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The prevalence of individuals who are overweight or obese is rising rapidly globally.
Currently, majority of drugs used to treat obesity are ineffective or are accompanied by
obvious side effects; hence, the options are very limited. Therefore, it is necessary to find
more effective and safer anti-obesity drugs. It has been proven in vivo and in vitro that the
active ingredient notoginsenosides isolated from traditional Chinese medicine Panax
notoginseng (Burk.) F. H. Chen exhibits anti-obesity effects. Notoginsenosides can
treat obesity by reducing lipid synthesis, inhibiting adipogenesis, promoting white
adipose tissue browning, increasing energy consumption, and improving insulin
sensitivity. Although notoginsenosides are potential drugs for the treatment of obesity,
their effects and mechanisms have not been analyzed in depth. In this review, the anti-
obesity potential and mechanism of action of notoginsenosides were analyzed; thus laying
emphasis on the timely prevention and treatment of obesity.
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INTRODUCTION

Individuals with excess fat accumulation that can impair health are called overweight or obese.
According to the World Health Organization, an adult with a body mass index (BMI) ≥25 is
overweight and ≥30 is obese. The global prevalence of obesity almost tripled between 1975 and 2016,
with 39% of adults classified as overweight and 13% as obese (Collaboration, 2017). Obesity often
increases the risk of lifestyle diseases, such as cardiovascular disease, diabetes, and cancer. Although a
healthier lifestyle, such as healthy food and regular exercise can prevent obesity and promote weight
loss; but, in the long run, lifestyle, environmental, and genetic factors can easily lead to obesity again
(Dulloo and Montani, 2015). Therefore, drug therapy combined with exercise and diet management
is extremely beneficial for individuals who struggle with weight loss. However, currently, there are
very few drugs available for obesity treatment. Currently, only Orlistat, Lorcaserin, and Qsymia
(Fentiemine/Topiramate sustained-release tablets) have been approved by the FDA for use for long-
term weight control. Orlistat is an intestinal lipase inhibitor; by inhibiting the hydrolysis of
triglycerides, Orlistat reduces the absorption of fat from food to achieve weight loss. However,
long-term use of the drug can lead to deficiency of fat-soluble vitamins and cause gastrointestinal
disorders (Filippatos et al., 2008; Halpern and Halpern, 2015). Lorcaserin, which can reduce appetite,
acts on the 5-HT2C receptor as a sympathetic nerve agent, but its long-term use has put individuals
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at risk for valvular heart disease and cancer (Greenway et al.,
2016). Qsymia is a central nervous system weight-loss drug that
has precipitated adverse effects, such as headache, insomnia,
constipation, and dizziness (Siebenhofer et al., 2016; Halpern
and Mancini, 2017). In addition, many weight-loss medications
have been withdrawn due to strong side effects, such as
Flaviprolamine (heart disease), Amirese (obstructive
pulmonary hypertension), Phentamine (insomnia, fatal
pulmonary hypertension), and Rimonabant (psychiatric
reactions, depression and anxiety, suicide risk) (Cheung et al.,
2013). Therefore, the development of safe and effective new anti-
obesity drugs has great clinical significance and economic value.

Panax notoginseng (Burk.) F. H. Chen (Sanqi in Chinese) is a
valuable traditional Chinese medicine, belonging to the genus
Araliaceae, that was first recorded in Shennong Ben Cao Jing. Its
dried roots promote blood circulation, stop bleeding, reduce
swelling, and relieve pain. With developments in traditional
medicine, a more systematic study of Panax notoginseng has
been carried out using modern physics, chemical technology, and
modern medical theories. More than 80 types of monomeric
saponins, flavonoids, and notoginseng phytoconstituents with
unique pharmacological activities were isolated from different
parts of P. notoginseng, among which P. notoginseng saponins
(PNS) are the main active components. The PNS are divided into
two groups, 20(S)-protopanaxatriol or 20(S)-protopanaxadiol
(Qiao et al., 2018) (Figure 1). These components have a
variety of pharmacological activities, such as anti-oxidation
(Hu et al., 2018; Hu et al., 2019), anti-depression (Xiang et al.,
2011; Cui et al., 2012; Zhang et al., 2018), treatment of
cardiovascular diseases (Zhou et al., 2018; Liu X. W. et al.,
2019) and treatment of diabetes (Guo et al., 2019; Wang et al.,
2019).

Recent studies have found that PNS or monomer
notoginsenosides have regulatory effects on obesity and
lipid metabolism in addition to the treatment of type 2
diabetes and atherosclerosis (Fan et al., 2012; Peng et al.,
2019). When the type 2 diabetes model KK-Ay mice were
treated with PNS, it was found that PNS decreased the fasting
blood glucose level of diabetic mice accompanied with
significant weight loss (Yang et al., 2009). Further studies
showed that PNS could downregulate SREBP1, SCD1, and
FAS through the AMPK signaling pathway, inhibit
adipogenesis, and reduce white adipose tissue weight,
thereby reducing the weight of diabetic mice (Wang et al.,
2020). In high-fat diet-induced atherosclerosis models,
treatment with the PNS/monomer notoginsenosides
significantly reduced lipid levels (Jia et al., 2010; Fan et al.,
2012; Liu C. et al., 2019). In addition, PNS can inhibit lipase
protein expression in non-alcoholic fatty liver disease
(NAFLD), reduce lipolysis in white adipose tissue, and thus
alleviate lipid accumulation in the liver (Ding et al., 2015). In
addition, PNS, notoginsenosides R1, ginsenoside Rg1, and
ginsenoside Rb1 can significantly reduce the content of
SREBP2 and HMG-CoA, directly inhibit the synthesis of
cholesterol, and protect the liver (Chen et al., 2016).

However, so far, pharmacological studies of PNS and
monomer notoginsenosides have mostly focused on
cardiovascular system diseases, central nervous system
diseases, and anticancer activities. There is a lack of systematic
evaluation of their role in regulating lipid metabolism and their
anti-obesity effects. This review summarizes the anti-obesity
effects and mechanisms of PNS, provides research potential
for the clinical treatment of obesity and the development of
safe and effective anti-obesity drugs.

FIGURE 1 | (A) Panax notoginseng F. H. Chen (B and C) Structure skeletons of 20(S)-protopanaxatriol and 20(S)-protopanaxadiol that exist in raw and processed
Panax notoginseng.
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EFFECTS ON ADIPOGENESIS AND
LIPOLYSIS

Adipogenesis
Due to the long-term imbalance of energy intake and
consumption by the body, excess energy is stored in white
adipocytes in the form of triglycerides (Kopelman, 2000).
This process is accompanied by the proliferation and
differentiation of preadipocytes and cell hypertrophy,
resulting from increased lipid storage that eventually leads
to the proliferation of adipose tissue volume, presenting as
obesity (Arner and Spalding, 2010). In mammalian cells,
peroxisome proliferator-activated receptor (PPAR) and
CCAAT/enhancer binding protein (C/EBP) are considered
to be key early regulators of adipogenesis (Wu et al., 1999;
Rosen et al., 2000; Lefterova and Lazar, 2009), whereas
SREBP1 and cAMP response element binding protein
(CREB) regulate adipose tissue differentiation and
metabolism by influencing PPAR (Kim and Spiegelman,
1996; Fajas et al., 1999; Reusch et al., 2000). Additionally,
proteins, such as glucose transporter 4 (GLUT4), lipoprotein
lipase (LPL), SCD, and FAS, are also involved in adipogenesis
and lipid storage (Moseti et al., 2016).

The experimental results (Table 1) of in vivo and in vitro studies
showed that many kinds of notoginsengmonomer saponins, such as
ginsenosides RC, Rg3, and Rg2, can inhibit the proliferation and
differentiation of adipocytes, reduce the number of adipocytes, and
inhibit the accumulation of lipids in adipocytes by reducing the
expression levels of PPARγ, C/EBPs, SREBP, and FAS, to achieve
anti-obesity effects. The combination of various saponins, such as
ginsenosides Rb1, Rg1, and notoginsenosides R1, can also reduce the
synthesis of lipids and cholesterol through SREBP-1C, acetyl-CoA
carboxylase (ACC), acetyl-coa synthetase (ACS), and other proteins
(Xie et al., 2015). In addition, the AMPK pathway acts as a central
regulator of cellular energy sensors, organelle biogenesis, cell
metabolism, cell proliferation, and differentiation (Hardie, 2011).
Current studies have shown that activation of AMPK signaling
increases energy consumption and reduces lipid accumulation and
adipogenesis (Fernandez-Veledo et al., 2013; Desjardins and
Steinberg, 2018). Ginsenosides Rb1, Rg3, CK, and Rg1, can
improve insulin sensitivity and inhibit the occurrence of obesity
by activating the AMPK pathway. The in vitro and in vivo anti-
obesity effect and mechanism of some notoginsenosides have been
discussed at present as some drugs are still lacking in vivo
experimental verification, and the mechanism of action needs to
be further explored.

TABLE 1 | Effect of notoginsenosides on adipogenesis.

Durg Type Effect Mechanism References

Ginsenoside
Rb1

In vivo Anti-obesity, improved insulin sensitivity Elevated activation of hepatic AMP-activated
protein kinase (AMPK) and phosphorylated
acetyl-CoA carboxylase

Shen et al. (2013)

Ginsenoside
Rb2

In vitro Decreased TAG levels Stimulated the expression of SREBP and leptin
mRNA

Kim E. J. et al. (2009)

Ginsenoside
Rc

In vitro Decreased the number of adipocytes,
reduced lipid accumulation in maturing
preadipocytes

Down-regulated the expression of PPARγ and
C/EBPα

Yang and Kim (2015)

Ginsenoside
Rg3

In vitro
and vivo

Reduced serum levels of triglyceride, total
cholesterol, and LDL-cholesterol; reduced
lipid accumulation in adipocytes and
suppressed adipogenesis; reduced
epididymal white adipose tissue size;
improved insulin sensitivity

Increased AMPK activation and suppressed
adipogenesis by decreasing the mRNA
expression of C/EBPα, PPARγ, SREBP1, Pgc-
1α, FAS, AP2, and SIRT1 and by increasing that
of CPT1 and HSL.

Hwang et al. (2009); Lee et al. (2012); Lee
et al. (2017); Zhang et al. (2017); Lee H. S.
et al. (2019); Kim et al. (2020)

Ginsenoside
F2

In vitro Reduced lipid accumulation Reduced the gene expression of PPARγ and
perilipin

Siraj et al. (2015)

Ginsenoside
CK

In vitro Enhanced glucose uptake; inhibited
triglyceride accumulation

Activation of AMPK and PI3K signaling
pathways; induced GLUT4 expression at both
the mRNA and protein levels

Huang et al. (2010)

Ginsenoside
Rg1

In vitro
and vivo

Decreased body weight, total cholesterol, and
total triglyceride levels; inhibited lipogenesis,
and decreased intracellular lipid content,
adipocyte size, and adipose weight

Induced AMPK activation; increased CHOP10
and reduced the C/EBPβ transcriptional
activity; reduced fat and cholesterol anabolism
genes such as SREBP-1c, ACC, ATP-CL,
ACS; promoted the expression of PPAR-α,
CPT1A, CPT2, and CYP-7A

Xie et al. (2015); Koh et al. (2017); Liu et al.
(2018); Lee J. H. et al. (2019); Hou et al.
(2020)

Ginsenoside
Rg2

In vitro
and vivo

Inhibited adipocyte differentiation and
decreased body weight, reversed hepatic
steatosis, and improved glucose tolerance
and insulin sensitivity

Induced activation of AMPK and SIRT1
signaling pathway; decreased the expression
levels of PPARγ, C/EBPα, and SREBP1-c, and
then regulated target genes such as ACC
and FAS

Liu H. et al. (2019); Cheng et al. (2020)

Ginsenoside
Rh1

In vitro
and vivo

Suppressed body and epididymal fat weight
gains and plasma triglyceride level; inhibited
adipogenesis

Decreased the expressions of PPAR-γ, C/EBP-
α, FAS, and FABP

Gu et al. (2013)
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Lipolysis
In obesity, excess circulating fatty acids in plasma may
accumulate ectopically in insulin-sensitive tissues and
impair insulin action. Increased basal lipolysis may also
change the secretion status of adipose tissues, affect the
insulin sensitivity of the whole body, and exacerbate the
inflammation of adipose tissue (Morigny et al., 2016).
Therefore, in addition to inhibiting the proliferation and
differentiation of adipocytes, regulating adipolysis is also
crucial for the management of obesity.

In the experimental studies reported so far, the regulation of
notoginsenosides on adipolysis involves several different
mechanisms; Ginsenosides, Rg1, Rg2, and Rh1, regulate PPAR,
C/EBP, and AMPK signaling pathways, while inhibiting
adipogenesis, reduce lipid synthesis and inhibit lipolysis,
thereby reducing circulating blood lipid levels and improving
insulin sensitivity (Masuno et al., 1996; Lee K. et al., 2019).
Interestingly, Hyun Sook Lee et al. found that ginsenoside Rg3
can directly increase the expression of lipolysis-related genes in
the white adipose of obese mice that were fed a high-fat diet and
promote lipolysis by upregulating crucial genes CPT1 and HSL
(Rupasinghe et al., 2016; Dankel et al., 2019; Lee H. S. et al., 2019).
However, there are also reports on Ginsenoside Rb1-induced beta
three adrenergic receptor-dependent lipolysis and thermogenesis.
Ginsenoside Rb1 treatment can increase the protein expression of
lipase and thermogenic factor UCP1, increase the level of
lipolysis, and reduce the size of adipocytes, and meanwhile
increase the thermogenic capacity of obese mice, thereby
consuming free fatty acids (Lim et al., 2019). In addition,
20(S)-ginsenoside Rg3 can exert a similar effect to Orlistat by
regulating pancreatic lipase. Experiments have shown that 20(S)-
ginsenoside Rg3, which is a potential drug for the treatment of
obesity, can inhibit pancreatic lipase activity, reduce the
decomposition and absorption of lipids in food, and inhibit
lipid accumulation during the differentiation of 3T3-L1
adipogenic cells through AMPK and PPAR-signaling
pathways. (Fei et al., 2016).

EFFECTS ON BODY ENERGY
CONSUMPTION

Promote White Adipose Tissue Browning
There are two main types of adipocytes in mammals: white
adipose tissue (WAT), which is the major tissue for energy
storage, and brown adipose tissue (BAT), which is the major
tissue for energy consumption. WAT converts the excess energy
of the body into triglycerides and stores them in cells, whereas
BAT contains a large number of mitochondria, among which
high levels of UCP1 consume bioenergy and emit energy in non-
tremor thermogenesis to maintain human body temperature and
energy consumption (Contreras et al., 2016; Lee J. H. et al., 2019).
More recently, a third type of adipocyte, called beige adipocytes,
has been identified in WAT that is similar to classic brown
adipocytes but with comparatively higher levels of UCP1
(Giordano et al., 2014). Biogenesis of beige adipocytes in
WAT can be induced by cold exposure and drug or hormone

stimulation (de Jong et al., 2017). In the past few years, the
development and transcriptional regulation of beige fat has
received much attention. It has been found that genetically
and pharmacologically inducing beige adipocytes can protect
mice from obesity and insulin resistance induced by a high-fat
diet, as well as effectively increase energy expenditure and
improve metabolic disorders. Recent studies have also
identified several major transcriptional regulators of the
development and function of beige adipocytes, including
PPARs, PGC1, FOXC2, and, PRDM16 (Su et al., 2018;
Lizcano, 2019).

At present, many studies have shown that ginsenoside Rb1
induces browning of adipocytes through AMPK-mediated
pathways thereby exerting anti-obesity effects (Mu et al., 2015;
Park S. J. et al., 2019; Lim et al., 2019). In vitro, 10 μM ginsenoside
Rb1 treatment increased glucose uptake in 3T3-L1 cells and
promoted mRNA expression of brown fat marker proteins
UCP-1, PGC-1α, and PRDM16. In addition, ginsenoside Rb1
also increased PPARγ expression (Mu et al., 2015; Park S. J. et al.,
2019), and browning was eliminated with PPARγ antagonist
GW9692 (Mu et al., 2015). In vivo, db/db mice were
intraperitoneally injected with ginsenoside Rb1, the amount of
WAT in the groin decreased, and respiration and heat production
increased. After pre-treatment with β3AR antagonist L748337,
ginsenoside Rb1 lost its ability to promote browning and
thermogenesis (Lim et al., 2019). In addition, other studies
have found that ginsenosides Rb2, Rg1, and Rg3 induced
AMPK phosphorylation, stimulated the expression of UCP1,
and increased thermogenesis and mitochondrial gene
expression to induce BAT activation and white adipocyte
browning (Lee K. et al., 2019; Hong et al., 2019; Kim et al.,
2020). Ginsenoside Rd enhances thermal gene expression in
brown adipose tissue through the PKA signaling pathway and
increases browning of white adipose tissue induced by cold
exposure (Yao et al., 2020).

As shown in Table 1, many panax notoginseng monomer
saponins can affect body adipogenesis by regulating PPARs
and AMPK. PPARs are a group of nuclear transcription
factors; there are three types of PPAR: PPARα, δ, andγ.
PPARγ is a core transcription factor required for white
adipogenesis (Rosen and Spiegelman, 2014). When PPARγ
binds to PRDM16, PPARγ stimulates the expression of
selective genes in brown and beige adipocytes and inhibits
white adipocyte specific genes (Ohno et al., 2012; Qiang et al.,
2012). PPARα and PPAR δ stimulate fatty acid oxidation and
mitochondrial respiration, promoting white adipose tissue
browning (Wang et al., 2003; Hondares et al., 2011; Mottillo
et al., 2012; Barquissau et al., 2016). In addition, studies have
shown that activation of AMPK can increase the activity and
energy expenditure of BAT and beige adipocytes and targeting
AMPK may have therapeutic potential for treating obesity and
related diseases (Fernandez-Marcos and Auwerx, 2011; van
Dam et al., 2015). Therefore, in addition to the observed
inhibition of adipogenesis and weight loss by AMPK and
PPARs, we can also explore whether this component can
resist obesity by promoting browning of white adipose
tissue and increasing body energy consumption.
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Mitochondrial Protective Effect
Mitochondria are essential organelles for energy metabolism.
Adipocyte mitochondria play a substantial regulatory role
between whole-body energy balance, muscle and adipose tissue
differentiation, and insulin sensitivity and glucose metabolism
(Bhatti et al., 2017). Various studies have shown that
mitochondrial function and biogenesis are impaired in type 2
diabetes, obesity, and insulin-resistant adipose tissue (Bhatti et al.,
2017; Dai and Jiang, 2019). The main function of mitochondria in
adipocytes is to produce ATP to support a variety of key
metabolic pathways for lipid clearance, including triglyceride
synthesis, glucometosis, and fatty acid oxidation. In addition,
in response to cold exposure, drugs or adrenal hormones,
activation of mitochondria in brown and beige adipocytes
accelerates energy consumption by increasing the expression
of mitochondrial UCP1 (Harms and Seale, 2013). Fatty acid
oxidation and reduced energy consumption, caused by
mitochondrial dysfunction in the brown adipocytes of
individuals with obesity and metabolic diseases, indicate the
role of mitochondrial function in anti-obesity effects (Bournat
and Brown, 2010).

Excessive reactive oxygen species (ROS) production in adipose
tissue of obese mice and significantly decreased mitochondrial
mtDNA and respiratory protein expression, resulting in
mitochondrial dysfunction (Furukawa et al., 2004; Sparks
et al., 2005). Ginsenosides Rb2, F1, and Rc enhanced the
deacetylation activity of SIRT1 and inhibited the formation of
intracellular ROS. In addition, by increasing mitochondrial DNA
content, cell oxygen consumption was restored, and
mitochondrial damage induced by oxidative stress was
reduced, showing the protective effect of mitochondrial
function (Wang et al., 2016). Ginsenosides Rd and Re reduce
oxidative stress, improve mitochondrial integrity and function,
and inhibit intracellular ROS production and lipid peroxidation
caused by rotenone (Gonzalez-Burgos et al., 2017). Ginsenosides
Rg3 and Rg1 can regulate mitochondrial autophagy and
biogenesis by activating the AMPK signaling pathway, thus
improving mitochondrial dysfunction (Xing et al., 2017; Lee K.
et al., 2019). Thus, notoginsenosides may protect mitochondrial
function by regulating mitochondrial energy metabolism,
oxidative stress, biogenesis, autophagy, and enhance energy
consumption in obese patients. In addition, it has been
reported that inhibition of fatty acid oxidation and
maintenance of mitochondrial energy metabolism are essential
for the survival of brown and beige adipocytes during dormancy
(Kutyavin and Chawla, 2019). Therefore, the mitochondrial
protective effect of notoginsenosides may affect the
thermogenic function maintenance of BAT and beige
adipocytes in a thermally neutral environment, which needs
further experimental investigation.

EFFECTS ON INSULIN SENSITIVITY

Obesity and Insulin Resistance
It has been shown that obesity-induced adipose tissue metabolic
disorders cause primary insulin resistance in insulin-sensitive

tissues (Smith and Kahn, 2016; Czech, 2017). Lipid overload and
lipid toxicity caused by obesity affect insulin sensitivity of various
organs by interfering with the insulin signal transduction
pathway (Chen et al., 2017; Engin, 2017). In contrast, fatty
factors secreted by adipose tissue, such as monocyte
chemoattractant protein-1/chemokine (C-C motif) ligand-2
(McP-1/CCL2) and tumor necrosis factor-α (TNFα), regulate
inflammatory responses in adipose tissue (Sartipy and Loskutoff,
2003). McP-1/CCL2 acts as a chemoattractant that increases the
macrophage content in adipose tissue in obese patients and
causes chronic low-grade inflammation in adipose tissue
(Weisberg et al., 2003; Curat et al., 2004). The chronic
inflammatory state of obesity is associated with excessive
production of TNFα, which downregulates PPARγ expression
(Zhang et al., 1996). The downregulation of PPARγ protein
expression leads to a decrease in adipogenesis, and the storage
capacity of triglycerides in adipocytes is impaired, which
increases the level of free FFA, resulting in a vicious circle
(Abdullahi and Jeschke, 2016). In addition, inflammation may
cause insulin resistance through the direct action of TNFα on
muscle insulin signaling. In addition, the normal secretion of
adipogenic factors, such as leptin and adiponectin, is also affected
by adipose tissue metabolic disorders (Berg et al., 2002).
Improving insulin resistance is important in the treatment of
obesity and obesity-related lifetsyle disorders.

Ginsenoside Rg3 was found to improve the pathological
changes caused by obesity by downregulating STAT5-PPAR.
Rg3-treated 3T3-L1 cells showed reduced lipid accumulation
and total TG levels, and alleviated obesity-induced insulin
resistance and lipid toxicity (Lee et al., 2017). By measuring
the expression level of apoptosis-related protein and TUNEL
staining, it was found that ginsenoside Rb2 improved the insulin
resistance and apoptosis of 3T3-L1 adipocytes induced by TNF-α
(Lin et al., 2020), and ginsenoside Rd reduced the BAX/BCL2
ratio and directly reduced the apoptosis of islet cells (Kaviani
et al., 2019). In addition, it has been found that ginsenoside Rg3
can improve insulin signaling in obese patients by stimulating the
expression of IRS-1 and GLUT4 (Kim M. et al., 2009), and
ginsenosides Rb1, Rg1, Rg3, and Rh2 can enhance glucose-
stimulated insulin secretion in islet cells (Park et al., 2008;
Yuan et al., 2012). It can be seen that notoginsenosides can
improve insulin sensitivity of the body by alleviating lipid toxicity,
protecting adipocytes and islet cells, and enhancing insulin signal
transduction. However, interestingly, Reeds et al. found that oral
administration of ginseng and ginsenoside Re did not improve
impaired glucose tolerance or obesity, and there were no
significant changes in cell function or insulin sensitivity in
obese subjects, which may be related to the low systemic
bioavailability of saponins (Reeds et al., 2011). This question
needs to be answered with quality evidence in subsequent
experimental studies to confirm the ginsenoside efficacy.

Glucose Metabolism
Adipose tissue plays an important role in the control of systemic
glucose homeostasis in both normal and diseased states. Insulin
resistance associated with obesity indicates a decrease in the
body’s ability to activate the insulin signaling pathway, which
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stimulates glucose uptake and metabolism (Villalobos-Labra
et al., 2019). In the adipocytes of insulin-resistant obese
patients, reduced levels of the insulin-regulated glucose
transporter GLUT4 trigger hyperglycaemia (Brannmark et al.,
2013) thus activating oxidative stress, inflammation, and
endoplasmic reticulum stress responses (Mozzini et al., 2015;
Mota et al., 2016).

Ginsenosides Rb2 and Rg3 were found to increase glucose
uptake by the IRS-1-PI3K-Akt/PKB pathway in 3T3-L1
adipocytes (Lee et al., 2011; Dai et al., 2018). Ginsenosides
Rb1, Re, CK, and Rg1 promote the absorption and utilization
of glucose in adipocytes, liver, and muscle tissues and improve
insulin resistance by activating AMPK pathways and increasing
GLUT4 mRNA and protein levels (Huang et al., 2010; Shang
et al., 2014; Li et al., 2018). Although adipose tissue absorbs less
glucose than skeletal muscle, it accounts for only about 10% of the
glucose load at mealtime. However, it has recently been found
that GLUT4 expression and glucose metabolism in adipose cells
can affect substrate metabolism and adipogenesis by changing
endocrine functions, thus improving lipid metabolism disorders
caused by obesity (Figure 2) (Semirale et al., 2011; Smith and
Kahn, 2016).

CONCLUSION

Obesity has become an epidemic worldwide due to genetics, or
poor lifestyle habits, such as fatty diet and less exercise. According
to statistics, obesity-related diabetes, cardiovascular disease, and
cancer have shortened the life span of obese patients by 4–7 years
(Bray et al., 2018). At present, most of the drugs and strategies to

manage obesity have obvious side effects or are not effective.
Moreover, obesity is can cause a variety of pathological changes,
including hyperlipidemia, chronic inflammation, adipocyte
dysfunction, glucose and lipid metabolism disorder,
mitochondrial injury and insulin resistance, and other multi-
factor interactions, making the treatment of obesity more
difficult. For example, in response to increased lipid levels,
mitochondrial function is downregulated and the expression of
oxidative phosphorylation genes is reduced (Richardson et al.,
2005; Koves et al., 2008). However, reduced mitochondrial
function results in impaired ability to consume fatty acids
through oxidative metabolism that may further exacerbate
lipid toxicity and glucose lipid metabolism disorders,
secondary inflammation, and insulin resistance (Morino et al.,
2006).

P. notoginseng contains a variety of phytoconstituents,
including notoginsenosides, ginsenosides, quercetin, and
ginseng polysaccharides, that have been used as a rare
traditional Chinese medicine for many centuries. There is
much evidence to support the effect of notoginsenosides in the
management of obesity and weight loss. As mentioned above,
notoginseng saponins regulate adipogenesis and lipolysis through
signaling pathways, such as AMPK and PPAR, reducing adipose
tissue volume while avoiding the generation of lipid toxicity. In
addition, notoginsenosides also alleviate the mitochondrial
metabolic disorders associated with obesity and protect
mitochondrial function through antioxidant stress. They
promote browning of white adipose tissue by PPARs and
PGC-1A, such that energy storage tissue can be transformed
into energy consumption tissue, and increase the body’s energy
consumption to resist obesity. Furthermore, notoginsenosides
can also improve glucose and lipid metabolism disorders caused
by obesity. By improving the expression of GLUT4 protein and
improving the insulin sensitivity of all organs and tissues, and
promoting the uptake and utilization of glucose and free lipids in
all organs, obesity can be managed from various aspects.

In addition, it has been reported that ginsenosides treat obesity
in other ways. Ginsenoside Rb1 decreased pro-inflammatory
cytokines, such as TNF-α, IL-6, and NF-κB induced by a high-
fat diet, and restored leptin signaling in the hypothalamus and
pSTAT3 in high-fat mice (Wu et al., 2014; Wu et al., 2018). In
addition, ginsenoside Rb1 can improve insulin sensitivity in obese
and diabetic db/db mice by upregulating plasma adiponectin
levels, reducing liver fat accumulation, and inhibiting adipocyte
lipolysis (Yu et al., 2015). Interestingly, acute intraperitoneal
injection of Rb1 activates the PI3K/Akt signaling pathway
through the expression of c-FOS in brain regions involved in
energy homeostasis, and inhibits the expression of NPY gene in
the hypothalamus, thereby reducing appetite and food intake,
body weight, and body fat content and increasing energy
consumption (Xiong et al., 2010; Park H. J. et al., 2019). Xu
et al. also found that PNS-induced regulation of intestinal flora in
DIO mice can increase BAT thermogenesis and beige adipocyte
reconstruction by activating the leptin-AMPK/STAT3 signaling
pathway thus promoting energy consumption (Xu et al., 2020).

At present, it is difficult to achieve significant therapeutic
effects in the treatment of complex diseases using a single target

FIGURE 2 | Summary of anti-obesity mechanism of notoginsenosides.
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strategy. Although the efficacy of some notoginsenosides needs
to be further confirmed, and the detailed mechanism of
notoginsenosides in the treatment of obesity needs to be
further elucidated, notoginsenosides show the possibility of
resisting obesity in many ways, providing new ideas and
methods for the multi-target treatment of such complex
diseases. In addition, the oral utilization rates of different P.
notoginseng saponins were significantly different; oral
utilization of PPD ginsenoside was significantly higher than
that of PPT ginsenoside. However, in general, PNS has poor
absorption, long elimination half-life, and low bioavailability.
PNS is metabolized by bacteria and enzymes in the
gastrointestinal tract with many glycosides (Han et al., 2006;
Liu et al., 2009). At present, there is insufficient evidence to
support the clinical application of notoginsenosides in the
treatment of obesity. Clinical trials of the safety and efficacy
of these compounds are needed to verify the effects of saponins
observed in vitro and in animal models.
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