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Abstract
Cytotoxic CD8 T cells play important roles in eliminating infected and
transformed cells. Owing to their potential for therapeutic applications,
significant efforts are dedicated toward developing CD8 T cell–based vaccines.
Thus far, CD8 T-cell vaccination strategies have had limited success
therapeutically in contrast to those targeting antibody-based immunity.
However, if the current challenges and gaps in the understanding of T-cell
biology are overcome, the full potential of rational CD8 T-cell vaccine design
might be realized. Here, we review recent progress in this direction, focusing on
target selection and maintenance of function in the settings of chronic infections
and cancers.
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Introduction
Safe and effective vaccines have significantly reduced and even 
eradicated many pathogen-related human health threats within 
the past century1. Cancers and a handful of chronic viral infec-
tions remain the last frontier of prevention and treatment through 
vaccination. Historically, the vast majority of vaccines have 
focused on inducing humoral immunity, yet the remaining 
immunological challenges may benefit from the engagement of 
cell-mediated immunity as well2. In recent decades, large gains  
have been made in the development of CD8 T cell–based  
vaccines; however, complete protection in both pre- and post- 
exposure cases has not yet been achieved. CD8 T-cell vaccine 
development entails unique challenges that include (a) identi-
fying and validating CD8 T-cell targets that correlate with pro-
tection and (b) maintaining and restoring optimal functionality 
of CD8 T cells in an immunosuppressive or chronic infection  
environment. This review focuses on CD8 T-cell responses to 
vaccination and advances in these challenge areas from the past 
few years and particularly on cancers and HIV chronic infection.  
Promising directions for vaccine design include the identifica-
tion of non-canonical CD8 T-cell targets and finding means of  
sustaining CD8 T-cell function through the combination of  
immunotherapy and inhibitor receptor blockade.

CD8 T-cell target recognition and identification
Unlike antibodies, which recognize conformational epitopes 
exposed on the surfaces of proteins that have achieved  
tertiary structure, CD8 T cells recognize 8–11 amino acid peptide 
fragments displayed at the plasma membrane in complex with 
major histocompatibility complex (MHC) class I molecules3,4.  
In humans, MHC class I molecules are encoded at three human  
leukocyte antigen (HLA) loci (A, B, and C). Peptide frag-
ments arise primarily from standard protein degradation by the  
multicatalytic proteasome and are further processed by pepti-
dases in the cytosol or the endoplasmic reticulum where MHC  
loading occurs5. Linear epitopes can be derived from any protein 
domain, including buried internal regions. This is important 
since, owing to cellular localization (for example, viral polymer-
ases that are confined to the cytosol), not all pathogen- or  
cancer-related proteins are accessible to antibodies but instead can 
be detected by CD8 T cells. These target characteristics of CD8  
T-cell epitopes offer a broader range of options for identifying an 
infected or transformed cell and naturally complement humoral  
immunity.

Epitope identification continues to be a largely empirical proc-
ess. The two main methods of identifying T-cell targets are 
mass spectrometry (MS) analysis and epitope mapping6,7.  
The first approach isolates peptides from target cells and identi-
fies them through MS. Thus, actively processed and displayed 
peptides can be identified directly. Through this technique, post- 
translationally modified or non-canonical peptides (for example, 
spliced) can also be recognized8. Nevertheless, MS is resource-
intensive and despite technical advances still requires large 
amounts of starting material along with subsequent validation of  
identified epitopes in a CD8 T cell–based assay. Despite gains 
in sensitivity, the technique may not detect peptides displayed at  
low levels that nevertheless can activate CD8 T cells.

Epitope mapping interrogates T-cell responses to a set of  
synthetic peptides derived from the primary amino acid sequence 
of pathogenic genomes7,9. Two main approaches have been used 
for designing the peptide library: overlapping peptides or the  
use of a predictive algorithm. Screening by either approach 
becomes substantially more complex and cost-prohibitive the  
larger the genome included in the analysis. Thus, the overlap-
ping-peptide approach is best suited for individual proteins or  
pathogens with small genomes and can be used with broad  
applicability to probe T-cell responses across all MHC alleles. On 
the other hand, use of a predictive algorithm allows for greater 
coverage of a larger genome, since the library is designed for a 
unique MHC allele binding pattern, thus restricting the number 
of peptide candidates. Though rapidly evolving, current MHC  
binding predictive algorithms remain imperfect and strongly 
immunogenic epitopes can be missed. Overall, synthetic libraries 
designed by either method require validation through a T-cell  
recognition assay—typically enzyme-linked immunospot detec-
tion of gamma interferon—since not all of the predicted epitopes 
are presented or produce an immunogenic response. More  
importantly, non-linear epitopes or post-translational modifica-
tions cannot be accounted for by this process and can be entirely  
unrepresented in conventional searches for T-cell epitopes. 
Finally, only some of the epitopes identified and validated through 
either method will turn out to be protective and further testing  
will be required to assess their utility in context10.

New sources of cancer immunotherapeutic peptides
CD8 T-cell vaccine design for cancers requires the identifica-
tion of tumor-specific epitopes and stimulation of robust and 
effective CD8 T-cell responses against the epitope. Since tumors 
are derived from a body’s own cells, many epitopes will arise  
from self-antigens through over-expression of proteins in trans-
formed cancer cells or display of antigens normally present 
in immunopriviledged sites11. These antigens are typically 
weak immunogens because of central and peripheral tolerance  
mechanisms acting on the T-cell repertoire. However, tumor  
cells can also give rise to neo-antigens through somatic muta-
tions resulting in modified amino acid sequence or through  
aberrant post-translational modifications (for example, hyper-
phosphorylation)11,12. Epitopes derived from neo-antigens have a  
much greater potential for eliciting immunogenic responses 
since they are not subject to central tolerance11. Although cancer- 
induced immunosuppression often stunts T-cell responses  
against the tumor, inhibitory receptor therapy can help to restore 
T-cell function, as discussed later in this review.

Large but still untapped sources of potentially immunogenic 
neo-antigens are spliced peptides. The proteasome cleaves  
proteins into linear peptide fragments; however, in 2004, it was  
first reported that the proteasome can also splice together short 
peptide fragments, typically from the same protein, resulting in 
the formation of discontinuous epitopes13. The efficiency of the  
mechanism through which this transpeptidation reaction takes 
place is not well understood14–20; however, new data suggest that 
spliced peptides are generated with the same efficiency as linear  
epitopes21. At the same time, the frequency of spliced peptides 
has been considered extremely rare, and only six cancer-related,  
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spliced peptides have been identified in the past decade22.  
However, using cutting-edge bioinformatics and liquid  
chromatography–MS methods, a recent study determined that 
a large fraction of class I ligands are, in fact, spliced proteaso-
mal products23. By this new account, up to one third of protein 
diversity is represented by spliced peptides, and these spliced 
products account for one quarter of the total presented peptides, 
uncovering a potentially large pool of untapped immunogenic  
peptides that could be beneficial for targeting cancer cells23.  
In addition, the first bacterial account of CD8 T-cell responses to 
spliced epitopes has been reported in a Listeria monocytogenes 
infection, expanding the applicability of spliced peptides to  
infectious agents24. The authors used a combination approach  
of in vivo and in silico predictive algorithm methods to identify 
spliced peptides, creating a workflow that could be employed 
in the future for spliced epitope identification. An important 
area to investigate is the extent of splicing in transformed cells  
compared with normal cells since the first spliced epitopes  
discovered through low-throughput methods are all tumor  
antigens. Lastly, since spliced epitopes are more frequent than 
anticipated, vaccination platforms should take into considera-
tion the use of whole antigens and maintenance of processing  
requirements such as access to the proteasome.

Non-canonical presentation of HIV epitopes
HIV is a formidable challenge for many reasons. Owing to the 
high variability and extensive glycosylation of the HIV envelope 
protein, antibodies have been largely ineffectual in preventing 
viral entry. CD8 T cells have been reported to help control viral  
replication; however, high mutation rates allow for viral escape. 
Another factor is T-cell exhaustion, a hallmark of chronic  
infections, which is characterized by increased expression of 
inhibitory receptors, loss of T-cell functions such as cytokine  
production and cytotoxicity, and transcriptional and meta-
bolic changes. Lastly, no identified epitope presented through  
canonical MHC I presentation (on HLA-A, -B, and -C class I  
molecules) has demonstrated complete protection from HIV.

Recent discoveries from the Picker lab point to non-canonical 
epitopes presented on HLA-E molecules as a means of elicit-
ing immunogenicity and protection25. HLA-E typically presents 
a unique set of peptides, derived from the leader sequences of 
classic MHC molecules. Their primary function is thought to 
be the interaction with natural killer cells and their inhibitory 
receptors NKG2 A-C in order to prevent cell lysis. Previously, 
only a handful of pathogenic infections were shown to produce  
CD8 T cells specific for HLA-E molecules loaded with peptides 
that mimic leader sequences. Surprisingly, in 2016, HLA-E 
molecules were reported to present simian immune deficiency 
virus (SIV) peptides and elicit CD8+ T-cell responses depend-
ing on the virus immunization platform25. This phenotype is  
specifically induced by a cytomegalovirus (CMV)-based vector 
platform, which upregulates expression of the HLA-E molecule; 
in contrast, pox vectors induced presentation of classic MHC I  
molecules26. HLA-E–restricted CD8 T cells appear to carry out 
the same functions in terms of cytotoxicity and cytokine release 
as those that are classically induced through MHC I presentation.  
Furthermore, CMV vaccine vectors, now known to induce  
primarily HLA-E–restricted CD8 T cells, have been previously 
shown to control and clear SIV infection in 50% of vaccinated 

rhesus macaques27. The effects of CMV vaccine platforms on  
CD8 T-cell development are reviewed in greater depth here28.

The use of HLA-E–restricted CD8 T cells is an appealing  
approach because of naturally low polymorphism in the 
human population and the potential for use of highly relevant,  
established animal models. Hundreds of classic HLA A/B/C  
alleles exist in the human population; of these, only the HLA-
B27 has been found to be associated with better virus replica-
tion control in HIV29 and also hepatitis C virus30. HLA-B27 is  
present in only 6.1% of humans31. In contrast, HLA-E is  
expressed in only two allelic forms, characterized by a sin-
gle amino acid substitution32, and this difference has no impact 
on peptide binding. In fact, the peptide binding groove is  
conserved between humans and all species of macaques33. Fur-
thermore, a 2017 study confirmed the conservation of HLA-E 
expression levels, T-cell response patterns, and the ability to 
present identical peptides between humans, rhesus macaques, 
and cynomolgus macaques, which supports the establishment of 
physiologically relevant animal models for HIV and SIV vaccine  
platforms34. The applicability of this approach is now being 
expanded to other pathogens since HLA-E–presented epitopes  
have been recently discovered in a tuberculosis infection  
setting through the use of in-depth MS26. One particular epitope 
elicited immunodominant CD8 T-cell recall responses in 14 out 
of 16 donors, further suggesting the broad applicability of HLA- 
E–restricted T cells26. Many gaps remain in understanding how 
antigen presentation is shifted from the classic MHC molecules 
toward HLA-E through CMV vector vaccination and whether 
HLA-E restriction or peptide specificity provides the protec-
tive advantage in an SIV setting. Nevertheless, HLA-E–restricted 
CD8 T-cell responses are an exciting new direction because of 
their broad applicability to a large patient population as well as  
demonstrated protective capabilities.

Restoring and maintaining CD8 T-cell function
The presence of tumor-infiltrating lymphocytes, including 
effector CD8 T cells, has been associated with better progno-
sis in a variety of cancers. However, CD8 T-cell function is fre-
quently suppressed by the tumor microenvironment. A recently 
established strategy for restoring T-cell function, especially in 
cancer treatment, is checkpoint inhibitor blockade therapy35.  
Inhibitory receptors, most prominently PD-1 and CTLA4, 
are expressed on the CD8 T-cell surface upon activation and  
interact with ligands expressed by antigen-presenting cells36.  
While the main role of inhibitory receptors appears to be the  
dampening of immune responses in order to prevent immunopa-
thology, in a prolonged antigen exposure scenario, this ultimately  
leads to CD8 T-cell dysfunction. So far, inhibitor blockade  
therapy has produced remarkable results in clinical trials,  
although only about 20% of patients respond to treatment36. Even 
in responding patients, restoration of CD8 T-cell function is not 
permanent and continuous immunotherapy is necessary36. Thus, 
an essential question regarding T-cell dysfunction in cancer is  
whether the process develops in the early stages of tumor  
formation or whether it progresses gradually along with cancer 
metastasis and further exposure to antigen. Understanding the  
timing and molecular mechanisms of T-cell dysfunction can  
redirect the development of CD8 T-cell vaccination strategies in 
conjunction with checkpoint inhibitor therapy blockade.
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A recent study using a mouse model reports that T-cell dysfunc-
tion is initiated during the pre-malignancy phase, prior to tumor  
formation and subsequent induction of an immunosuppressive  
environment37. Thus, T-cell dysfunction is established early in  
tumorigenesis and appears to be driven by persistent antigen 
stimulation, analogous to the exhaustion scenario in a chronic  
infection setting37. Inhibitor blockade was found to partially 
alter the gene expression of tumor-specific dysfunctional T cells 
but did not permanently re-shape the underlying epigenetic  
landscape38. In support of this finding, a subsequent study char-
acterized the changes in CD8 T-cell chromatin accessibility 
that take place early in tumorigenesis39. Two distinct develop-
mental phases were identified. Initially, epigenetic changes are  
plastic and the CD8 T cells are amenable to reversal of the  
dysfunction phenotype within the first week of tumor challenge 
with inhibitor blockade treatment. However, prolonged antigen  
exposure led to a fixed chromatin landscape characterized by  
permanent dysfunction within a month of tumor implantation.  
PD-1 high tumor-infiltrating lymphocytes from human melanoma 
and non-small cell lung cancer biopsies were found to con-
tain a mixture of reversible and irreversible chromatin states.  
This suggests that a small population of CD8 T cells might still 
be amenable to functional restoration and could provide a basis 
for identifying patients who would be responsive to inhibitor  
blockade therapy. It will become increasingly important to  
understand the underlying differences between the two chroma-
tin states and how to prevent transition to the fixed epigenetic 
state for induction of de novo responses when formulating CD8  
T-cell vaccines. Recent clinical trials have begun exploring  
combination therapy of inhibitor blockade along with neo- 
antigen–based CD8 T-cell vaccination. Since naïve T cells still  
have the potential to develop into functional effector and  
memory cells, this strategy may yield the best results yet. It will 
be interesting to learn whether this combination prevents the  
development of dysfunction in the CD8 T-cell compartment.

T-cell dysfunction characterized by inhibitor receptor  
expression is a common feature in both cancer and chronic  
infections. However, inhibitory receptor blockade therapy is used 
much less prominently in the clinical setting of viral infections  
(for example, HIV), even though these receptors have been  
studied intensively in mouse models of T-cell exhaustion. Recent 
reports suggest that, as with cancer, the exhaustion phenotype  
originates in the early stages of the initial infection. In a mouse 
model of chronic lymphocytic choriomeningitis virus (LCMV) 
infection, PD-1 blockade temporarily restored the function 
of exhausted T cells but failed to induce long-term functional  
memory cells in the absence of treatment40. Exhausted T cells 
were found to contain an inflexible epigenetic profile that was not 
altered by PD-1 blockade. In addition, methylation of the PD-1  
promoter in CD8 T cells, which promotes expression of the  
inhibitory receptor, was found to occur early in the infection 
time line and to be maintained in the long term41,42. Moreover,  
PD-1 promoter methylation was shown to persist even in the 
absence of antigen43. Much like in a cancer setting, inhibition 
of PD-1-PD-L1/2 interactions does not reverse the epigenetic  
changes44,45 and continuous therapy is likely necessary in order 
to maintain T-cell function. However, restoration of the CD8  
T-cell compartment with functional cells may still be possible. 
In several murine studies, a subset of stem-like CXCR5+  

memory follicular T cells, which retains a de-methylated  
PD-1 promoter, was found to account for the proliferative burst  
and repopulation of functional CD8 T cells after inhibitor  
blockade therapy45–48. Moreover, inhibition of de novo DNA 
methylation in naïve CD8 T cells through a conditional  
knockout mouse model results in proper development and  
functionality of the T-cell compartment, even under chronic  
antigen stimulation conditions44. De novo T-cell priming in  
conjunction with methylation inhibitors could be another  
avenue for regenerating the CD8 T-cell compartment in a chronic 
infection setting provided that specific, low-toxicity means of 
inhibiting DNA methylation can be identified. More detailed  
analyses of epigenetic changes affecting checkpoint inhibitor  
genes have recently been summarized elsewhere36,49,50. Finally, 
earlier findings about the synergistic effect of administering  
combination therapy of PD-1 inhibitors along with the inter-
leukin-2 (IL-2) cytokine, which improves the outcome of 
chronic LCMV infection over inhibitory therapy alone, might be  
re-examined from an epigenetic viewpoint. This combination 
therapy produced a large expansion of antigen-specific CD8  
T-cells, further characterized by decreased surface expression 
of PD-1 and an increase in the memory T-cell markers IL-7Rα  
and the transcription factor T-bet and, resulted in a higher  
responsiveness to PD-1 blockade treatment51. It would be  
interesting to examine the methylation state of the PD-1  
promoter in these CD8 T-cells in order to determine whether 
the epigenetic landscape associated with exhaustion has been  
reversed.

Concluding remarks
CD8 T-cell vaccine development against cancers and chronic 
infections have common challenges. In both cases, although  
antigen-specific CD8 T cells can be elicited through vaccination, 
this does not translate into long-term protection. To overcome 
this, both re-evaluation of T-cell vaccine targets and devising  
methods for the maintenance of functionality are likely neces-
sary. A promising trend redirects attention to non-conventional  
CD8 T-cell epitopes, such as spliced non-linear peptides, and 
the non-canonical antigen presentation molecule HLA-E.  
Improved target selection can be further supported by vaccina-
tion platforms that include checkpoint inhibitor blockade therapy 
since maintenance of CD8 T-cell function in prolonged disease  
states is a fundamental problem. Lastly, a better understand-
ing of the mechanisms behind T-cell dysfunction and checkpoint  
inhibitors should lead to effective treatment in a wider segment 
of the cancer patient population but also in chronic infection  
settings.
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