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Randomized reverse marker
strategy design for prospective
biomarker validation

Kevin H. Eng*"

We describe a novel study design for validating marker-based treatment strategies meant to select among possi-
ble therapeutic options using a biologic marker. Studying existing designs in realistic scenarios, we demonstrate
that this design is more than four times more efficient for testing the interaction between a marker and its
intended treatment. Our analysis employs a simple parametric framework that uncovers systematic biases in
currently proposed designs and suggests how they may be accommodated or enumerated. In the context of
markers for choosing a treatment for recurrent ovarian cancer, our proposal requires sample sizes on the order
of recently completed phases II and III studies making validation studies for this clinical decision scenario viable.
© 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

Acknowledging that tumor heterogeneity contributes to the variety in response to treatment [1] and
noting the rise in the discovery of therapeutics whose response is limited to a subgroup (e.g., gefitinib
and epidermal growth factor receptor mutant patients) [2] or in compounds whose beneficial effects are
tied to a marker (e.g., tamoxifen and estrogen receptor, Herceptin and Her2/neu), there is a significant
interest in finding biomarkers that can be used to target treatments.

Unfortunately, the clinical benefits of promising markers are rarely realized [3]. One reason may be the
surprisingly large sample sizes required to test the superiority of a marker-based (MB) treatment versus
nonmolecular treatment plans. One example from a prospective, randomized design [4] requires about
1000 patients to detect a hazard ratio of 0.70; in another optimal design, a 13% difference in response
rate requires about 500 patients [5]. These large numbers add to the burden of discovery and may make
trials prohibitively expensive for rarer cancers.

Even so, validation by multiple independent prospective trials is a necessary step in the development
of newly characterized markers [6,7]. An economical way to test a marker is to test for treatment effects
in a specific marker subset following an enriched or targeted design [8]. However, it is also of interest to
know whether the marker is relevant beyond a single stratum to quantify the practical, clinical impact of
an MB strategy. A desirable design is both randomized and targeted [9]; subsequently, we mean targeted
to say that the marker’s predictions have been included in the assignment of treatments in the study. The
ultimate goal of validation, then, is to interrogate a biomarker strategy: a predictive marker linked to
treatments to form a predictive strategy.

For testing strategies, there exists a handful of study designs [4], which either directly test the clinical
context of MB treatment or indirectly evaluate the interaction effect. The most efficient design is unclear
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as investigations have determined that there is ambiguity about the situations where one design is more
efficient than the other [10].

In this article, we will propose a new study design that we call a reverse marker (RM) strategy design.
As in existing marker-strategy designs (viz. [4]), it employs a two-arm randomization scheme, provides
a direct estimate of the marker-strategy response rate, and evaluates the interaction between the marker
and possible treatments. The design appears to use one quarter of the observations required to test the
same interaction in likely scenarios. Evaluated in the context of recurrent ovarian cancer, this efficiency
makes it possible to conduct studies at effect sizes reported in the literature while previous studies could
not. In deriving this new design, we employ a parametric framework to characterize the exact hypotheses
under study. This analysis reveals, in all of the designs, an implicit bias that relates to the marginal differ-
ence in effect between candidate treatments. Fortunately, it is straightforward to adjust planned studies
to accommodate these biases using this framework.

We first introduce three common designs for testing interactions as well as our proposed reverse-
marker strategy design (Section 2). A nontechnical discussion of design considerations focuses on the
contexts for and against the new design (Section 2.1). Section 3 reviews the parametric framework and
makes more technical comparisons. Our ovarian cancer case study in Section 4 illustrates the relative
efficiency of the designs and tests their sensitivity to marker prevalence.

2. Randomized designs for prospective biomarker validation

Throughout the article, we consider four designs whose schemas are given in Figure 1; the first three are
described in [4], and sample sizes for a class including designs 2 and 3 are discussed in [5]. Design 1 is
the stratified, marker-interaction (MI) study and is distinct from the others because it randomizes treat-
ments stratified on marker status. Design 2, the MB strategy, and design 3, the modified MB (MMB)
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Figure 1. Four designs for marker validation studies. Shaded boxes indicate the arms used in the planned
analysis. Parameters below each box are the expected response rate in each arm using the notation in Section 3.
Designs 1-3 are described in [4]. Design 4 is a novel proposal.
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strategy design, randomize patients to receive treatments following an MB assignment or a standard
clinical decision workflow and thus directly test the marker-strategy hypothesis. For brevity, the reader
is referred to the articles cited earlier for more details.

Design 4, the RM strategy design is a novel proposal. As in the MB and MMB designs, this is a direct
marker strategy design with two arms where one arm follows the MB strategy. The complementary arm
of the RM design, instead of a default treatment (MB) or a randomly drawn treatment (MMB), tests
the reverse treatment hypothesis that M T patients should be assigned to treatment B and M ~ patients
should be assigned to treatment A.

Each of these designs is intended to test the utility of a marker strategy by conducting a simple test of
proportions (MB, MMB, RM) or a test of the additive interaction (MI, defined in Appendix 1) between
the major arms shaded in Figure 1. Therefore, any statistical guarantees given by the associated test
reflect on the qualities of the design, and we will refer to test and design interchangeably.

2.1. Considerations for testing marker strategies

Before proceeding into the technical discussion, we summarize the key considerations for the trial
designs, pointing to the relevant statistical discussion in Section 3 and case studies in Section 4.

Is our goal to test for a treatment effect in a marker positive subset only? The targeted or enriched
designs assay patients first and then select only marker positive patients to study. Typically, the studied
subset is based on a biological hypothesis or a drug’s mechanism of effect and might be used in cases
where a drug has shown little marginal effect in the general population. However, the trial design says
nothing about the marker negative patients and may be less relevant in the clinical setting when the
marker is rare. One notes that the power and sample sizes for enriched designs [8] must be similar to the
situation where a marker is always present because the MI, RM, and MB designs become equivalent to
the enriched design. These designs are not fully identical because of their own specific considerations.

Is our goal to test the interaction or the clinical strategy in all the patients? The MI design is designed
to test whether the active treatment is unusually effective in marker positive patients. The MB, MMB,
and RM designs are powered to test the joint deployment of the marker and active treatment as a strategy
(Section 3.1). The difference is that the clinical strategy takes into account the marker prevalence as well
as the interaction to characterize the potential impact of the marker strategy on clinical care.

A key difference between the MI (measuring the interaction) and the RM (testing the strategy) designs
is whether the measurement of the marker implicitly represents an intent to treat. In the MI design,
patients can be dropped from study between measurement and randomization. While the control of
patients into arms is ideal because some patients may be discarded when the arm closes, this seems to
have a mixed benefit because accrual rates may be low if the marker prevalence is extreme. In contrast,
all patients are randomized, measured, treated, and evaluated in the RM design. Thus, a quantity of inter-
est to some study designers (especially for rare diseases) may be the expected number of patients who
must be assayed in order to reach the required accrual goal. The MB and MMB designs are in a gray
area because the marker needs to only be measured in one arm of the trial.

The active treatment should be appropriate for all patients. The MI, MMB, and RM designs assume
that the active treatment can be given to marker negative patients. In the MI and RM designs, the marker
values for all patients are assessed, so the design might be modified to exclude contraindications: marker
negative patients may be reassigned to the control treatment regardless of randomization. In the MB and
MMB designs, patients randomized to the non-MB treatment arm have unknown status that may allow
assignment to the contraindicated regimen (Section 3.2).

Is there a marginal drug effect? For candidate drugs in search of marker-defined subgroups, it is likely
that there is existing evidence of no beneficial effect at a previously tested population level. In general,
if there is a significant difference, there seems to be little need to conduct a marker trial. In the situation
that a marker trial is warranted, the framework in the next section provides a method for adjusting for
expected differences (Section 3.3). In our computational study, the RM sample requirements were robust
to variation in the marginal difference (Section 4.3).

How prevalent is the marker? Marker prevalence affects the clinical relevance of a marker strategy.
In our computational example, we noted that the RM design was relatively robust to variation in the
prevalence (Section 4.2). With respect to the logistics of accruing patients, if the marker is extremely
rare, then one may consider enriched or targeted designs that study only the marker positive setting.
During the design phase investigators, one may wish to compare the expected accrual rates among
different designs.
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Statistical efficiency. The power of the RM design dominates the MB and MMB designs in most rea-
sonable cases (Section 3.4). In the simulation study, we consider tests based on the RM and MI designs
that are similar but powered for different comparisons (Sections 4.1 Section 4.4).

3. Probability framework for marker strategies

Suppose that binary variable Y represents a patient’s response to their randomly assigned treatment,
T € {A, B}. Let the binary marker under study, M € {M™*, M~}, have level M T associated with
higher response rates and marker prevalence P(M = M) = 7 where 0 < 7 < 1. We assume that a
patient’s response depends only on their marker value and the treatment to which they are assigned. That
is, PY|T =i,M = j) = 0; where

0ij =Bo+Bal(T=A) +BI(M=MT)+ B I(T=A4,M=M") (1)

Here, 1(-) is the indicator function, B¢ represents a baseline effect, 8 4 represents the added effect of treat-
ment A, B4 the effect of a positive marker, and B7 is a nonadditive effect. The notation is summarized
in Table 1.

For completeness, we denote the marginal effect of treatment A as 64 = P(Y|T = A), likewise
for treatment B. It is generally assumed that B is a standard treatment and that A is under study for
its increased effect (84 > 0) or MB effect (8; > 0). Under this framework, the MB strategy under
consideration assigns M patients to treatment A and M ~ patients to treatment B.

Defining the marginal effect of treatment A over B to be

y = P(Y|T = A)— P(Y|T = B) )
= B4+ 7Br 3

where y = 0 corresponds to no difference, Section 3.1 will show that existing designs implicitly make
assumptions on y that can lead to anti-conservative analyses.

We state that the marker-strategy validation designs (MB, MMB, RM) intend to test H: 7 (1 —7)8; =
0. We derive this quantity in Section 3.1 by considering exactly what hypothesis is tested by each design.
Intuitively, this hypothesis contains both the marker prevalence 7 and an effect 8;. Notably, 8 focuses
on the specificity of the marker effect: a marker that is only prognostic (84 > 0) will not aid treatment;
a treatment that is independently superior (y > 0) does not necessarily require a marker. The interaction
(B1) captures the information about whether the strategy to assign M T patients to treatment A has more
merit than its individual components.

Targeted or enriched designs [8] that randomize within M T and M~ strata are similar to the MI
design [4], except that the targeted design intends to examine only the M+ arm, testing the null hypoth-
esis that H: 644+ = 0p4. The MI design is really a test of both arms, H: {#44+ = 0p4,04_ = 0p_}. We
emphasize the adjective marker-strategy to denote designs meant to test H: 7 (1 — ) = 0.

Finally, while we consider binomial responses in this article, a similar argument can be made by con-
sidering the same additive model parametrization of the (negative) log hazard of a survival time. The
corresponding log-rank test between arms and its sample size computation are based on an equivalent
quantity [11], so many of the following results translate directly.

3.1. Expected response rates and hypotheses under consideration

In the MI design, the test of interaction is based on the comparison of treatment effect in each marker
arm. It expects to test H: A; = 0 where

Table I. Summary of mean parametrization and effect parametrization.
Treatment Marker Status Mean Notation Effect Notation

A M+ Oa+ Bo+Ba+ B+ +Br
A M= 04— Bo+PBa

B M+ O+ Bo + B+

B M~ Op— Bo
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Ay = (0a+ —0p+)— (04— —0p-) “4)
=(Ba+PB1)—Ba (5)
=B (6)

We give a statistic testing the linear interaction in the Appendix. One might alternatively test the differ-
ences by constructing the 2 x 2 table of responders given treatment arm and marker status and then using
Fisher’s exact test, the test of proportions or a y2-test; the power of such a test depends on the odds ratio
and is inconvenient in this notation.

The planned analyses of the MB, MMB, and RM designs each test the difference in response rates
in the two arms. Let ¢y = nE(Y|M = M, T = A+ (1 —-mx)E(Y|M = M~,T = B) be
the expected response to an MB strategy. The non-marker strategy arm has expected response rate
¢ = E(Y|T = B) in the MB design; ¢35 = E(Y|T = A)/2+ E(Y|T = B)/2, in the MMB design;
andpy =mEYIM =M*,T=B)+(1—n)E(Y|IM =M~,T = A), in the RM design.

By comparing the response rate across these two arms, the designs test H : Ay = 0 where
Ar = ¢1 — ¢y for k = 2,3,4 (MB, MMB, and RM). It can be shown that the expected differences
are as follows:

A =na(l—m)B; +my (7
As=n(l—m)Br + (m —1/2)y (3)
Ay =2n(1-m)Br +2(r —1/2)y )

In the case that y = 0, it is sensible that the three direct designs test the MB strategy effect, 7 (1 —)f7,
as this depends on the prevalence of the marker as well as the expected interaction effect.

The distinction between the indirect and direct designs is evident here: the direct designs account for
the clinical utility of the marker and treatment. In the case that the marker is very common or very rare,
the likelihood of a situation that may be adjudicated by a marker is low and 7 (1 — ) 8 reflects this.

We expect that given the same number of patients, the RM design will have more power to detect devi-
ations from H : w(1—m)B; = 0 than the MMB design, because it has twice the signal (A4 = 2A3); sim-
ulation studies easily demonstrate this effect in supplemental material. Relative sample sizes calculations
follow in Section 3.4.

This amplification of effect comes from observing that ¢3 = ¢1/2 + ¢4/2. This means that between
the two arms in the modified MB strategy design, ceteris paribus, half the patients would have received
the same treatment regardless of randomization. The RM design arises by recognizing that we can adjust
the randomization point to minimize redundancy.

3.2. Treatment assignment frequency and balance

An informative comparison is to consider how each design assigns patients to the four possible groups:
AM™T, AM~, BM™*, and BM~. The expected fractions are summarized in Table II. We observe that
all combinations of treatment and marker are possible in the MI, MMB, and RM designs. In these cases,
the investigator must be prepared to use all of the possible levels.

The MI and RM designs have identical assignment rates and can be applied in similar situations. We
will see later that the designs are not fully equivalent because the MI design is powered to test treatment
effects in each marker arm separately, while the RM design ought to be powered for the interaction
hypothesis directly.

Note that the marginal frequency of treatment assignments in the MB and MMB designs depends on
marker prevalence. When 7 is very small, this dependence may lead to inefficiency: if M ™ is rare, the
MB strategy is largely concordant with the non-MB strategy. In contrast, the MI and RM designs show
a marginal sense of balance by assigning treatments in equal weight, invariant to 7. For the MI design,
this is a result of the stratified approach that treats marker groups as cohorts and does not use the marker
to supervise treatment assignment. The RM design’s balance comes because marker values should be
evenly randomized across arms.
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Table II. Expected fraction of patients assigned to treatment groups A and B by design.
Fraction Assigned
Marginal Marker and Treatment Probability of
Design A B AMT A M~ B,.Mt B,M~ same treatment
1 1 1— 1—
1 (MD) 2 2 3 = 3 = n/a
2 (MB) z 1-Z z 0 z 1—x l—7
1 3 3 1— 3(1—7) 1
3(MMB)  3+3  3-% F = T =5 2
1 1 1— 1—
4 RM) 2 2 7 7 7 7 0

77 is the prevalence of M T markers. The last column refers to the probability that the same treatment
is assigned regardless of randomization to marker-strategy arm or not.
MI, marker interaction; MB, market based; MMB, modified marker based; RM, reverse marker.

3.3. Unequal treatment effects

When y # 0, the guarantee on type I control in the test of H: 7 (1 — )87 = 0 may be affected. Simply,
the test may be invalid if 8; = 0 does not always imply that A = 0. Without loss of generality, we may
consider the y > 0 case.

In the MB design, {8; = 0,y > 0} implies that 7y > 0, so the design is always anti-conservative
and will falsely identify an interaction more often than it should. This occurs because only the
marker-strategy arm receives the superior (y > 0) treatment, which is aliased with marker effect [4].

In the MMB and RM designs, {f; = 0, y > 0} implies that Ay = 0 only when 7 = 1/2, correspond-
ing to even chance of assignment to the superior treatment. Because they decrease Aj, rarer markers
(r < 1/2) will make the test more conservative, while more prevalent markers will make the test anti-
conservative. While concerning, the latter case is less relevant: highly prevalent markers in the presence
of unequal treatments represents a case where biomarker-mediated treatment is likely to be redundant.

Thus, we have identified the bias, which can be accounted for during study design by estimates from
prior studies. If we adjust for the bias, the test becomes the two-sample test that the response proportions
differ by the bias, namely, H: Ay = (7w —1/2) for designs k=3, 4 (MMB, RM). Note that the MB design
cannot be adjusted (if y # 0 and A, = 0, then 7 must be zero).

3.4. Relative efficiency of designs for testing a marker-strategy hypothesis

We consider the relative sample sizes required by each design. Because the MI design is intended to test
treatment effects in each stratified arm before testing for the interaction, it is recommended to power
each arm separately [8, 12]. The formula is listed in the Appendix.

Given a particular set of response rates, 04+, 04—, 0p+, 0p_, a target level (o) and power (1 — ), the
sample sizes for the MB, MMB, and RM designs are computed as follows. Under one-to-one random-
ization, let nz be the number of patients required in each arm in design £ > 1. As in the previous section,
suppose that ¢; is the expected response rate in the marker arm and ¢, k > 1 is the rate in other arm
under design k, where Ay = ¢ — ¢. The required sample size for each arm in a test of proportions
between the two randomization arms is

(e +21-8)2[¢1(1 = p1) + i (1 — )]
ng = Ai

(10)

Where z, is the ath quantile of a standard normal distribution. The relative sample size required by
designs 3 and 4 is

’1_3 _ A_Azt (¢1(1_¢1)+¢3(1_¢3)) (11)
ng A3 \p1(1—1) + da(l —ps)
¢1+¢3-¢%‘¢§)
=4 12
(¢1+¢4—¢%_¢£ 1
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So, if ¢4 = ¢35 or p4 = 1 — ¢3, then n3/ny = 4; the MMB design uses four times more subjects than
the RM design. It can be shown that in general, ¢4 < min{¢s, 1 — ¢3} and ¢4 > max{¢ps, 1 — ¢3} assure
n3/n4 > 4.

When ¢; is close to zero or one, the relative efficiency is most sensitive to ¢3 and ¢4. Inversely,
¢1 = 1/2 minimizes their effect. So, the parenthetical term in Equation (12) may be bounded by

two ratios:
_ (9 ¢§) 13
" (m—ﬁ (19
_1M+%—%) M
”‘Qm+m—ﬁ (1

As a function of ¢g4, the ratio ro is lowest at ¢4 = 1/2 by concavity, so the zeroes of the parabola
3 — ¢3 + 1/16 = 0 mark a boundary: for 1/2 — V3/4 < ¢35 < 1/2 + /3/4 (approximately,
0.07 < ¢p3 < 0.93) and 0 < ¢4 < 1, r9 = 1/4 and n3/n4 = 1. In the other direction, considering
¢1 = 1/2 and ry, a similar argument shows that r; > 1/4 for all values of ¢3 and ¢4. These represent a
conservative boundary as there are more extreme cases where the ratio is larger than 1/4.

In summary, the RM design is more efficient than the MMB design for {(¢3,¢4) 11/2— \/3/4

<¢3<1/24+/3/4,0<¢ps < 1} and is more than four times more efficient for ¢4 < min{¢s, 1 — ¢3}
or ¢4 > max{¢s, 1 — ps}.

4. Recurrent ovarian cancer study planning

Our specific motivation comes from the validation of biomarkers meant to guide maintenance treatment
of recurrent, advanced ovarian cancer. These cancers respond to initial platinum treatment but commonly
relapse and, through a cycle of serial treatments, become increasingly platinum resistant [13]. While
several approved chemotherapies are available [14], the best recurrent alternative to platinum treatment
is unclear [15].

This treatment decision is presently guided by previous response to therapy that is coarse, is variable,
and requires an intervention to evaluate [1]. The use of genomic biomarkers offers an individually rel-
evant guide [16], but these quantities will need to be evaluated through prospective study. As such, our
general intent is to consider the characteristics of study designs that will be employed in the next phases
of research.

A review of platinum-resistant cancers in phases II and III studies without markers [17] reports sample
sizes ranging from 27 to 254 total patients in single and double arm trials with response rates ranging
from 0.06 to 0.18 for single agent and 0.22 to 0.40 for double agent therapies (each representing a differ-
ent clinical context). These numbers are consistent with reviews citing a 0.10-0.20 response, regardless
of treatment, in previously treated platinum-resistant cancers [1].

Subsequently, we study the required sample sizes (Equations (10) and (16)) as a function of B;
and 7, and we discuss tests of interaction versus stratification. The intention is to illustrate the use of the
designs in study planning and is not meant to be comprehensive of all (87, 7) scenarios. Throughout the
section, we consider sample sizes for tests at level @ = 0.05 and power 1 — 8 = 0.80.

4.1. Sample sizes for interaction tests

Denoting typical frontline treatment, a platinum and taxane, as treatment B, we imagine that we have
a marker with prevalence m = 0.5, which is predictive in platinum/taxol treated patients: high-marker
values have a response rate of 0.10, and low-marker values have a response rate of 0.50 (the marginal
rate is 0.30). Obviously, a marker that simply tells us that some patients will not respond to treatment has
an important, but limited, value. Thus, we imagine a search for a treatment combination that improves
response in the high-marker patients.

Table IITA parameterizes our scenario. The platinum/taxol combination is listed with fixed response
rates. The response rate of an alternative active treatment (treatment A) is parameterized by 7. The
marginal rates are fixed at 0.30, so y = 0 for all B;. Note that while the response rate for AM™ patients

© 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2014, 33 3089-3099
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Table III. Recurrent ovarian cancer treatment example
scenarios used in Section 4.

Response rate

Treatment Mt M~ Population
A. Parametrization under 0 < 7 < 0.5, 7 = 0.5,y =0
A 0.10+ 87 0.50—8; 0.30
B 0.10 0.50 0.30

B. B = 0.20 used for 7w # 0.5 study

A 0.30 0.30 0.30 4+ 0.30(1 — 7)

B 0.10 050  0.107 +0.50(1 — )
C.Br =0.20, 7 = 0.6 used for —0.3 <y < 0.7

A 030+y 03047y 0.30 4y

B 0.10 0.50 0.30

Fixed values are taken from literature.

(A) Sample size as a function of effect size (B) Sample size as a function of marker prevalence
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Figure 2. (A)—(C) Required sample sizes for ovarian cancer scenarios outlined in Table III. The vertical lines

highlight the B; = 0.2, # = 0.5, and y = 0 scenarios where the marker is uninformative in one and predictive

in the other treatment. (D) Power of interaction and stratification tests given the computed sample size for the
reverse marker design.

may be lower than AM™ patients, as long as B; > 0, marker positive patients respond to the active treat-
ment better than treatment B. Figure 2(A) shows the required sample sizes as a function of 0 < ;7 <
0.25. We observe that the MB and MMB designs have the same sample size requirement when 7 = 0.5
and are less efficient than the MI and RM designs (as expected per Section 3.4). The RM design is about
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twice as efficient as the MI design that may be attributed to the fact that the MI design divides patients
four ways (AM™, AM~, BM', BM™), while the RM design requires only two (marker strategy and
the reverse).

We consider what effect sizes can be detected using the roughly 200 patients accrued in the previ-
ously described second-line ovarian studies. For the MI design, 200 patients require 8; = 0.24 (a 0.34
response rate in M and 0.26 in M ~ patients); similarly, the RM design with 200 patients could detect
a B; = 0.18 scenario (0.28 vs 0.32 response rates). These effects are not inconsistent with the meta-
reviews [17]. Subsequently, we consider the f; = 0.20 case where the MI design calls for 298 and the
RM design calls for 158 patients, which is close to the largest reported study sizes [18].

4.2. Sample sizes as a function of prevalence

We select the f; = 0.2 scenario for further study because it calls for a realistic number of patients
(n = 158) and has a reasonable magnitude of effect. Table IIIB reparameterizes the scenario in terms of
the marker prevalence 7. Note that in this baseline scenario, the marker has no effect in treatment A, but
it does indicate that for M+ patients, A is the better treatment.

In this case, the RM design dominates all of the others for all prevalence values so the efficiency gain
seen in Figure 2(A) is invariant to 7. Noting that the MB and RM designs have the same sample size
requirement at 7 = 1, by design, these must be equivalent to the enriched or targeted design where only
M patients are randomized to treatment A or B.

The sample size for the MI design does not vary as we may simply close the arm when the required
number of patients is accrued. The MB design requires fewer patients as 7 increases, concordant with
the idea that more patients are being assigned to the active treatment. Further, there does exist a range
of w where the MB design is more economical than the MI design (as reported in [10]), although this is
likely to be an unrealistic clinical scenario.

4.3. Sample sizes as a function of marginal treatment effect

We reparameterize the f; = 0.2 case again in Table IIIC to depend on —0.3 < y < 0.7, the marginal
treatment effect. Because A4 depends on y(r—1/2), we select the # = 0.6 case to avoid the insensitivity
of RM and MMB designs on y. In Figure 2(C), the MMB and RM sample sizes are still surpris-
ingly insensitive to y, while the MI design’s sample size requirement increases mildly as the marginal
effect increases.

4.4. Power to test stratified differences

We consider the f; = 0.2 scenario as a function of 7 again (Table IIIB) and fix the sample size at the
targeted value required for the RM design (n4). Under this scenario, we compute the power for various
RM-based and MI-based tests relative to the 80% RM interaction (marker strategy) test and plot the
results in Figure 2(D). To compute power by simulation, we generated 10,000 datasets and reported the
fraction of tests significant at level o« = 0.05.

Power for the MI interaction test can be evaluated by formula: fixing n = ny4, we invert the sample
size formula to obtain the power. Notably, the test has consistently lower power than the RM interaction
test at n4 for all values of 7.

We have implemented both a stratified z-test and a y>-test (goodness of fit). The former tests that
one treatment is superior in both arms (separately), so the 7 = 0.5 case is a null scenario (and power
approaches the appropriate target 0.05). The goodness of fit test is powered against the range of 7, but
both are consistently underpowered versus the interaction test.

5. Conclusion

We have proposed a new design for a randomized prospective marker validation study that is significantly
more efficient for testing marker strategies than existing designs in scenarios motivated by our ovarian
cancer work. Using literature-based estimates of the available sample sizes, we determine that this design
is a step toward making these studies possible where previous designs have made them logistically

- _______________________________________________________________________________________________|
© 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2014, 33 3089-3099




Statistics

infeasible. Pragmatically, for situations where a randomly selected treatment has a better than 7%
response rate, the RM design is more efficient than the MMB designs, and we have given bounds for
when it is more than four times more efficient.

This design is balanced: randomization frequencies for each treatment are equal independent of
marker prevalence. While the MI design balances treatments without using the marker in treatment
assignment, the RM design maintains balance and implements an MB strategy mimicking the clinical
workflow. Both of these properties have a place in phased biomarker development.

While it is difficult to match specific designs to specific situations abstractly, we have provided some
guidance on the considerations for marker strategy versus interaction designs as well as a set of param-
eters to consider during the design phase. It is of primary importance that the study designer is clear on
what quantity best represents their research question: the interaction, the marker strategy, or the subgroup
treatment effect.

Appendix A

A.l. Interaction test for marker interaction design

There are a couple of inequivalent choices for testing the interaction in the MI design. We have opted
to use the direct test under an additive model as in the succeeding text; however, the interaction might
also be tested by laying the responders into a 2 x 2 table and conducting any of the usual tests of inde-
pendence: effectively testing whether the responders accrue at a differential rate. The latter approach
has power determined by the multiplicative odds ratio and not the additive interaction and is harder to
compare with the two sample proportion tests used in the other designs.

In design 1, we accrue n marker M patients and n_ marker M ~ patients separately. Each arm is
randomized separately. Let the number of responders in each treatment arm be (Y44, Y4—, Ypy, Yp—)
where each of these counts is binomial: Y;; ~Binomial(n /2, 6;;) fori € {A, B}, j € {—, +}. Defining
pij = Yij/(nj/2), the interaction test is simply

Z, = (pa+ = pB+) = (Pa—— PB-) (15)

\/PA+(1_PA+)+PB+(1_PB+) + Pa=(=pa_)tpp-_(=pp-)
ny/2 n—/2

Following a normal approximation of binomial proportions argument, the distribution of Z,, can be read
in a standard normal table.

A.2. Sample size for design 1

The required sample size to separately power the marker + and marker — arms of the MI design
(designl) is as follows:

0a+(1—044) +0p+(1—0p4)  O4—(1—04-)+0p_(1—0p-)
(Ba+ B1)? (Ba)?
noting that factor 2 arises because of the two treatment arms for each marker level. This formula does

not reflect the rate at which M+ and M~ patients accrue, so when 7 # 0.5, one arm may close before
the other.

ni=2(zq +21-p)* (16)

A.3. Comment on survival time response

In the case of survival times, assuming proportional hazards and the same interaction notation as before
for the log hazard, we can directly apply the results as Ay represents the difference in log hazard ratio.
As in [11], where patients are randomized 1:1 to each arm, the total number of events required is

_ Mza+21-p)°

2ny >
Ak

a7

and so is similar to the binary case.
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