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Abstract
This paper aims to introduce penalized estimation techniques in clinical investigations of

diabetes, as well as to assess their possible advantages and limitations. Data from a previ-

ous study was used to carry out the simulations to assess: a) which procedure results in the

lowest prediction error of the final model in the setting of a large number of predictor vari-

ables with high multicollinearity (of importance if insulin sensitivity should be predicted)

and b) which procedure achieves the most accurate estimate of regression coefficients in

the setting of fewer predictors with small unidirectional effects and moderate correlation

between explanatory variables (of importance if the specific relation between an indepen-

dent variable and insulin sensitivity should be examined). Moreover a special focus is on

the correct direction of estimated parameter effects, a non-negligible source of error and

misinterpretation of study results. The simulations were performed for varying sample size

to evaluate the performance of LASSO, Ridge as well as different algorithms for Elastic Net.

These methods were also compared with automatic variable selection procedures (i.e. opti-

mizing AIC or BIC).We were not able to identify one method achieving superior performance

in all situations. However, the improved accuracy of estimated effects underlines the impor-

tance of using penalized regression techniques in our example (e.g. if a researcher aims to

compare relations of several correlated parameters with insulin sensitivity). However, the

decision which procedure should be used depends on the specific context of a study (accu-

racy versus complexity) and moreover should involve clinical prior knowledge.

Introduction
Impaired insulin sensitivity is considered as an important risk factor for metabolic disorders
and of particular importance in the pathogenesis of type 2 diabetes [1]. Several indices contain-
ing measurements derived from the oral glucose tolerance test (OGTT), biomarkers and
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parameters of body composition have been proposed to evaluate insulin sensitivity in humans.
Surrogate indices of insulin sensitivity are of clinical importance, as its direct evaluation by the
hyperinsulinemic euglycemic clamp (“gold standard”) or alternatively the frequently sampled
intravenous glucose tolerance test (FSIGT, sometimes referred as the “silver standard”) are
rather time and cost intensive examinations [2].

In clinical research settings of diabetes, multiple linear regression is often used to predict
insulin sensitivity (derived from clamp or FSIGT data as response variable Y) by several inde-
pendent variables (XT = (x1,. . .xk)): e.g. OGTT measurements (including repeated measure-
ments of glucose, insulin and C-peptide for example), biochemical markers derived from
fasting and postprandial state or parameters of body composition. Thereby, linear regression
might be used to conduct a prediction model for insulin sensitivity or to select predictors out of
a set of variables with accurate predictor estimates (e.g. to select the most relevant OGTT mea-
surements and their best measurement time). However, as the sample size of the evaluation
cohorts might be sparse in several cases (due to the limited availability of clamp or FSIGT data)
and explanatory variables are supposed to be highly correlated in clinical scenarios of metabolic
disorders, statistical limitations of the linear regression approach, such as collinearity and over-
fitting have to be considered. These limitations might have large influence on parameter esti-
mates derived from “traditionally used” automatic variable selection procedures (such as
forward, backward, or stepwise-backward (a combination of forward and backward selection))
and therefore on the reproducibility of results, particularly if a validation cohort with adequate
sample size is missing [3].

By introducing a slight bias into the model estimation, penalized estimation techniques
were proposed to reduce the variance of estimates and hence to improve prediction [4]. Partic-
ularly three methods achieved high popularity: Ridge (shrinks the sum of squares of regression
coefficients toward zero) [5, 6], LASSO (Least Absolute Shrinkage and Selection Operator,
shrinks the sum of absolute values of regression coefficients toward zero) [7, 8] as well as the
elastic net (a hybrid of Ridge and LASSO) [9]. These strategies were primarily developed to
deal with high dimensional correlated data sets (i.e. DNA-microarray/genomic studies) where
they showed a good performance [4, 10]. More recently, penalized estimation techniques were
also discussed to provide reasonable results in low dimensional data scenarios [11, 12].

Therefore, this paper aims to introduce variable shrinkage strategies in clinical investigations
of diabetes, as well as to assess their possible advantages and limitations. Moreover, comparisons
with traditionally used sequential selection procedures should be assessed in different simulation
scenarios. Particular focus should be placed on the prediction of insulin sensitivity with corre-
lated covariates to investigate: a) which strategy shows the lowest prediction error (of importance
when the research question is to create a new surrogate index of insulin sensitivity) and b) which
procedure gives the most accurate estimation of regression coefficients (of importance when the
specific relation between an independent variable and insulin sensitivity should be evaluated)
including the correct estimation direction and variable selection probabilities (power and type 1
error). Data from a real clinical investigation was used for illustration purposes.

Clinical Data Example: Vienna Post Gestational Diabetes Data
A description of the Vienna Post-Gestational Diabetes Project was reported elsewhere (e.g. [13,
14]). The diabetes data contains parameters of body composition (BMI, waist and hip circum-
ference) as well as OGTT measurements (blood samples of glucose, insulin, C-peptide, proin-
sulin and amylin were taken at fasting as well as frequently at 10, 20, 30, 60, 90, 120, 150 and
180 minutes after ingestion of 75 g glucose) of 110 females after pregnancy with gestational dia-
betes. FSIGT derived insulin sensitivity index (SI) by minimal model analysis according to
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Pacini et al. [15] was available in 102 subjects. All subjects were recruited 3 to 6 month after
index pregnancy between 1999 and 2002. The study was approved by the Ethics Committee of
the Medical University of Vienna and performed in accordance with the Declaration of Hel-
sinki. All participants gave written informed consent. Patient related information was anon-
ymized and de-identified prior to analysis.

Methods of Estimation

Linear regression
The ordinary least squares regression (OLS), aims to predict future cases of y by a list of known
explanatory variables (regressors). The linear model is defined by

yi ¼ b0 þ b1 � xi1 þ . . .þ bk � xik þ εi

where yi denotes the dependent variable of the i
th patient (i = 1,. . .,n) and xi1,. . .,xik denoting

the corresponding k explanatory variables; β0,β1,. . .,βk are the regression coefficients; β0
denotes the intercept and εi denotes the normally distributed model error with an expected
value of zero and a residual variance σ2. Interaction terms were not considered in this study. In
order to minimize the residual sum of squares the minimization problem is described as:

Xn
i¼1

ε2i ¼
(Xn

i¼1

 
yi � b0 �

Xk

j¼1

xijbj

!2)
! min:

The different methods, which are suggested to improve the naïve OLS estimation b̂OLS (i.e.
sequential variable selection and penalized estimation strategies), are outlined in the following.

Sequential variable selection strategies
For this report, we used a stepwise-backward variable selection procedure, optimizing two dif-
ferent parameters of entropy:

1. Akaike’s Information Criterion (AIC) [16]:

AIC ¼ �2 � ln RSS
n

� �
� � n

2

� �
þ 2k

where RSS denotes the residual sum of squares and n denotes the total number of observations.

2. Schwarz’s Bayesian Information Criterion (BIC) [17]:

BIC ¼ �2 � ln RSS
n

� �
� � n

2

� �
þ k � lnðnÞ:

The first part of AIC and BIC is also called deviance and gives information on the model fit.
The second term is a penalty for model complexity, depending on the number of parameters
fitted.

When sequential selection strategies with AIC or BIC (denoted sAIC and sBIC) are used
then selection criterion values with and without a candidate variable are calculated. The model
with the lower criterion value is preferable and correspondingly the candidate variable is
included or excluded. For AIC, the candidate variable is included if the difference in deviances
with and without the respective predictor (i.e. model Χ2 value) exceeds two times the difference
of parameters fitted (difference in degrees of freedom) of the two models. Hence, for a linear
(or binary) predictor the Χ2 value has to exceed 2, comparable to a p-value of 0.157 (if the F-
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statistic is used for selection) [18, 19]. In contrast, BIC penalizes the model deviance by the
product of the number of covariates and the natural logarithm of the number of observations
(n). It can be shown, that in case of n>e2 (�7) the penalty by BIC is larger as compared to AIC
(if the number of covariates are comparable) [18]. BIC tends to select the correct model with
infinite sample size (n!1), whereas AIC tends to select too complex models with n�8.
Thus, the optimal choice between AIC and BIC is not generally clear [4].

Variable shrinkage by Ridge
If prediction vectors are not orthogonal it was proposed that introducing a slight bias would
substantially decrease the variance and thus improve predictions [5]. In case of a linear regres-
sion scenario, Ridge estimation can be considered by the following minimization problem [4]:

b̂ridge ¼ argmin
b

(Xn
i¼1

 
yi � b0 �

Xk

j¼1

xijbj

!2

þ l2

Xk

j¼1

b2

j

)
:

Or with another notation:

b̂ridge ¼ argmin
b

Xn
i¼1

 
yi � b0 �

Xk

j¼1

xijbj

!2

; under the constraint :
Xk

j¼1

b2

j � s:

There is a 1:1 correspondence between the complexity parameters λ2 and s, controlling the
amount of shrinkage of the regression coefficients toward zero (whereby β0 is not penalized).
Ridge is based on the sum of squares of the regression coefficients and results in a proportional
shrinkage of parameter estimates (but not in exclusion of variables) [4].

Variable shrinkage and selection by LASSO
Tibshirani introduced the LASSO method with the advantage that it also performs variable
selection in addition to shrinkage [7]. In contrast to Ridge, LASSO uses the sum of absolute val-
ues of regression coefficients for penalization of model complexity. It shrinks each coefficient
toward zero by a constant factor, truncating at zero. Consequently variables with zero-trun-
cated coefficients are excluded from the model [4]:

b̂LASSO ¼ argmin
b

(Xn
i¼1

 
yi � b0 �

Xk

j¼1

xijbj

!2

þ l1
Xk

j¼1

jbjj
)
:

Or with another notation:

b̂LASSO ¼ argmin
b

Xn
i¼1

 
yi � b0 �

Xk

j¼1

xijbj

!2

; under the constraint :
Xk

j¼1

jbjj � t:

Again, the amount of shrinkage of |βj| is controlled by a tuning parameter λ1 or t: If t is cho-
sen to be larger than the sum of the absolute values of the OLS estimates then the estimates
proposed by LASSO are comparable to those provided by OLS. For sufficiently small t (large
λ1) parameter estimates for explanatory variables might be shrunken to zero [4] and the vari-
ables are thus excluded from the model.
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Variable shrinkage and selection by Elastic Net
The Elastic Net (Enet) was more recently developed by Zou and Hastie [9] as a combined vari-
able shrinkage and variable selection procedure for scenarios with highly correlated predictors,
as LASSO was suggested to be inferior to Ridge in nonorthogonal scenarios. The minimization
problem of Enet is defined as [4, 9]:

b̂Enet ¼ argmin
b

(Xn
i¼1

 
yi � b0 �

Xk

j¼1

xijbj

!2

þ l
Xk

j¼1

 
ab2

j þ ð1� aÞjbjj
!)

:

Where λ = λ1 + λ2 and α determines a “mix of penalties” and is calculated as [4, 9]:

a ¼ l2

l1 þ l2
:

According to Waldron et al., three different methods of choosing the tuning parameters
were assessed [10]: a) first optimizing λ1 (while keeping λ2 at zero) followed by optimizing λ2
(Enet 1); b) first optimizing λ2 followed by optimizing λ1 (Enet 2); c) optimizing λ1 and λ2
simultaneously (Enet 3).

Cross-validation for optimizing the tuning parameter
Cross-validation is a widely used technique to assess the expected generalization error and is
particularly established in estimating the shrinkage parameter. Particularly K-fold cross-valida-
tion (with K = 5 or K = 10) has been proposed to give appropriate results [4]: The data is split
into K parts of equal sample size and the respective model is fitted to K-1 parts of the data. The
prediction error is estimated by prediction of the remaining part. This procedure is repeated K
times. The value for the tuning parameter with the smallest prediction error is preferred.

Software
Calculations were performed by using R (V3.0.1). Stepwise-backward variable selection was
performed by the “MASS” package by using the stepAIC function where the option k = 2 or
k = log(n) gives the multiple of the number of degrees of freedom used for the penalty and
result thus in AIC or BIC, respectively [20]. Variable shrinkage (Ridge, LASSO, Enet 1 and
Enet 2) was performed using the “penalized” package [21, 22]. The “pensim” package was used
for simultaneous optimization of λ1 and λ2 (Enet 3) [10]. The shrinkage parameters were
assessed by 10-fold cross validation.

Design of Data Simulations

Overview
All simulations were performed according to the data of the Vienna Post-Gestational Diabetes
Project (particularly parameter estimates and covariance structure were obtained from this
study). Thereby three scenarios (detailed description is provided below) were investigated to
assess which method of estimation shows the lowest prediction error of the final model in a set
of a large number of variables (k = 20) with high collinearity (scenario A) as well as to assess
which procedure gives the most accurate estimate of regression coefficients in a scenario with
k = 9 variables with small unidirectional coefficient estimates and moderate collinearity (sce-
nario B). Scenario C was comparable to scenario B, however, four additional variables with
zero effect were included. A total of m = 5000 simulations were performed for varying sample
sizes (n = 50, n = 110 (comparable to the sample size of the original data), and n = 500). The
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accuracy of different model building strategies was described as bias (estimated by mean

b̂ � b, where b̂ denotes the estimated effects and β the "true" effect i.e. the specific effect used
in simulation study) and root mean square error (RMSE) of ŷ � y, where ŷ is the estimated
value in m = 5000 simulations.

The amount of collinearity was expressed by calculating the Variance Inflation Factor (VIF)
for an explanatory variable Xj, which is expressed as [23]:

VIFj ¼
1

ð1� R2
j Þ
:

R2
j is the multiple R2 of a linear model, with Xj as dependent variable regressed by the

remaining variables in the original data set. VIF = 1 corresponds to an orthogonal system. The
occurrence of collinearity is indicated if VIF exceeds 5 or 10, respectively [24].

Design of simulation scenario A
The primary focus of this scenario was to evaluate the prediction error of the final model (i.e.
prediction error of Y). This might be of interest if a researcher is focused on the prediction of
insulin sensitivity.

Therefore, multiple linear regression simulations were conducted, including a number of
k = 20 variables. The model coefficients (which were used as the “true effects” for this scenario)
are provided in Table 1 together with corresponding VIF. The correlation structure of predictor
variables, which was used for the simulations was based on the clinical data example and is
visualized in Fig 1A. An uncorrelated noise variable was included to assess the amount of type
1 error (i.e. selection probability of a variable with zero effect). Moreover, a Gauss distributed
random error variable with σ = 0.4 as well as an intercept of 1.45 were included into the for-
mula, in accordance with the original data.

In accordance with the real data example, the mean-adjusted R2 was 0.52 (for n = 50) and
0.53 (for n = 110 and n = 500) for the OLS estimation of data simulations, respectively.

For additional insight to the dependence of explained variation and model selection behav-
ior the simulations were repeated for n = 500 with varying σ of the error variable with 0.2, 0.6,
and 0.8 corresponding to a mean-adjusted R2 of 0.82, 0.34 and 0.22, respectively.

Table 1. Design of simulation scenario A.

Variable (scenario A) a.1 a.2 a.3 b.1 b.2 b.3 c.1 c.2 c.3 d.1

β 0.03 -0.11 -0.09 0.15 -0.12 -0.20 -0.27 0.30 -0.12 0.01

VIF 2.57 4.69 4.87 7.27 18.9 14.2 10.9 33.3 27.0 4.99

Variable (scenario A) d.2 d.3 e.1 e.2 e.3 f.1 g.1 g.2 g.3 h

β -0.02 0.04 0.04 -0.18 0.15 0.08 -0.03 -0.09 -0.06 0.00

VIF 25.3 32.1 2.79 8.70 12.0 1.40 11.0 6.24 6.84 1.00

True regression coefficients (β) and Variance Inflation Factor (VIF) for k = 20 variables explaining insulin sensitivity. They were calculated to estimate

insulin sensitivity (i.e. ln[SI+1]) by OLS: a.1(fasting glucose), a.2 (120’ post load glucose), a.3 (AUC glucose*), b.1(fasting insulin*), b.2 (120’ post load

insulin*), b.3 (AUC insulin*), c.1(fasting C-peptide**), c.2 (120’ post load C-peptide**), c.3 (AUC C-peptide*), d.1(fasting proinsulin*), d.2 (120’ post load

proinsulin*), d.3 (AUC proinsulin*), e.1(fasting amylin***), e.2 (120’ post load amylin***), e.3 (AUC amylin*), f (age), g.1 (BMI*), g.2 (waist

circumference*), g.3 (hip circumference*), h (uncorrelated noise variable)

* ln[x]

** ln[x+1]

*** sqrt[x]

doi:10.1371/journal.pone.0141524.t001
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Design of simulation scenario B and scenario C
These scenarios were proposed to assess the behaviour of shrinkage and selection strategies if
the research question is rather focused on an accurate estimation of regression coefficients (sce-
nario B) or to pic-up important variables out of a set of correlated measurements (scenario C).
This might be of relevance if a researcher is aiming to study the association of measurements of
a parameter (e.g. glucose) at multiple time points during the OGTT with the degree of insulin
sensitivity or to pic-up the most relevant time-point(s) for clinical purposes.

Therefore, a number of k = 9 variables were generated for linear regression simulations to
predict Y. The correlation structure used for the simulations was based on plasma glucose mea-
surements of the diabetes data example (fasting, 10’, 20’, 30’, 60’, 90’, 120’, 150’, 180’ after oral
glucose load: i.1-i.9) as provided in Fig 1B. The VIF for each explanatory variable in the original
data were: 3.06 (i.1), 3.94 (i.2), 4.99 (i.3), 6.57 (i.4), 7.61 (i.5), 7.06 (i.6), 4.36 (i.7), 4.51 (i.8),
2.76 (i.9). Moreover a Gaussian distributed random error variable with σ = 0.3 as well as an
intercept of 1.45 was included. The true regression coefficients β (which should be predicted by
various methods) were set to -0.025 for all variables to achieve small unidirectional effects as
expected for metabolic studies (scenario B).

Scenario C was comparable to scenario B, however, four regression coefficients (i.2, i.3, i.8,
i.9) were set to zero (noise variables) and σ was 0.15. For both scenarios, the correlation matrix
was obtained from the original data set and is visualized in Fig 1.

The mean-adjusted R2 were 21.3% (n = 50), 21.7% (n = 110) and 21.9% (n = 500) for the
OLS estimation in scenario B as well as 30.7% (n = 50), 31.1% (n = 110) and 31.3% (n = 500)
for the OLS estimation in scenario C, respectively.

Fig 1. Visualisation of correlation structure of k = 20 explanatory variables (Scenario A) and k = 9 variables (Scenario B).Darker plots indicate higher
(positive) correlations between variables.

doi:10.1371/journal.pone.0141524.g001
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Results

Descriptive analysis of tuning parameters
The distribution of cross-validated tuning parameters for various scenarios and sample size
examples are given in Table 2: In all scenarios and sample sizes the λ2 penalty dominated over
λ1 in Enet 2 and Enet 3 and hence was very close to Ridge. In contrast, λ1 penalty of Enet 1 was
very close to LASSO, whereas λ2 was markedly different from zero, but still smaller as com-
pared to λ2 penalties of other methods. Notably, the amount of shrinkage decreased with
ascending sample size in scenario A, whereas the amount of penalty rather increased with sam-
ple size in scenarios B and C.

Scenario A
As shown in Fig 2 only moderate differences were observed between the methods in terms of
bias and prediction error. Compared to the OLS method sequential selection strategies (partic-
ularly optimizing BIC (sBIC)) as well as penalized regression methods showed slightly
improved RMSE in case of low sample size (n = 50). Particularly, the most improved prediction
error of Y was observed for Ridge (RMSE = 0.1270). Also in the scenario with n = 110 penalized
estimation methods showed only a moderate benefit compared to OLS and sequential selection
strategies. While the RMSE was considerably improved with increasing sample size, the effect
of sequential selection as well as variable shrinkage strategies in relation to the naïve OLS esti-
mation was attenuated.

However, we observed strong differences in the number of selected variables (Fig 3): LASSO
performs sparser models as compared to other shrinkage strategies, but tended to include more
variables into the model, if sample size was increased. In contrast to LASSO, sequential selec-
tion strategies tended to select fewer variables with increasing sample size. Notably, sBIC
always selected sparser models than optimizing AIC (sAIC) and had also slightly smaller
RMSE than sAIC for small to medium large sample size (n = 50, n = 110). In all situations Enet
2 and Enet 3 selected larger models than other strategies, whereas the selection profile of Enet 1
was almost comparable to LASSO. Accordingly, LASSO (16.9%), Enet 1 penalization (19.4%)

Table 2. Distribution of the shrinkage parameters in different scenarios and sample sizes.

Ridge LASSO Enet 1 Enet 2 Enet 3

λ2 λ1 λ1 λ2 λ1 λ2 λ1 λ2

Scenario A

n = 50 89.4 (64.2–117.9) 3.57 (2.66–4.63) 3.59 (2.68–4.61) 21.1 (4.91–43.9) 0.00 (0.00–0.57) 89.2 (64.0–118.2) 0.00 (0.00–0.83) 78.7 (41.0–112.0)

n = 110 69.2 (13.9–104.8) 3.70 (2.57–5.07) 3.73 (2.57–5.12) 19.9 (3.63–42.1) 0.37 (0.00–1.47) 69.6 (40.1–102.4) 0.04 (0.00–1.21) 55.6 (13.9–104.8)

n = 500 4.99 (3.20–8.09) 0.68 (0.41–1.48) 0.69 (0.42–1.47) 1.22 (0.00–4.35) 0.10 (0.00–0.60) 4.98 (3.13–8.06) 0.00 (0.00–0.42) 3.79 (1.07–7.88)

Scenario B

n = 50 83.2 (54.5–128.2) 1.90 (1.28–2.91) 1.89 (1.26–2.88) 31.1 (6.45–69.0) 0.00 (0.00–0.22) 83.2 (54.7–129.4) 0.00 (0.00–0.80) 79.6 (41.1–132.4)

n = 110 99.3 (72.7–131.3) 1.75 (1.25–2.47) 1.77 (1.27–2.50) 48.4 (15.4–83.6) 0.00 (0.00–0.06) 100.6 (72.0–131.8) 0.00 (0.00–0.19) 94.6 (53.0–124.9)

n = 500 191.8 (149.0–227.9) 1.97 (1.38–2.63) 1.97 (1.38–2.63) 149.1 (88.8–193.3) 0.00 (0.00–0.00) 191.7 (150.5–228.1) 0.00 (0.00–0.01) 178.6 (112.1–223.0)

Scenario C

n = 50 60.0 (39.9–85.8) 0.94 (0.66–1.32) 0.94 (0.67–1.32) 18.2 (3.41–38.7) 0.00 (0.00–0.19) 59.8 (40.3–85.4) 0.00 (0.00–0.42) 50.0 (18.7–80.2)

n = 110 68.6 (47.8–90.5) 1.03 (0.75–1.39) 1.03 (0.74–1.39) 27.7 (9.49–51.5) 0.00 (0.00–0.33) 68.8 (47.8–90.8) 0.00 (0.00–0.49) 57.5 (19.2–87.0)

n = 500 104.7 (74.2–135.1) 1.67 (1.20–2.12) 1.65 (1.18–2.12) 52.1 (25.4–84.1) 0.36 (0.00–0.97) 104.4 (74.3–135.6) 0.31 (0.00–0.96) 103.7 (38.7–126.1)

Data represent median values as well as 1st and 3rd quartiles of the cross-validated tuning parameters for n = 50, 110 and 500 and both simulation

scenarios. Ridge method (Ridge); least absolute shrinkage and selection operator (LASSO); elastic net L1-L2 (Enet 1), elastic net L2-L1 (Enet 2), elastic

net L1+L2 (Enet 3).

doi:10.1371/journal.pone.0141524.t002
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Fig 2. Scenario A: Box-plots show the distribution of the prediction errors (observed and estimated y), when using different methods of estimation
in scenario A with n = 50 (A), n = 110 (B) and n = 500 (C). RMSE is given in parentheses. sAIC and sBIC refers to stepwise-backward variable selection
with AIC and BIC.

doi:10.1371/journal.pone.0141524.g002
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Fig 3. Scenario A: Selection probability for different variable selectionmethods in scenario A. n = 50 (A, B), n = 110 (C, D) and n = 500 (E, F). A, C, E:
solid line for sAIC, dashed line for sBIC, dotted line for LASSO; B, D, F: solid line for Enet 1, dashed line for Enet 2, dotted line for Enet 3. Noise predictor
variable is h.

doi:10.1371/journal.pone.0141524.g003
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and moreover sBIC (12.9%) showed a lower type 1 error (i.e. the probability of selecting the
noise variable "h") in the low sample size scenario (n = 50) as compared to sAIC (30.9%), Enet
2 (86.2%) but also the Enet 3 (79.9%) algorithm. However, type 1 error increased strongly with
growing sample size particularly for shrinkage techniques: LASSO (33.2% and 84.0%) and Enet
1: (34.0% and 84.3%) for n = 110 and n = 500, respectively. To further investigate this very high
type 1 error, observed even in the large sample size scenario, we repeated simulations for
n = 500 with varying σ of the error variable with 0.2, 0.6, and 0.8 corresponding to a mean-
adjusted R2 of 0.82, 0.34 and 0.22, respectively. The amount of shrinkage increased with
increasing σ (median λ1 was 0.17, 6.3 and 11.5) and type 1 error, that is false positive selection
of the nuisance variable h decreased from 96% to 60% and 50%, respectively.

Scenario B
As illustrated in Fig 4 shrinkage strategies showed considerably improved RMSE as compared
to sAIC or sBIC in all sample size scenarios and thus tended to give a more accurate estimate of
regression coefficients. Of note, Ridge and Enet algorithms showed the most improved estima-

tion (lowest RMSE for b̂). The probability of each method to select the regression coefficient
with the wrong sign (related interpretation to a type 3 error) is given in Table 3, demonstrating
advantages of LASSO as well as Enet 1 in scenarios with low sample size, whereas the probabil-
ity that a variable was not selected was even lower as compared to sAIC and sBIC. Variable
selection by optimizing sBIC obtained the wrong sign less often as compared to sAIC but was
still inferior to LASSO type penalization if the sample size was low. As assumed, the naïve OLS
estimation showed clearly worse results as compared to all other methods. Estimated effects for
all nine regression coefficients in m = 5000 simulations is visualized in Fig 5 (for the n = 50
case). sAIC and sBIC excluded particularly smaller effects, whereas large estimated coefficients
(regardless of their sign) were not penalized in contrast to shrinkage procedures. This might
cause a potential limitation for the use of these methods in the context of metabolic studies
with primarily correlated predictors with small effects, in particular if a researcher is interested
to compare different effect sizes.

Scenario C
This scenario was mainly focused to compare the performance of variable selection in the dif-
ferent methods with correlated noise variables (in contrast to scenario A, where the noise vari-
able was uncorrelated to other exploratory variables). In general, LASSO type penalization
(LASSO and Enet 1) showed an acceptable discrimination between parameters with true effect
and noise variables as visualized in Fig 6. Particularly, type 1 error was improved by LASSO
and Enet 1 (as compared to Enet 2 and Enet 3) in all sample size scenarios. As compared to
sAIC and particularly sBIC, LASSO and Enet 1 showed higher type 1 error, but also tended to
select variables with true effect more often. Concerning discrimination, LASSO type penaliza-
tion showed improved results when the sample size was small (Fig 6A and 6B). However, it has
to be mentioned that none of the strategies were able to derive suitable models in scenarios
with small sample size and increasing correlation of independent variables. Thus LASSO was
only superior over other less suitable approaches.

The model complexity (average number of included parameters in m = 5000 simulations)
for Scenario B and C is given in Table 4: sBIC provided the sparsest models in both scenarios,
followed by sAIC and LASSO (number of parameters in the model was twice as high as sBIC)
and Enet 1. An optimal model in scenario C would contain the 5 variables with an effect or due
to correlated variables even exclude some of these 5 variables. Of the model approaches with
variable selection LASSO and Enet 1–3 produce rather too complex models, but on the other
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hand variables with a real effect are included more often. In sBIC with n = 50 and 110 on aver-
age 1.9–2.0 variables are included with seems too sparse. Of note, the average number of nui-
sance variables was approximately 32% for n = 50, however decreased with ascending sample
size (approximately 20% for n = 110 and 10% for n = 500).

Discussion
This report examines different model building strategies for predicting insulin sensitivity with
nonorthogonal regressors. Particular focus was set to assess characteristics of penalized

Fig 4. Scenario B: RMSE for the 9 regression coefficients using different model building strategies and varying sample sizes.

doi:10.1371/journal.pone.0141524.g004
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regression techniques, as compared to commonly used sequential variable selection to intro-
duce these novel techniques in clinical investigations of diabetes with low dimensional data set-
tings. Thereby, a possible question of research might be the creation of a surrogate index of
insulin sensitivity. For this purpose, the results of our simulations (scenario A) showed that all
investigated shrinkage strategies (i.e. Ridge, LASSO, as well as the elastic net regulations) mod-
erately decreased the model prediction error of the final model as compared to the naïve OLS
method or optimizing AIC or BIC with stepwise-backward selection. Recently, Ambler et al.
[11] remarked, that penalized regression techniques offered improved prediction error and cal-
ibration as compared to standard methods in proportional hazard models with low events per
variable. Consistently with our results, the improved effect of shrinkage procedures on the pre-
diction error was mostly observed in the scenario with n = 50 observations and diminished
with increasing sample size in our study, while the prediction error between different penalized
estimation techniques was almost comparable in all scenarios. This observation is in

Table 3. Percentage of wrong sign for the estimated regression coefficient (scenario B).

OLS Ridge sAIC sBIC LASSO Enet 1 Enet 2 Enet3

i.1 (n = 50) 38.5 (0.0) 8.7 (0.0) 6.2 (67.3) 1.6 (80.5) 0.7 (56.5) 0.6 (41.3) 4.4 (8.5) 4.4 (21.3)

i.2 40.6 (0.0) 11.8 (0.0) 8.4 (66.5) 2.6 (80.8) 0.9 (70.3) 0.7 (54.0) 6.9 (10.2) 6.4 (23.3)

i.3 39.9 (0.0) 9.6 (0.0) 7.4 (66.3) 2.0 (80.1) 0.7 (67.2) 0.4 (49.7) 4.7 (9.5) 5.0 (22.5)

i.4 42.0 (0.0) 6.2 (0.0) 7.8 (66.9) 2.4 (78.7) 0.5 (61.9) 0.3 (40.5) 2.3 (7.9) 2.9 (21.8)

i.5 42.6 (0.0) 5.3 (0.0) 9.0 (66.3) 2.8 (78.9) 0.3 (61.1) 0.2 (37.7) 2.0 (7.3) 2.5 (20.8)

i.6 42.3 (0.0) 6.0 (0.0) 8.2 (66.5) 2.1 (79.4) 0.4 (61.0) 0.2 (38.8) 2.2 (7.9) 2.7 (21.4)

i.7 39.8 (0.0) 7.8 (0.0) 7.1 (68.4) 2.2 (80.0) 0.6 (62.8) 0.5 (45.2) 3.8 (8.7) 3.7 (22.4)

i.8 39.0 (0.0) 8.2 (0.0) 6.7 (67.5) 1.8 (79.9) 0.6 (63.9) 0.4 (46.6) 4.2 (8.9) 3.9 (22.7)

i.9 36.6 (0.0) 13.7 (0.0) 6.3 (69.0) 2.1 (82.1) 1.2 (67.8) 0.9 (54.8) 8.7 (10.2) 7.8 (23.4)

i.1 (n = 110) 31.2 (0.0) 6.6 (0.0) 3.1 (67.1) 0.3 (78.8) 0.8 (36.8) 0.4 (21.0) 3.0 (4.5) 3.8 (8.4)

i.2 34.2 (0.0) 8.4 (0.0) 4.5 (67.0) 1.0 (79.3) 1.1 (50.7) 0.8 (33.4) 4.6 (5.2) 5.5 (9.7)

i.3 35.0 (0.0) 6.3 (0.0) 4.4 (66.4) 0.8 (78.2) 0.5 (49.8) 0.4 (29.3) 2.9 (5.1) 3.7 (9.7)

i.4 36.5 (0.0) 4.8 (0.0) 4.3 (65.1) 1.0 (76.2) 0.7 (43.1) 0.3 (22.7) 2.3 (3.8) 3.0 (8.4)

i.5 38.3 (0.0) 4.6 (0.0) 5.8 (66.3) 1.0 (77.7) 0.5 (45.6) 0.3 (21.3) 2.0 (3.3) 2.6 (9.1)

i.6 36.7 (0.0) 4.1 (0.0) 4.3 (65.8) 0.6 (77.6) 0.5 (45.1) 0.3 (21.5) 1.5 (3.2) 2.2 (8.1)

i.7 34.5 (0.0) 6.3 (0.0) 4.6 (68.0) 0.7 (79.4) 1.0 (44.6) 0.5 (25.9) 3.0 (4.1) 3.9 (9.1)

i.8 33.4 (0.0) 6.4 (0.0) 3.6 (64.1) 0.5 (75.5) 0.7 (44.2) 0.5 (26.9) 3.0 (4.6) 3.9 (8.7)

i.9 31.3 (0.0) 9.9 (0.0) 3.4 (68.0) 0.7 (82.1) 1.3 (48.9) 1.1 (34.0) 5.9 (5.4) 6.8 (9.7)

i.1 (n = 500) 15.0 (0.0) 2.1 (0.0) 0.7 (50.1) 0.0 (67.0) 0.5 (14.3) 0.2 (5.5) 0.7 (1.4) 1.2 (2.8)

i.2 17.6 (0.0) 2.2 (0.0) 1.3 (52.0) 0.2 (64.4) 0.7 (21.0) 0.3 (8.3) 0.9 (1.6) 1.5 (3.5)

i.3 19.5 (0.0) 2.3 (0.0) 1.2 (55.3) 0.2 (67.4) 0.5 (21.2) 0.3 (7.8) 0.8 (1.7) 1.2 (3.7)

i.4 22.5 (0.0) 1.8 (0.0) 1.8 (55.1) 0.1 (67.7) 0.4 (22.2) 0.2 (7.4) 0.8 (1.3) 1.3 (3.4)

i.5 25.0 (0.0) 1.7 (0.0) 2.2 (56.1) 0.3 (66.4) 0.4 (25.0) 0.2 (7.5) 0.5 (1.4) 1.2 (3.8)

i.6 22.8 (0.0) 1.8 (0.0) 1.8 (54.3) 0.1 (65.9) 0.3 (22.0) 0.2 (6.3) 0.5 (1.2) 1.1 (3.6)

i.7 18.4 (0.0) 2.0 (0.0) 1.5 (55.3) 0.1 (71.7) 0.7 (18.8) 0.3 (6.9) 0.9 (1.2) 1.5 (3.5)

i.8 18.3 (0.0) 2.1 (0.0) 1.0 (53.4) 0.0 (64.0) 0.4 (18.5) 0.2 (6.7) 0.7 (1.6) 1.5 (3.3)

i.9 13.4 (0.0) 3.0 (0.0) 0.8 (49.6) 0.1 (64.9) 0.6 (17.4) 0.4 (8.5) 1.2 (2.0) 1.5 (3.3)

Data represent percentage of wrong sign of the estimated regression coefficients ðb̂Þ for n = 50, 110 and 500. The probability that a variable was not

selected is given in parentheses. Ordinary least square estimation (OLS); Stepwise-backward variable selection with AIC (sAIC) and BIC (sBIC);

Penalized estimation by using the Ridge method (Ridge), the least absolute shrinkage and selection operator (LASSO) and the elastic net L1-L2 (Enet 1),

elastic net L2-L1 (Enet 2), elastic net L1+L2 (Enet 3).

doi:10.1371/journal.pone.0141524.t003
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accordance with Porzelius et al. [12], who found no large differences regarding the predictive
performance between different shrinkage (and boosting) techniques in the setting of low
dimensional survival studies.

However, further issues have to be considered in addition to prediction error in the model
building process [19]. With an increasing number of covariates a prediction model gets
unpractical for clinical or scientific use [25]. Therefore, model complexity is another major
request for model building strategies. In our study Enet 2 (i.e. first optimizing λ2 followed by
optimizing λ1) performed almost no variable selection mimicking pure Ridge type penalization,
also reflected by the distribution of the shrinkage parameters. In contrast, LASSO and Enet 1
(i.e. first optimizing λ1 followed by optimizing λ2) performed much sparser and thus more par-
simonious models particularly in scenarios with low (n = 50) and moderate (n = 110) sample
size. Furthermore, amount of shrinkage (i.e. the size of the tuning parameters) strongly
depends on the underlying amount of explained variation. As a consequence, type 1 error was
considerably increased for LASSO type penalization in scenario A with n = 500, where
explained variation was approximately 53%. In contrast type 1 error was much smaller in sce-
nario C with an underlying explained variation of 31%. It was previously noticed, that the selec-
tive performance of LASSO is not invariant to the respective number of observations, as in case
of high dimensional data scenarios the solution saturates after selecting a number of predictors
comparable to the number of observations [9, 26, 27]. This limitation in addition to the obser-
vation that LASSO lacks to deal with grouped variables (i.e. tend to select one out of a group of

Fig 5. Scenario B: Estimated effect for the 9 regression coefficients (true effect = -0.025) using different model building strategies in 5000
simulated datasets (n = 50).OLS (A), sAIC (B), sBIC (C), Ridge (D), LASSO (E), Enet1 (F), Enet2 (G), Enet3 (H).

doi:10.1371/journal.pone.0141524.g005
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Fig 6. Scenario C: Selection probability for different variable selectionmethods in scenario C. n = 50 (A, B), n = 110 (C, D) and n = 500 (E, F). A, C, E:
solid line for sAIC, dashed line for sBIC, dotted line for LASSO; B, D, F: solid line for Enet 1, dashed line for Enet 2, dotted line for Enet 3. Noise predictor
variables are i.2, i.3, i.8, i.9.

doi:10.1371/journal.pone.0141524.g006
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highly correlated predictors and ignores others) motivated Zou and Hastie to introduce the
Enet algorithm, which was supposed to deliver better results in these situations [9]. Hence, the
capacity of Enet regulation to perform grouped selection might explain the behaviour of simul-
taneous λ1 and λ2 optimization (Enet 3) as it includes almost all of the highly correlated predic-
tors in scenario A or moderately correlated predictor and noise variables in scenario C.
Particularly, the higher type 1 error of these methods and a corresponding higher model com-
plexity should be considered when Enet 2 and Enet 3 (or Ridge) are used for model building
purposes. Therefore, LASSO type penalization outperforms Enet 2 or Enet 3 if the aim is to
select some most relevant OGTT measurements. With regard to sequential strategies it has to
be mentioned, that particularly sBIC performs sparser models as compared to sAIC or penal-
ized techniques in almost all situations. The observed differences between sBIC and sAIC cor-
respond to their different penalties: sBIC strongly depends on the number of observations in
contrast to sAIC and therefore selects sparser models if ln(n) exceeds 2 (i.e. if n>7). Conse-
quently, sBIC tends to select the correct model with infinite sample size and hence outperforms
sAIC in such a situation (which tends to select too complex models), however with the limita-
tion that sBIC chooses models which are too simple in scenarios with finite sample size [4].
This is also the explanation for its considerable lack of power when sample size is low.

Moreover, the accuracy of estimated regression coefficients was studied in scenario B. This
is of particular importance in studies of carbohydrate metabolism for example if a researcher is
aiming to evaluate the effect of repeated measurements during a metabolic stress test like the
OGTT (actually only fasting and 120 min post load levels are interpreted in clinical routine
and hence it might be of interest to evaluate the impact of other time points of glucose mea-
surements within this examination). Although the investigated estimation techniques had to
deal with a smaller number of covariables and collinearity was less severe as compared to sce-
nario A we noticed a considerable advantage of shrinkage procedures as compared to OLS or
sequential selection, regardless of the number of observations. Particularly, Ridge and Enet 2
estimated the variable effects with lowest bias. Despite a higher selection probability as com-
pared to variable selection strategies (i.e. sAIC and sBIC with low sample size), parameter esti-
mates with the wrong sign appeared considerably less often for LASSO type penalization (i.e.
LASSO and Enet 1). This has to be considered as an important issue in modelling situations
and in accordance with others we observed some major advantages for LASSO [28]: The

Table 4. Model complexity.

OLS sAIC sBIC Ridge LASSO Enet 1 Enet 2 Enet 3

Scenario B

n = 50 9.0 3.0 1.8 9.0 3.3 4.9 8.2 7.0

n = 110 9.0 3.0 2.0 9.0 4.9 6.6 8.6 8.2

n = 500 9.0 4.2 3.0 9.0 7.2 8.4 8.9 8.7

Scenario C

n = 50 9.0 (4.0) 3.1 (1.2) 1.9 (0.6) 9.0 (4.0) 3.6 (0.9) 5.0 (1.5) 8.2 (3.4) 7.2 (3.0)

n = 110 9.0 (4.0) 3.2 (1.0) 2.0 (0.4) 9.0 (4.0) 4.9 (1.3) 6.1 (1.8) 8.2 (3.3) 7.7 (3.1)

n = 500 9.0 (4.0) 4.4 (0.9) 3.0 (0.3) 9.0 (4.0) 6.3 (1.6) 6.9 (2.0) 8.0 (3.1) 8.0 (3.0)

Data represent the estimated (mean) number of included variables in m = 5000 simulations for n = 50, 110 and 500 with 9 and 5 meaningful variables and

0 and 4 nuisance variables for scenario B and C, respectively. For scenario C the average numbers of included nuisance variables are given in

parentheses. Ordinary least square estimation (OLS); Stepwise-backward variable selection with AIC (sAIC) and BIC (sBIC); Penalized estimation by

using the Ridge method (Ridge), the least absolute shrinkage and selection operator (LASSO) and the elastic net L1-L2 (Enet 1), elastic net L2-L1 (Enet

2), elastic net L1+L2 (Enet 3).

doi:10.1371/journal.pone.0141524.t004
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analysis of our real data example (Fig 1) indicates that predictors of impaired insulin sensitivity
(including OGTT derived measures) are usually positively correlated, resulting in regression
coefficients with opposite signs if they are included into a multivariate model. This might cause
major problems for interpreting variable specific effects, which could be avoided by variable
selection and particularly by LASSO type penalisation if sample size is low. Moreover, some
researchers have previously discussed a possible advantage of parameterwise shrinkage after
backward elimination [29, 30]. Recently van Houwelingen and Sauerbrei [31] recommended
this method, especially, when variable selection should be performed. We have not explicitly
studied this two stage approach, which is quite different to the penalized least squares tech-
niques (shrinkage during estimation) used in our study. However, the Enet 1 algorithm might
be considered as a different two stage approach with LASSO type penalization for variable
selection (first step) followed by Ridge regulation (second step), achieving the advantages of
both strategies (variable selection, correct sign as well as low prediction error for parameter
estimates). As sequential elimination might be inefficient in scenarios with few observations
(n = 50) what was also indicated by the results of scenario C (where sAIC and sBIC showed
inferior discrimination between noise variables and variables with true effect), we suggest that
Enet 1 might provide improved results particularly if the sample size is low, predictors are cor-
related, and both–variable selection and accuracy of estimated coefficients are of interest.
Thereby, the amount of selection of LASSO type penalization is closely related to the size of λ1.
As the cross-validation process for optimizing (and defining) the tuning parameter obviously
depends on the amount of the explained variation of the model this has additional impact on
the selection behavior of LASSO and Enet 1.

Limitations of our study design have to be considered: In this study we aimed to introduce
the use of variable shrinkage methods for clinical investigations in metabolic studies. Hence,
the motivation of our simulation scenarios was rather to give some examples and our simula-
tion scenarios are motivated (and restricted) by the key questions raised by our real data exam-
ple due to correlated covariables. Moreover, it has to be mentioned, that there might be other
methods, which might be used to deal with these problems like orthogonal transformation by
(sparse) principal components analysis, which we have recently proposed for the analysis of
OGTT data in another report [32].

We conclude, that there is not one “best”method, achieving superior performance over
other strategies in every situation. There might be scenarios favoring different shrinkage or
selection strategies depending on the correlation structure of predictors, the number of noise
variables, the number of observations and particularly the question of research. With respect to
the diabetes data example we draw the following conclusions: Prediction error is rather a con-
sequence of sample size. However, as LASSO and Enet 1 derived sparser models as compared
to Ridge, Enet 2 or Enet 3 and additionally resulted in a slightly improved prediction error as
compared to sequential selection strategies, we recommend both methods for modelling insu-
lin sensitivity in sparse sample size scenarios. Particularly smaller and hence simpler models
might be more favourable for use in clinical setting. However, it has to be mentioned, that we
found little to no improvement of penalized regression techniques over sequential OLS meth-
ods, when only prediction is the aim and the ratio between number of predictor variables and
sample size of the study population is low. Furthermore, there is less advantage of the use of
sequential selection methods in situations where the specific effect of correlated predictors is of
interest and parsimonious but, however, meaningful models should be established. This is a
common case in metabolic studies, where several correlated measurements over time are
related to insulin sensitivity, whereby the most promising are candidates for use in clinical rou-
tine. The improvement in the accuracy of estimated effects as well as of their properties partic-
ularly for estimating the correct direction of parameters underlines the possible advantages of
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using penalized regression techniques for such tasks. However, the decision which procedure
should be used depends on the specific context of a study and should involve clinical prior
knowledge [28].
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