals covered (coverage) by PrEP (PRCCs of

0.92 and 0.88 at year 10, respectively), with both parameters

Figure 2. Trends in HIV-1 Prevalence among Urban Antenatal Clinic Attendees in Zambia from 1994 to 2004 [49] and the Simulated Adult
Female Population.
doi:10.1371/journal.pone.0000875.g002
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having a positive influence. The time to achieve target coverage

had a strong negative influence on infections prevented at year 5

(PRCC of 20.82), which declined over long durations of time. A

weak negative influence (PRCC of 20.13) was seen for secondary

drug resistance (resistance developing on PrEP), though this

persisted over time.

In the scenario in which sexual disinhibition occurred among

individuals on PrEP, the effectiveness of PrEP emerged as the

strongest positive determinant of infections prevented with

a PRCC ranging from 0.87 to 0.91. The increase in at-risk

behavior was the strongest negative determinant of infections

prevented having a PRCC of 20.75 at year 10. Though PrEP

discontinuation rate and coverage remained significant with

disinhibition scenario, their effect was attenuated on average by

about 33% and 50%, respectively, compared to the scenario

without disinhibition.

SRRC values confirmed the above findings. In the absence of

sexual disinhibition, the influence on infections prevented was

strongest for the rate of PrEP discontinuation (SRRC range:

20.56 to 20.81) followed by effectiveness (SRRC range: 0.44 to

0.56) and coverage (SRRC range: 0.34 to 0.49). With sexual

disinhibition (SRCC of 20.42), the effectiveness of PrEP became

the predominant influence on the infections prevented (SRRC

range: 0.71 to 0.76).

Table 4 compares the outcomes in the optimistic, neutral and

pessimistic scenarios 10 years after the introduction of PrEP.

These scenarios respectively assume optimistic, neutral and

pessimistic sets of PrEP-related input parameters in Table 2.

The potential impact of PrEP was impressive for the optimistic

scenario, but was negligible for the pessimistic scenario, illustrating

the importance of key chemoprophylaxis parameters on outcome.

For each scenario, the greatest decline in infections was achieved

with the non-targeted strategy, whereas the lowest cost of PrEP per

infection averted was obtained with the targeted-by-activity

strategy. Specifically, a 74% reduction in infections occurred for

the optimistic scenario, 24.9% for the neutral scenario and 3.3%

for the pessimistic scenario with the non-targeted strategy. These

figures declined to 28.8%, 6.8% and 0.8%, respectively, with the

targeted-by-activity strategy. However, the cost of person-years of

PrEP per infection averted over the 10 year intervention time span

fell substantially with the targeted strategy; from $6,812 to $638

for the optimistic scenario, from $9,629 to $ 1,160 for the neutral

scenario, and from $20,164 to $2,949 for the pessimistic scenario.

The targeted-by age strategy yielded intermediate declines in

infections (45.5%, 14.5% and 2.0%), although the cost of person-

years of PrEP per infection averted remained high ($5,723, $8,968

and $20,202). Overall, the numbers of infections averted per

person-year of PrEP and per person enrolled in PrEP were highest

for the optimistic targeted-by-activity strategy (0.33 and 1.74).

Similar results were seen after 20 years of PrEP (data not shown).

Sexual disinhibition of individuals on PrEP progressively eroded

the declines in infections for all scenarios (Table 4), although this

effect was modest for the optimistic scenario. Specifically, at year

10 in the optimistic scenario with a 100% increase in at-risk

behavior, the decline in infections was 62.7% for the non-targeted

strategy and 17.7% for the targeted-by activity strategy (reduced

from 74% and 28.8%, respectively, without disinhibition). The

infections increased by 1.9% for the neutral scenario with

targeted-by activity strategy, and increased by 7%, 2.5% and

4.4% for the three pessimistic scenario strategies (non-targeted,

targeted by sexual activity and targeted by age group). Such

increases were also seen with the optimistic scenario when lower

levels of effectiveness were assumed. For example, at 50%

effectiveness, infections increased by 8% for the non-targeted

strategy as the result of a 100% increase in at-risk behavior

(Figure 3). With sexual disinhibition, the decline in infections was

also influenced negatively by the infectivity of individuals with

secondary resistance and the probability of transmission of

resistant virus from individuals with secondary resistance;

however, these effects were weak with PRCCs of 20.16 and

Table 3. Results of Sensitivity Analyses for Model Parameters Affecting the Decrease in Cumulative New HIV-1 Infections (%)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PARAMETER NO SEXUAL DISINHIBITION SEXUAL DISINHIBITION

Year 5 Year 10 Year 15 Year 20 Year 5 Year 10 Year 15 Year 20

PARTIAL RANK CORRELATION COEFFICIENTS*

Effectiveness of PrEP against sensitive virus 0.94 0.92 0.91 0.89 0.91 0.89 0.88 0.87

Fraction of individuals enrolled into PrEP 0.92 0.88 0.86 0.84 0.54 0.45 0.41 0.40

Probability of transmission of resistant virus from YR99 { 20.07 20.08 20.08 20.07

Infectivity of YR99 { 20.13 20.13 20.14 20.14 20.16 20.16 20.16 20.17

Time period to achieve target coverage 20.82 20.13 20.36

PrEP permanent discontinuation rate 20.94 20.96 20.97 20.97 20.58 20.66 20.67 20.67

Increase in sexual risk behavior 20.77 20.75 20.74 20.73

STANDARDIZED RANK REGRESSION COEFFICIENTS*

Effectiveness of PrEP against sensitive virus 0.56 0.50 0.46 0.44 0.76 0.74 0.72 0.71

Fraction of individuals enrolled into PrEP 0.49 0.39 0.35 0.34 0.22 0.19 0.18 0.17

Probability of transmission of resistant virus from YR99 { 20.02 20.03 20.03 20.03

Infectivity of YR99 { 20.03 20.03 20.03 20.03 20.06 20.06 20.06 20.07

Time period to achieve target coverage 20.30 20.03 20.13

PrEP permanent discontinuation rate 20.56 20.75 20.79 20.81 20.24 20.32 20.35 20.36

Increase in sexual risk behavior 20.42 20.42 20.42 20.43

*The p-value is 0.0000 except for where the p-value , 0.05.
{YR99 represents individuals with secondary resistance.
doi:10.1371/journal.pone.0000875.t003..
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20.08, respectively, at year 10 (Table 3). Other input parameters

related to drug-resistance (Table 2) were not significantly

associated with outcome.

Table 5 quantifies the predicted impact of PrEP for selected

countries in southern Sub-Saharan Africa, as well as for the overall

region, where the median country-prevalence of HIV-1 is about

20% [47]. In South Africa, up to 1.5 million new HIV-1 infections

could be averted over 10 years by PrEP coverage of 75% of high

sexual activity groups [51]. The corresponding estimate of the

infections averted for Zambia is 0.36 million, for Botswana 0.13

Figure 3. Contour Graph for Decline in Cumulative Infections (%) as a Function of Effectiveness of PrEP and Increase in Risk Behavior Assuming
Optimistic Scenario. Negative numbers reflect increase in infections.
doi:10.1371/journal.pone.0000875.g003

Table 4. Outcomes for Optimistic, Neutral and Pessimistic Scenarios after Ten Years of PrEP Implementation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Outcome Non-Targeted Targeted by Sexual Activity Targeted by Age Group

Optimistic Neutral Pessimistic Optimistic Neutral Pessimistic Optimistic Neutral Pessimistic

Decline in Cumulative New HIV-1 Infections (%) 74.0 24.9 3.3 28.8 6.8 0.8 45.5 14.5 2.0

Decline in Cumulative New HIV-1 Infections (%);
r = 2{

62.7 1.3 27.0 17.7 21.9 22.5 36.5 0.1 24.4

Infections Averted per Person-Year of PrEP 0.03 0.02 0.01 0.33 0.18 0.07 0.04 0.02 0.01

Infections Averted per Person Enrolled in PrEP 0.21 0.11 0.03 1.74 0.62 0.15 0.21 0.10 0.03

Cost of Person-Years of PrEP per Infection
Averted($)"

22,918 32,398 67,842 2,147 3,904 9,923 19,254 30,173 67,970

Cost of Person-Years of PrEP per Infection
Averted($)1

10,397 14,697 30,776 974 1,771 4,502 8,734 13,688 30,834

Cost of Person-Years of PrEP per Infection
Averted($){

6,812 9,629 20,164 638 1,160 2,949 5,723 8,968 20,202

{Assuming a 100% increase in at-risk behavior.
"Assuming $700 per person-year of PrEP; the market price of a generic version of tenofovir (Tenvir) manufactured by Cipla in India [87].
1Assuming $318 per person-year of PrEP ($0.87/day); the current cost of manufacturing tenofovir+emtricitabine (Truvada) by Gilead [88].
{Assuming $208 per person-year of PrEP ($0.57/day); the current cost of manufacturing tenofovir (Viread) by Gilead [88].
Costs (defined as drug costs per person-year of PrEP) and health benefits (infections averted) are presented in their undiscounted form for clarity [80]. Costs of PrEP
exclude all other costs e.g. drug distribution, pharmacy and clinical services, communications and education, laboratory, treatment of complications including
resistance, and counseling. Analyses also exclude the consequences of HIV-1 infection including costs of provision of antiretroviral therapy.
doi:10.1371/journal.pone.0000875.t004..
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million and for Lesotho 0.09 million. For southern sub-Saharan

Africa as a whole up to 3.2 million new HIV-1 infections could be

averted over 10 years at a cost of roughly $2.0 billion for PrEP. All

these estimates assume high levels of efficacy and adherence to

PrEP.

DISCUSSION
Data from animal studies show that systemic antiretrovirals can

prevent infection of macaques by simian immunodeficiency virus

[1,3–5]. The safety and efficacy of once daily oral antiretroviral

PrEP in humans are under clinical trials in the Unites Sates, Latin

America, Africa and Asia [7,8]. However, these studies are not

designed to address the population-level impact of PrEP on rates

of HIV-1 transmission over many years. Using a carefully stratified

and well-parameterized deterministic model of HIV-1 trans-

mission, our analyses suggest that PrEP could have a profound

impact on the HIV-1 epidemic, if effectiveness is high (high levels

of efficacy and adherence) and usage persists over a decade or

more; that is over much of the typical duration of sexual activity of

an individual. Though the maximum effect of PrEP was observed

at the highest level of coverage (75% of susceptible sexually active

individuals) with good continuous adherence, such coverage and

adherence are not realistic. Furthermore, the cost of untargeted

PrEP per infection prevented is relatively high at $6,812. PrEP

targeted to persons with greatest sexual activity produced

significant declines in infections and had the lowest cost of

person-years of PrEP per infection averted at $638. This result is

noteworthy for two reasons: the highest activity groups comprised

only 13.3% and 2.8% of the male and female model populations;

and PrEP was introduced at endemic equilibrium when these high

activity groups become saturated and play a lesser role in the

spread of HIV-1 compared to earlier stage epidemics [52]. Models

of HIV-1 vaccine implementation have also suggested that

targeting by sexual activity could have a significant epidemiolog-

ical impact [53]. In contrast to these vaccine models, we found

that targeting by age group had less of an impact than a non-

targeted approach and very similar estimates of cost of person-

years of PrEP per infection averted. This is because, unlike the

assumption of a one time (6 booster) vaccination, PrEP requires

continual use in the presence of ongoing risk of sexual trans-

mission.

Sensitivity analyses showed that the effectiveness of PrEP was

the most important determinant of the magnitude of decline in

infections. This is especially the case in the scenario with sexual

disinhibition of the individuals on PrEP. The high effectiveness

assumed in the optimistic scenario was also the foremost reason

why this scenario yielded the best outcomes overall, including cost

of person-years of PrEP per infection averted. When effectiveness

was lower, infections increased for all scenarios with increased risk

taking behaviors of those on PrEP. The decline in infections was

also very sensitive to the PrEP discontinuation rate (inverse of the

average duration of PrEP use) and the level of coverage. We

modeled the PrEP discontinuation rate as distinct from adherence,

which was represented within our composite parameter of

effectiveness. Our data suggest that continual access to PrEP

would be of great importance and permanent discontinuation

would undermine the epidemiological gains if PrEP use was short-

lived in relation to individuals’ typical duration of sexual activity.

Our representation of the evolution and transmission of drug

resistance is crude. Further model development is required in this

area and will be the subject of additional study. Nevertheless, the

parameters directly related to drug resistance did not emerge as

key determinants of the outcome of PrEP. These results may be

explained by a greater contribution of other parameters impacting

HIV-1 transmission, such as PrEP effectiveness.

The feasibility of PrEP as an HIV-1 prevention strategy would

not only depend on its safety and efficacy, but also on its

incremental cost-effectiveness compared to other intervention

strategies in resource-poor settings. Our simple comparison

between implementation of PrEP to a ‘‘do nothing’’ strategy

revealed that the cost of person-years of PrEP per infection averted

for the optimistic scenario with targeted-by-activity strategy of

$638–$2147, compared favorably with the projected cost of $3900

per infection averted over the period 2005–2015 with the

UNAIDS comprehensive prevention package [54]. This same

study projected a savings of $4700 in forgone treatment and care

costs. Using mathematical models, other investigators have

reported that PrEP is a cost-effective strategy among high-risk

men who have sex with men in New York City [55], and among

populations in low-income settings [56].

Sub-Saharan Africa has about 63% of the HIV-infected

population of the world totaling 22.4 million adults [47,57].

Table 5. Potential Impact of PrEP Introduced in 2007 on HIV-1 Infections in Southern Sub-Saharan Africa{"
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Region/Country
Baseline Adult
HIV Prevalence %

Baseline Adult
HIV Incidence %

Baseline Adult
Population people

Population
Growth Rate %

Cumulative New HIV Infections Averted after
10 Years

Optimistic Scenario & Targeted by Sexual
Activity

No Disinhibition 100% Disinhibition

Lesotho 23.2 4.8 865 000 0.1 92 710 56 942

Botswana 24.1 6.7 909 000 0.1 132 870 81 608

Zambia 17.0 2.6 5 281 000 1.7 361 132 221 803

South Africa 18.8 2.4 25 204 000 0.8 1 477 691 907 581

Southern Sub-Saharan Africa1 19.6{ 54 886 000 2 713 746–3 166 037 1 666 752–1 944 544

{These are conservative projections based on estimates of the size of adult population [47,71] and assuming constant incidence [73–75,89], prevalence [47] and growth
rate [47].

"For southern sub-Saharan Africa overall, projections are based on the UNAIDS/WHO statement that the total number of infections in this region were 1.1 million for
three consecutive years including 2005 [75]. With this estimate as a constant, low projection assumes 86% of these infections occur in adults, while the high projection
assumes the full estimate.

1Excludes Angola, Madagascar, Mauritius and Seychelles.
{Refers to median country-prevalence.
doi:10.1371/journal.pone.0000875.t005..
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Though epidemics of various characteristics are affecting this

region [58], the vast majority of the population are not yet infected

with HIV-1 and thus effective prevention strategies are urgently

needed. Our analyses indicate that approximately 2.7 to 3.2 million

new HIV-1 infections could be averted in southern sub-Saharan

Africa over the next 10 years by targeting PrEP to population groups

with the highest sexual activity concomitant with preventing

increased risk behaviors in those on PrEP. It is not always easy,

however, to identify those with high sexual activity patterns, except if

they are involved in commercial sexual activities [14,59].

The estimate of the number of infections averted for South

Africa alone is 1.5 million infections. This high individual and

public health benefit will require sustained access to PrEP. In

addition, the integration of PrEP programs with voluntary

counseling and testing services and other prevention programs

(e.g. promotion of condom use, circumcision, and identification

and treatment of sexually transmitted diseases (STDs) will be key

in controlling spread of HIV-1) [60].

There are some important limitations of our current model

structure and the assumptions embedded within it. The precise

quantitative detail of our predictions will be affected by variations

in the structure and sexual activity patterns of different popula-

tions, for which data are very limited, especially on sexual mixing

patterns. However, we employed a well-established template of

sexual behavior [61–65], with robust epidemiological and de-

mographic parameterization, broadly applicable to southern sub-

Saharan Africa. The actual impact of PrEP will depend on the

PrEP agent or agents used as well as the physiological, behavioral

and viral characteristics of the HIV-1 infected target population.

Primate studies of PrEP suggest superiority of tenofovir plus

emtricitabine over tenofovir alone [1,2]. Natural polymorphisms

in HIV-1 subtypes have been postulated to play an important role

in drug resistance pathways [66], including the propensity of HIV-

1 subtype C virus that is predominant in Sub-Saharan Africa [67],

for more frequent and rapid development of the K65R tenofovir-

resistance mutation, noted by some investigators [68,69] though

not by others [70]. Although there is substantial uncertainty

regarding PrEP-related parameters, we employed wide ranges

(within plausible bounds) for our input parameters and performed

extensive sensitivity analyses. There are significant differences

between the demographic and HIV/AIDS epidemiological trends

estimates predicted by different agencies, largely as a result of the

methods employed in analysis and prediction [15,47,71,72]. In

addition, except for South Africa [73], estimates of HIV-1

incidence have not been measured directly at the population level

in most African countries, and reliable country-specific estimates

are rarely available excepting from a few well-defined study sites

with long term surveillance [74]. We elected to employ the

demographic and HIV/AIDS epidemiological estimates from

UNAIDS where applicable [47,71,75]. Our optimistic analyses

assume a high level of effectiveness for PrEP, which may not be the

case because of more limited drug activity and/or medication

adherence. However, data on both efficacy of the potential PrEP

agents [1], and adherence in Africa [76] justify some degree of

optimism. In a macaque study [1] in which animals received

weekly rectal simian human immunodeficiency virus challenges,

83% (5/6) of the controls became infected after 14 challenges,

whereas 100% (6/6) of the macaques that received subcutaneously

a combination of 22 mg tenofovir and 20 mg emtricitabine per kg

once daily remained uninfected . A meta-analysis [76] of 31 North

American studies (17,573 patients total) indicated a pooled

estimate of 55% of the populations achieving adequate levels of

adherence, whereas analysis of 27 African studies (12,116 patients

total) indicated a pooled estimate of 77%. About 71% of the

former and 66% of the latter studies used patient self-report to

assess adherence and similar thresholds for adherence monitoring

(.80% to 100%). The authors concluded that although adherence

remained a concern in North America, favorable levels of

adherence could be achieved in sub-Saharan Africa.

We excluded from our analyses the impact of antiretroviral

therapy for infected persons [9], various other influences on

transmission (e.g. STDs [77,78], circumcision [79] and condom

use [16]), as well as a formal cost-effectiveness analysis [80]. These

and other refinements will be addressed in future work. Neverthe-

less, the key conclusion of this study is that PrEP can be a cost

effective intervention given high efficacy, good adherence and

long-term use, especially if sexual disinhibition is prevented.
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