
Article
Federated learning of mol
ecular properties with
graph neural networks in a heterogeneous setting
Graphical abstract
Highlights
d FedChem employs scaffold splitting and LDA for

heterogeneous settings

d We propose FLIT(+) algorithms to alleviate the heterogeneity

problem

d We conduct experiments to benchmark the proposed and

existing methods on FedChem
Zhu et al., 2022, Patterns 3, 100521
June 10, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.patter.2022.100521
Authors

Wei Zhu, Jiebo Luo, Andrew D. White

Correspondence
andrew.white@rochester.edu

In brief

This work presented a federated

heterogeneous molecular learning

benchmark based on MoleculeNet as

FedChem. Several federated-learning

methods are benchmarked on the pro-

posed suites and show remarkable per-

formance degradation. The authors then

demonstrate federated learning by

instance reweighting (FLIT) to alleviate

the heterogeneity problem. Extensive

experiments validate the effectiveness of

the proposed methods.
ll

mailto:andrew.white@rochester.�edu
https://doi.org/10.1016/j.patter.2022.100521
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100521&domain=pdf


OPEN ACCESS

ll
Article

Federated learning of molecular properties
with graph neural networks
in a heterogeneous setting
Wei Zhu,1 Jiebo Luo,1 and Andrew D. White2,3,*
1Department of Computer Science, University of Rochester, Rochester, NY, USA
2Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
3Lead contact

*Correspondence: andrew.white@rochester.edu
https://doi.org/10.1016/j.patter.2022.100521
THEBIGGERPICTURE Generating datasets with thousands of molecules for machine learning in chemistry
is cost prohibitive due to the high material and/or computational costs. Additionally, chemical data’s
intrinsic value makes institutions reluctant to contribute to a centralized dataset. Recent studies suggest
that deep learning has the potential to accelerate molecule discovery, but there are few large datasets
for chemistry. Instead, individual institutions gather their data privately, which leads to under-trained
models with poor generalization performance. Even worse, the local models can be biased because insti-
tutions often focus on certain regions of chemical space important for their interests and expertise. We pro-
pose a federated-learning method with graph neural networks that can treat this heterogeneity and enable
accurate federated learning on molecular-property prediction. We propose a heterogeneous federated-
learning benchmark and show that our method is state of the art.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problem
SUMMARY
Chemistry research has both high material and computational costs to conduct experiments. Intuitions are
interested in differing classes of molecules, creating heterogeneous data that cannot be easily joined by con-
ventional methods. This work introduces federated heterogeneous molecular learning. Federated learning
allows end users to build a global model collaboratively while keeping their training data isolated. We first
simulate a heterogeneous federated-learning benchmark (FedChem) by jointly performing scaffold splitting
and latent Dirichlet allocation on existing datasets. Our results on FedChem show that significant learning
challenges arise when working with heterogeneous molecules across clients. We then propose a method
to alleviate the problem: Federated Learning by Instance reweighTing (FLIT(+)). FLIT(+) can align local training
across clients. Experiments conducted on FedChem validate the advantages of this method. This work
should enable a new type of collaboration for improving artificial intelligence (AI) in chemistry that mitigates
concerns about sharing valuable chemical data.
INTRODUCTION

There is an increasing trend to apply machine learning for mole-

cule-property prediction to avoid the expense of experiments

or reduce the tremendous computational costs required for ac-

curate quantum-chemical calculations. A large focus has been

on applying graph neural networks to predicting molecular

properties.1–6 These works assume a central server that has
This is an open access article under the CC BY-N
access to all data. However, such a centralized-learning sce-

nario may not represent how institutions share chemical data.

Due to intellectual-property concerns and the intrinsic value

of chemical data, it can be difficult for academic labs, national

labs, and private institutions to share their molecule datasets.

We propose federated learning to obtain a generalized global

model without access to private molecular data. For federated

learning, local models are trained with their data on the client
Patterns 3, 100521, June 10, 2022 ª 2022 The Authors. 1
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Figure 1. Heterogeneous federated molecu-

lar learning where three institutions focus

on different types of molecules

The server has no access to training data.
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side and then are aggregated for a global one on the server

side without seeing the data. One of the main concerns for

federated molecular-property prediction is the heterogeneously

distributed client data since institutions focus on specific cate-

gories of molecules for their research interests. For example,

institutions may wish to collaborate to construct an accurate

model of pharmacokinetic clearance time of small molecules

like shown in Figure 1. Each institution studies specific drug-

like molecules and their variants for their therapeutic targets.

Each institution cannot share molecules, but it is beneficial to

have a model for clearance time. Trained local models will

heavily deviate from each other in this example, and it is thus

sub-optimal to directly apply vanilla federated-learning

methods, e.g., Federated Average (FedAvg), to aggregate the

heterogeneous local models.7 Although several works are pro-

posed to handle the heterogeneity problem,8,9 a broader prob-

lem is the lack of heterogeneous federated molecular learning

benchmarks to judge these methods for chemical data.5

This paper first proposes a federated heterogeneous molecu-

lar learning benchmark, FedChem. FedChem simulates the het-

erogeneous settings based on scaffold splitting10 and latent

Dirichlet allocation (LDA).8We first adopt scaffold splitting to split

the molecules based on their two-dimensional structure, and

molecules with similar structures are grouped accordingly.5

Then, a heterogeneous setting is obtained by applying LDA on

the scaffold subgroups, where LDA is a commonly used tech-

nique to simulate heterogeneous settings in conventional feder-

ated classification tasks.8,11 We benchmark existing federated-

learning methods on the proposed heterogeneous suite

FedChem and observer a remarkable performance degradation

for the commonly used method FedAvg.7 We then propose

Federated Learning with Instance reweighTing (FLIT) to alleviate

the heterogeneity problem by adapting focal loss for federated

learning. The motivation of FLIT is that local models will be

trained to overfit their data, which, however, do not share the

same distribution as the global one. That is, the prediction of

local models would be over-confident for certain types of mole-

cules while with high uncertainty for others. FLIT can align client
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training by adding weights to the uncertain

cases by utilizing the local and received

global models. As a result, the locally

trained models will be more consistent

with each other, and the federated-

learning performance can be eventually

improved. We measure the uncertainty

for training samples by the loss values

and the prediction consistency among

neighbored samples and develop two

methods as FLIT and FLIT+ (FLIT(+) being

the abbreviation for both). Our experi-

ments on the proposed benchmark

FedChem validate the advantages of
FLIT(+) over existing federated-learning methods.

Our main contributions are summarized as follows:

1. Wepropose a federated heterogeneousmolecular learning

benchmark based on MoleculeNet,5 termed FedChem.

FedChem employs scaffold splitting and LDA to simulate

the heterogeneous settings.

2. We propose FLIT(+) algorithms to alleviate the heteroge-

neity problem. FLIT(+) can align the client training by putt-

ing more weights on uncertain samples.

3. We conduct experiments to benchmark the proposed

and existing federated-learning methods on FedChem.

Comprehensive experiments validate the effectiveness

of the proposed methods.
RELATED WORK

Federated learning
Federated learning was proposed by McMahan et al.7 and has

been applied in a wide range of fields including healthcare,12 bio-

metrics,13 and natural images and videos.14,15 As a popular

method, FedAvg element wisely aggregates the parameters of

local models to obtain a global one.7 However, recent studies

indicate that FedAvg may not handle the heterogeneity problem

properly.8,16 There are two categories of methods developed to

alleviate the problem: improvements for server-side aggrega-

tion8,17–24 and client-side regularization methods.25–30

Client-side methods can use the local training data and attract

increasing attention. Our method also follows this line of

research. Federated proximal (FedProx) regularizes the local

learning with a proximal term to encourage the updated local

model not to deviate significantly from the global model.29 A

similar idea is adopted in personalized federated learning.26

SCAFFOLD adopts additional control variates to alleviate the

gradient dissimilarity across different communication round.27

Federated model distillation transfers the soft predictions of a

shared dataset to reduce the communication cost and regular-

izes the local training with distillation loss.18 Federated meta-
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learning incorporates model agnostic meta-learning (MAML) for

local training to improve the generalization ability of local

models.25,31 Robust federated-learning has been studied by

several works.16,20,28 Reference Architecture for Federated

Learning Systems (FLRA) adversarially conducts training on cli-

ents to make the model robust to affine distribution shifts.28

Most of the client-side federated-learning methods add a regu-

larization term to restrict the local training process so that the

optimized local model would not significantly deviate from the

global one.18,27,29 Consequently, the local models will be more

consistent with each other, and the consistency could benefit

the server-side aggregation. However, the regularization may

also hinder the local optimization and lead to sub-optimal results

for local training. Ourmethod does not impose constraints on the

local training, and, alternatively, we instance wisely reweight

the local training samples to align the local data distribution to

the global one inspired by recent work.32–35

Heterogeneous federated learning is related to federated

domain adaptation (FDA).36–38 FDA aims to improve the perfor-

mance for specific target training domains, while general hetero-

geneous federated learning aims to improve the performance for

all training data.

There are several works focusing on federated graph neural

networks9,39–44 and federated molecular-property predic-

tion.45,46 GraphFL applies MAML to improve the robustness of

training.43 The method in Xie et al.9 alleviates the heterogeneity

problem by group wisely aggregating clients’ models. However,

existing work does not study federatedmolecular learning in het-

erogeneous settings where the clients’ datasets are non-inde-

pendent and identically distributed (IID) in molecular structure

and properties.

Deep molecular-property prediction
Graph neural network is commonly adopted for molecular

learning.3–5,47 Message-passing neural network (MPNN) itera-

tively propagates the vertex features through message-passing

layers.1 SchNet adopts continuous-filter convolution to achieve

E(3)-invariant molecular learning.4 DimeNet and DimeNet++

include directional information when training graph neural

network for better performance.2,48 Other works apply an

SO(3) equivariance message-passing layer to predict the prop-

erties of molecular data.49,50 A new structure is proposed by

EQNN to efficiently achieve an E(n) equivalent.3 We employ

MPNN1 and SchNetThe4 for client-side training in the proposed

federated molecular learning framework FedChem, and our

framework can seamlessly integrate other models for client-

side training, e.g., other graph network networks,2,3,49 sequence

models,51,52 etc.

RESULTS AND DISCUSSION

Notations and settings
We first briefly describe federated heterogeneous molecular

learning (FedChem). We assume that there are L institutions

that work on the same tasks with roughly different groups of

molecules. That is, the data are distributed heterogeneously

across institutions. Each institution develops a neural network

for molecular-property prediction.1,4,5 The neural network
trained on their data may suffer from poor generalization abil-

ity, and they thus intend to collaborate for a global model

without sharing their data with the central server and other

participants.

We propose to apply federated learning to obtain a global

model for all participants without access to clients’ data.

Formally, we denote the overall dataset as X = fXlgLl = 1, where

Xl = ðGl; ylÞ = fðgl
i; y

l
iÞg

Nl

i = 1 is the local dataset owned by the l-th

institution/client that may not share the same distribution as the

overall data. gl
i = ðvli ; eliÞ is the i-th molecule in graph representa-

tion with vertex as vli , edge as eli, and ground-truth label as yli .

Ground truth could be either concrete values for regression tasks

or categorical values for classification tasks. We utilize a local

graph neural network Fl to handle the data for the l-th client,

and it is implemented with MPNN1 or SchNet.4 To enable the cli-

ents to collaborate with each other, we have a central sever that

receives and aggregates the uploaded local networks for a

global one Fg = FedAggðfFlgLl = 1Þ, where Fg is the globalmodel,

and FedAggð ,Þ is the aggregation function, e.g., FedAvg,7 feder-
ated optimzation,21 federated distillation,53 "ensemble distilla-

tion and model fusion (FedDF),19 federated matched averaging,8

etc. Note that the central server contains no training data and

also cannot access any local data.

FedChem simulates heterogeneous federated molecular

learning with existing datasets, e.g., MoleculeNet.5 Our method

relies on scaffold splitting to group molecules based on their

structure (graph). Molecules with similar structures are grouped

into a scaffold subset. Scaffold splitting first groups the mole-

cules into scaffold groups and then assign samples from each

group to clients according to the unbalanced partition method

LDA.10We detail the approach to generating heterogeneous set-

tings in the experimental section.

Our method of generating a heterogeneous dataset is different

from typical existing methods, which simulate label-distribution

shift.40 For example, Karimireddy et al.27 and Wang et al.8 split

samples based on class to each client, which makes the label

distributions of local datasets on clients inconsistent with the

global label distribution. In reality, institutions focus on mole-

cules with similar structures via processes like lead optimization

or hit finding.54 Thus, we typically see structurally heterogeneous

molecules on the client side (domain shift), while the label distri-

butions among local clients can be similar. To simulate the struc-

tural heterogeneity with existing centralized datasets, we adopt

scaffold splitting and do not rely on the ground-truth label. Intu-

itively, samples from different scaffold subsets are analogous to

the samples fromdifferent domains for general machine-learning

tasks, and molecules (images) within a scaffold subset (domain)

share similar structures (style) but show different chemical prop-

erties (ground-truth label). We illustrate the scaffold splitting to

help readers better understand our heterogeneity simulation

method. Moreover, it is non-trivial to generalize existing hetero-

geneous federated dataset simulation methods to regression

and multi-label tasks, while our method can be easily adapted

to any problems. We benchmark several existing federated-

learning methods on FedChem and observe that the heteroge-

neity problem brings significant challenges to federated molecu-

lar learning.
Patterns 3, 100521, June 10, 2022 3



Algorithm 1. Federated heterogeneous molecule learning (FedChem with FedAvg)

Input: # clients L, # local updates T, # Comms round C.

Output: Global Model Fg

1: Server initialize a global model Fg 8 Server init.

2: while Communication Round <C do

3: Server broadcasts Fg to clients

4: Fl)Fg 8 Client init.

5: for l : 1 to L in parallel do 8 Client Update

6: for t : 1 to K do 8 Update Fl for K steps

7: Sample a minibatch fgl
i; y

l
ig

B

i = 1 � Xl

8: Update local model Fl by gradient descent

9: end for

10: Client sends updated model Fl to Server

11: end for

12: Server gets Fg)
PL

l = 1
jXlj
jXj F

l 8 Server Update

13: end while

ll
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Federated learning with FedChem
Thebasic trainingpipeline for FedChem isbriefly introducedas fol-

lows:wefirst initialize a globalmodelFg at the server sideand then

for each federated-learning communication round: (1) the server

broadcasts global model Fg to clients, (2) clients conduct training

in parallel, and specifically, the l-th client is trained with its own

data Xl for an updated model as Fl, and (3) the server collects up-

dated local models from clients and then aggregate thesemodels

into a global one as Fg = FedAggðfFigLi = 1Þ. We iteratively

perform steps 1–3 for C communication rounds to obtain the final

global model. We adopt FedAvg for server-side aggregation

throughout the paper, but FedChem can be easily extended to

involve other aggregationmethods.8,21Wesummarize the training

procedure for federated learning with FedChem in Algorithm 1 by

taking FedAvg as the aggregation method. Note that the server

may select a subset of clients during each communication round

for scalability.
Client-side updates
For completeness, we describe typical training steps to up-

date the graph neural network (GNN) model for client-side

training. We adopt MPNN set-to-set (MPNNs2s)1 and

SchNet4 for molecule-level property prediction in our experi-

ments, and other popular models (such as DimeNet,2 Gin,55

Graph Convolutional Network [GCN],56 etc.) can also be uni-

fied in FedChem.

Molecule-level GNN usually contains two phases: a message-

passing phase and a readout phase.1,40 The message-passing

phase allows the vertex to propagate and collect information

from their neighbors through the graph and is usually composed

of two steps as message generation and vertex update.

Formally, given the l-th client model Fl with T message-passing

layers and a sampled graph Gl (we omit the subscript for the

sample, i.e., Gl = Gl
i), we define the message-passing function

Ml
t on the i-th vertex as1

ml
t + 1;i = Ml

t

�
vlt;i;

n
vlt;w; e

l
t;iw

o
w˛NðiÞÞ

�
; (Equation 1)
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and the vertex update function Ul
t as

vlt + 1;i = Ul
t

�
vlt;i;m

l
t +1;i

�
; (Equation 2)

where vlt;i denotes the representation of the i-th vertex in the t-th

layer of Gl, elt;iw denotes the edge between the i-th and w-th ver-

tex, andNðiÞ denotes the set of neighbors for vertex i in graphGl.

Ml
tð ,Þ generates the message ml

t + 1;i by aggregating the feature

of vlt;i and its neighbors and also the edges between them. Ul
tð ,Þ

updates the i-th vertex by transforming the original features and

the received message ml
t + 1;i. Different GNN models are imple-

mentedwith differentMl
t andUl

t. For example, themessage func-

tion of GCN is defined as ml
t + 1;i =

P
w

bel
t;iwFCðvlt;wÞ and Ul

t =

FCðml
t;iÞ,56 where FC is a linear layer and be is the Laplacian-regu-

larized adjacencymatrix. SchNet implements themessage func-

tion Ml
t with a continuous filter layer and Ul

t with a vertex(atom)-

wise convolutional module.4 The message-passing phase could

aggregate and transform the vertex features for high-level

representations.

After T message-passing layers, we adopt a readout function

Rl to aggregate the vertex representations for graph level repre-

sentation as

hl = Rl
�
vlT ;i

���i ˛ Gl
�
: (Equation 3)

Rl should be permutation invariant and can be implemented with

either a simple sum pooling or a learnable neural network. The

graph-level representation hl is further used to obtain an estima-

tion byl = FlðGlÞ for the ground-truth molecular property yl.
FEDERATED LEARNING BY INSTANCE
REWEIGHTING FLIT(+)

According to our experiments on the proposed heterogeneous

federated-learning benchmark FedChem, heterogeneity brings

significant difficulties to federated molecular learning. This



Figure 2. Illustration for the motivation of FLIT

We assume two clients as A and B, and the local data on these clients do not

share the same distribution as the global one. Local models trained on biased

local data will overfit the majority groups of data and underfit others. FLIT

measures each sample’s prediction confidence and puts more weight on the

uncertain data. As a result, the local data distribution will be better aligned to

the global one, and the trained local models will also be more consistent with

each other.
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section proposes a method to alleviate the heterogeneity prob-

lem, namely FLIT. FLIT adapts the formulation of focal loss for

federated learning by involving a global model in local training

objectives and can align the local training across clients by

focusing on uncertain samples.32,35 We illustrate the motivation

of FLIT in Figure 2.

Learning to reweight training samples is widely used in curric-

ulum learning,57 hard-sample mining,32 domain generaliza-

tion,35,58,59 debiasing,60 model calibration,34 adversarial de-

fense,61 etc. Our method is closely related to focal loss32 and

worst-case optimization.35 Mukhoti et al. point out that focal

loss could make the objective value aligned with the prediction

confidence.34 GroupDRO improves the model generalization

ability by assigning more weights for groups with the worst

performance.35

FLIT relies on an instance-reweighting framework to improve

the federated molecular-property prediction in a heterogeneous

setting. The basic observation of FLIT is that, under the hetero-

geneous settings, the local model will be trained to overfit the

small-scaled data at hand. Therefore, the local model will be

over-confident for the majority groups of local training samples

and may perform poorly and even worse than the received

global model on the rare molecules at the client-side. As a

result, the local models trained on different clients will signifi-

cantly deviate from each other, and the inconsistency remark-

ably degrades the performance of the global model Fg, which is

aggregated from the local models in a data-free manner.8 The

sub-optimal performance of FedAvg is wildly admitted by exist-

ing studies.8,27 FLIT puts more weight on samples with low pre-

diction confidence by utilizing the local and global models to

alleviate the problem. FLIT explores two different ways to

define the prediction confidence, i.e., the loss value (FLIT),

and also augmented with prediction consistency among the

neighbors (FLIT+). By focusing on the identified uncertain sam-

ples, FLIT(+) makes local training more consistent across cli-

ents and eventually leads to better federated-learning

performance.
Federated learning by instance reweighting
By jointly using the local model Fl and global model Fg, FLIT re-

weights training samples to align the biased local data distribu-

tion to the global one. Eventually, the local models across clients

will be well aligned for better performance.

Given a molecule xl = ðgl; ylÞ sampled from the dataset of the

l-th client Xl, the original focal loss for binary classification tasks

is defined as32

Lfocal

�
xl
�
= � �

1 � byl

t

�g
log

�byl

t

�
; (Equation 4)

where bylt is defined based on the prediction of moleculebyl = FlðglÞ as

byl

t =

� byl
if yl = 1

1 � byl
otherwise:

By substituting the binary cross entropy loss

Lðbyl; ylÞ = � logðbyl
tÞ into Equation 4, we have

Lfocal

�
xl
�
=

�
1 � exp

�� L�byl
; yl

���gL�byl
; yl

�
: (Equation 5)

A generalized formulation for instance-reweighting can then

be obtained as

LFLIT

�
xl
�
=

�
1 � exp

�� u
�
xl; Fl; Fg

���gL�byl
; yl

�
; (Equation 6)

where uðxl; Fl; FgÞ is a non-negative function that indicates the

uncertainty of training samples and is defined by jointly utilizing

the local model Fl and global model Fg as

u
�
xl;Fl;Fg

�
= 4

�
xl;Fl

�
+max

�
4
�
xl; Fl

� � 4
�
xl;Fg

�
; 0
�
;

(Equation 7)

where 4ðx; FÞ indicates the prediction uncertainty of x with the

model F. Equation 7 putsmore weights on samples if the updated

local model is less confident than the global model. We note that

uðxl; Fl; FgÞ can take other types of formulation, and we imple-

ment it with Equation 7 for simplicity. Moreover, for FLIT, we

follow the focal loss and define 4ð ,Þ as the loss value,32 i.e.,

4
�
xl;F

�
= L�byl

; yl
�
: (Equation 8)

We substitute Equation 8 into Equations 7 and 6, and the re-

sulted method is termed FLIT. Compared with the vanilla focal

loss, FLIT integrates the global model Fg into the local training,

which turns out to benefit the federated learning according to

our experiments.
FLIT+
An alternative way to define 4ð ,Þ for sample xl is the prediction

discrepancy between the sample and its neighbors.62 Intuitively,

the larger the discrepancy is, the less confident the model is for

predicting the sample. To measure the prediction discrepancy

for the neighborhoods, we aim to search for the data pairs with

largest prediction discrepancy in the neighborhoods. Since

directly searching for the exact neighbor is computationally

expensive and is implausible with the local biased dataset, we

alternatively adopt adversarial neighbor inspired by virtual
Patterns 3, 100521, June 10, 2022 5



Algorithm 2. FLIT(+) for l-th client updates

Input: Fg, Xl = fðgl
i; y

l
iÞg

Nl

i = 1, g.

Output: Fl

1: Save 4ðgl
i; F

gÞ Equation 8 or 4+ ðgl
i;F

gÞ Equation 10

2: Fl)Fg 8 Init. Fl

3: for t : 1 to K do 8 Train on the l-th Client

4: Sample a minibatch fgl
i; y

l
ig

B

i = 1

5: Calculate 4ðgl
i; F

lÞ by Equation 8 (or 4+ ðgl
i;F

lÞ by Equation 10)

6: Obtain uð+ Þðxl;Fl;FgÞ by Equation 7

7: uðGl
i; F

l; FgÞ)uðGl
i
;Fl ;FgÞ

uðGl
i
;Fl ;FgÞ 8 Normalize uð+ Þ

8: Update Fl by optimizing Equation 6 (or Equation 11)

9: uð+ Þ)buð+ Þ + ð1 � bÞ 1
B

P
i

uð+ Þ 8 Update moving average uð+ Þ

10: end for

11: Client sends updated model Fl to Server

ll
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adversarial training (VAT).33 Adversarial neighbors are similar to

xl in terms of the input gl but has the most different prediction.62

Concretely, we measure the discrepancy by adversarial learning

with a given model F for xl as33

D
�
xl; F

�
= D

�
F
�
gl
�
;F

�
gl + xradv

��
(Equation 9)

where radv = arg max
r;jjrjj% ε

D
�
F
�
gl
�
; F

�
gl + r

��
;

where ε = 0:0001 is a small positive value, x = 2:5 is the step

size,Dð ,Þ can be Kullback-Leibler (KL) divergence for classifica-

tion or Euclidean distance for regression.33 Equation 9measures

the discrepancy between predictions of the molecule with graph

gl and its virtual adversarial neighbor gl + xradv. Equation 9 gener-

ates a virtual adversarial neighbor gl + xradv that is similar to gl

(since ε is small) but with the most different prediction. We opti-

mize r on the positions for QM9 and vertex features for other da-

tasets. We omit detail steps for optimizing Equation 9, and

please refer to Miyato et al.33 for details. We jointly use the loss

value and the discrepancy defined in Equation 9 and obtain

4+

�
xl;F

�
= L�byl

; yl
�
+ lD

�
xl;F

��
(Equation 10)

where l is a hyperparameter. By substituting the formulation 4+

into Equation 7, we obtain u+ ðxl;Fl; FgÞ to measure the uncer-

tainty of the training samples, and accordingly, we obtain

FLIT+ by optimizing the objective as

LFLIT +

�
xl
�
=

�
1 � exp

�� u+

�
xl; Fl;Fg

���g�L�byl
; yl

�
+ D

�
xl;Fl

��
:

(Equation 11)

IncludingDðxl;FlÞÞ in the training objective is essential to make

the neighborhood prediction consistency a valid uncertainty

measurement. Moreover, in experiments, we notice that feder-

ated learning can benefit from the virtual adversarial training

alone, i.e., setting g = 0. This should be attributed to the fact

that virtual adversarial training could improve the generalization

ability of the local model and can be regarded as another way

to align the local training implicitly. Detailed results and analysis

can be found in the experimental procedures.
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We use FLIT(+) to denote both FLIT and FLIT+. We summarize

FLIT(+) for client update in Algorithm 2.

Implementation details
Since the scale of uð+ Þ may vary significantly especially for

regression tasks, it is not proper to directly apply Equations 6

and 11 for general tasks. We propose to normalize the uð+ Þð ,Þ
by its moving average as uð+ Þ)

uð+ Þ
uð+ Þ

, where

uð+ Þ)buð+ Þ + ð1 � bÞ 1
B

X
i

uð+ Þ (Equation 12)

is the moving average and B is the size of minibatch; b is set as

0.8 in this paper.

Moreover, we note that the prediction FgðglÞ and the discrep-

ancy Dðxl;FgÞ for the received global model only need to be

calculated once per communication round and thus will not bring

much computational cost.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Any further information, questions, or requests should be sent to A. White

(andrew.white@rochester.edu).

Materials availability

Our study did not involve any physical materials.

Data and code availability

All used data are publicly available. For reproducibility, our code is available at

https://github.com/ur-whitelab/fedchem.git. The code has also been depos-

ited at Zenodo under https://doi.org/10.5281/zenodo.6485682.

Datasets

We conducted experiments on a total of nine datasets retrieved from

MoleculeNet5 for molecular-property prediction, including four regression da-

tasets (FreeSolv, Lipophilicity, ESOL, and QM9) and five classification data-

sets (Tox21, SIDER, ClinTox, BBBP, and BACE). We follow the prediction

tasks in Wu et al.5 and summarize the statistics for all datasets in Table 1.

Compared methods

To justify the proposed benchmark FedChem, we compare our results with

MoleculeNet (MolNet) for centralized training.5 To validate the effectiveness

of FLIT(+), we compare FLIT(+) with FedAvg,7 FedProx,29 and MOON.63 More-

over, we also implement two variants of FLIT(+) as FedAvg with focal loss for

mailto:andrew.white@rochester.edu
https://github.com/ur-whitelab/fedchem.git
https://doi.org/10.5281/zenodo.6485682


Table 1. Statistics of datasets

Dataset #Compounds #tasks Task type Metric

FreeSolv 642 1 Reg. RMSE

Lipophilicity 4,200 1 Reg. RMSE

ESOL 1,128 1 Reg. RMSE

QM9 133,885 12 Reg. MAE

Tox21 7,831 12 Cls. ROC-AUC

SIDER 1,427 27 Cls. ROC-AUC

ClinTox 1,478 2 Cls. ROC-AUC

BBBP 2,039 1 Cls. ROC-AUC

BACE 1,213 1 Cls. ROC-AUC

Reg., regression; Cls., classification; RMSE, root-mean-square error;

MAE, mean absolute error; ROC-AUC, receiver operating character-

istic-area under the curve.
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client training (federated focal [FedFocal]) and FedAvg with VAT for client

training (FedVAT). We describe the compared methods as follows:

1. FedAvg7 simply element wisely aggregates the local models to a

global one.

2. FedProx29 regularizes local training to alleviate the heterogeneity

problem.

3. MOON63 applies contrastive learning for federated learning to correct

the local training.

4. FedFocal is proposed in this paper and is a variant of FLIT. FedFocal

applies focal loss Equation 4 to local training and adopts FedAvg for

server update. FedFocal is proposed to validate the effectiveness of

involving the global model into local training as FLIT.

5. FedVAT is also proposed in this paper and is a variant of FLIT+.

FedVAT jointly optimizes Equation 9 and original training loss for

client training and adopts FedAvg for server update. Compared

with FLIT+, FedVAT does not use an instance-reweighting training

strategy.

6. FLIT is proposed in this paper and is described in Algorithm 2.
Table 2. Performance for federated molecular regression

Dataset a

Centralized training Federated learning

MolNeta FedChema
ours FedAvg FedProx

FreeSolv Z 0.1 1.40 1.430 1.771 1.693

0.5 1.445 1.376

1 1.223 1.216

Lipophilicity Z 0.1 0.655 0.6290 0.6361d 0.6403

0.5 0.6306 0.6365

1 0.6505 0.6474

ESOL Z 0.1 0.97 0.6570 0.8016 0.7702

0.5 0.7524 0.7382

1 0.7056 0.6828

QM9 Z 0.1 0.0479b 0.0890c 0.5889 0.6036

0.5 0.5906 0.5751

1 0.5786 0.5691

Z;\ indicate if lower or higher numbers are better.
aResults were obtained with centralized training.
bResults were retrieved from Klicpera et al.2 with a seperate SchNet for eac
cResults were obtained by a single multitask network. Smaller a of LDA gen

proposed in this paper as the variants of FLIT(+).
dBest federated-learning results.
7. FLIT+ is proposed in this paper. Compared with FLIT, FLIT+ jointly uses

loss values and the discrepancy between nearby samples to measure

the uncertainty of samples as described in Equation 10 and adopts

Equation 11 as the learning objective.

We perform grid search on the excluded validation set for hyperparameter

tuning and model selection. For FedProx, we search the hyperparameter m

from ½0:001;0:01;0:1;1; 10�. For MOON, we search the hyperparameter from

½0:1; 1; 5; 10�. We search g used for instance reweighting for FLIT(+) and

FedFocal from ½0:5; 1; 2� and search l from ½0:01; 0:1; 1� for FLIT+. FedVAT
adopts a hyperparameter to balance VAT loss and primary loss, which is

searched from ½0:01;0:1;1�. We report results on the testing set by the model

with the best performance on the validation set.
Main results

The experimental results on regression and classification datasets are shown

in Tables 2 and 3, respectively. We draw several points according to the re-

sults. First, comparing our centralized training results (denoted as FedChem)

with MolNet,5 we obtain competitive results by using MPNNs2s1 and SchNet.4

Specifically, we obtain a significant performance gain by adopting SchNet for

QM9 dataset.4 Second, comparing the performance of FedAvg with different a

for each dataset, we can conclude that the heterogeneity settings introduced

by FedChem indeed lead to performance degradation for 7 out of 9 datasets

(i.e., FreeSolv, ESOL, QM9, Tox21, ClinTox, BBBP, and BACE). FedAvg shows

stable performance for Lipophilicity and SIDER. The reason may be that we do

not consider the relation between scaffold subgroups in our current settings,

and the resulted clients’ datasets are rather homogeneous. Third, we observe

a significant performance gain for most datasets by comparing heterogeneous

federated-learning methods with FedAvg. For example, the proposed FLIP+

achieves a 0.543 improvement with a = 0:1 and 0.162 improvement with

a = 1 for FreeSolv. The results suggest the necessity to mitigate the heteroge-

neity when conducting federated learning and validate the effectiveness of

the proposed FLIT(+). However, we also observe that the performance im-

provements of our methods are rather marginal for several datasets. The rea-

sons may be attributed to the fact that our current scaffold splitting may not

lead to heterogeneous datasets. We will continue our work for a better method

to simulate the heterogeneity problem for federated molecular-property

prediction.
MOON FedFocalours FedVATours FLITours FLIT+ours

1.376 1.686 1.371 1.634 1.228d

1.423 1.322 1.299 1.366 1.127d

1.469 1.294 1.150 1.277 1.061d

0.6426 0.6403 0.6556 0.6563 0.6392

0.6339 0.6351 0.6333 0.6368 0.6270d

0.6442 0.6461 0.6488 0.6443 0.6403d

0.7537d 0.8022 0.7776 0.7788 0.7642

0.7258 0.7708 0.7243 0.7426 0.7119d

0.6751 0.6822 0.7253 0.6705d 0.6998

0.5817 0.6164 0.5606 0.5713 0.5356d

0.5707 0.6059 0.5656 0.5658 0.5222d

0.5808 0.5822 0.5602 0.5621 0.5282d

h task.

erates more extreme heterogeneous scenario. FedFocal and FedVAT are
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Table 3. Performance for federated molecular classification

Dataset a

Centralized training Federated learning

MolNeta FedChema
ours FedAvg FedProx MOON FedFocalours FedVATours FLITours FLIT+ours

Tox21 \ 0.1 0.829 0.8182 0.7705 0.7732 0.7331 0.7696 0.7733 0.7711 0.7802b

0.5 0.7811 0.7774 0.7461 0.7812 0.7787 0.7825 0.7870b

1 0.7770 0.7775 0.7457 0.7881b 0.7706 0.7748 0.7806

SIDER \ 0.1 0.638 0.6260 0.6029 0.6056b 0.5885 0.6016 0.6027 0.6035 0.6038

0.5 0.6011 0.5931 0.5966 0.6086 0.5981 0.6096 0.6146b

1 0.6011 0.6023 0.5901 0.6003 0.6053 0.6072 0.6174b

ClinTox \ 0.1 0.832 0.8903 0.7491 0.7540 0.7892b 0.7789b 0.7581 0.7761 0.7775

0.5 0.7521 0.7423 0.7917b 0.7770 0.7614 0.7888b 0.7852

1 0.7784 0.7791 0.8001 0.8036b 0.7743 0.7849 0.7993

BBBP \ 0.1 0.690 0.8674 0.8361 0.8610 0.8737b 0.8550 0.8673b 0.8666 0.8663

0.5 0.8594 0.8879b 0.8865 0.8726 0.8641 0.8671 0.8774

1 0.8453 0.8557b 0.8487 0.8378 0.8386 0.8515 0.8515

BACE \ 0.1 0.806 0.8834 0.8203 0.8328 0.8373 0.8253 0.8166 0.8242 0.8467b

0.5 0.8212 0.8398 0.8285 0.8332 0.8417 0.8516 0.8667b

1 0.8486 0.8408 0.8561 0.8497 0.8578b 0.8497 0.8561

Z;\ indicate if lower or higher numbers are better.
aResults are obtained with centralized training.
bBest federated-learning results.
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Moreover, the proposed instance-reweighting methods (FedFocal, FLIT,

and FLIT+) outperform the regularization-based methods FedProx and

MOON. The proposed FLIT additionally utilizes the global model and per-

forms better than its counterpart FedFocal. For example, FLIT improves

FedFocal from 0.8022 to 0.7788 with a = 0:1 and from 0.7708 to 0.7426

with a = 0:5 for ESOL. Lastly, FLIT+ further improves the performance of

FLIT by measuring the uncertainty with loss values and discrepancy be-

tween neighbors. We also observe that FedVAT can benefit federated

learning by encouraging locality smoothness for better generalization

performance. By incorporating VAT33 into the FLIT framework, FLIT+

achieves the best overall performance. FLIT(+) has more consistent results

across different settings of a compared with its counterparts, indicating the

effectiveness of FLIT+ for dealing with heterogeneity problems (see

Figure 3).

Sensitivity analysis for federated learning

This section studies the influence of the number of clients and communica-

tion rounds on the federated-learning performance. For simplicity, we

conduct experiments on ESOL, ClinTox, and BACE. The results of the

different number of maximum communication rounds are shown in Figure 4.

We vary the maximum communication round from f15;30; 50g while fixing
Figure 3. Performance of baseline and our methods with varying comm
Asterisk (*) denotes that the results are obtained with centralized training. We fin
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the total local steps. We find that increasing the frequency of communication

can benefit federated learning, although it also leads to increased transfer

costs. The performancewith different numbers of clients is shown in Figure 4.

We vary the number of clients within f4; 5; 6g since a large number of clients

would lead to small local datasets, making training infeasible. We find that

the performance of federated learning usually decreases (ESOL and

BACE) or is stable (ClinTox) as the client number increases. This indicates

that small-scale local training data degrade the federated-learning

performance.
Settings for heterogeneous FedChem

For all datasets except QM9, we first randomly split the dataset into 80% for

training, 10% for validation, and 10% for testing following Wu et al.5 QM9 is

partitioned into 110,000 samples for training, 10,000 samples for validation,

and the remaining for testing following.4 To simulate the heterogeneous set-

tings for federated learning, we first perform scaffold splitting10 to partition

the training data into subgroups. Then, we assign the molecules of each sub-

group to clients by LDA.8,11 We control the degree of heterogeneity by tuning a

for LDA.8 Smaller a leads to more severe heterogeneity, and we vary a from

f0:1;0:5;1g. Moreover, we deliberately balance the number of molecules for
unication rounds
d our method has a strong advantage with a few communication rounds.



Figure 4. Performance of baseline and our methods with different number of clients

See Figure 3 for color legend. The small-scale local training data reduce federated-learning performance for all methods.
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each client following He et al.11 to control for the effect of the example number

on performance.22

As for federated-learning settings, we set the default communication rounds

C to 30 and the default number of clients to four for all datasets except for

QM9, which is set to eight.

For client training, we set the batch size to 64 and use Adam64with a learning

rate of 1 3 10-4 and a weight decay of 1 3 10-5. For all datasets except QM9,

we simulate four clients and train the local model for 10,000 local steps. QM9

has eight clients, and we train the model for 100,000 local steps. We conduct

federated learning with the FedML framework.11

For all datasets except QM9, we use MPNNs2s implemented by Deep

Graph Library.65 MPNNs2s has three message-passing layers and three

set2sets layers. The hidden feature of the edge is 16, and the output

feature of the vertex is 64. We perform three set2set steps. For QM9, we

adopt SchNet with six interaction layers4 and implement SchNet by

PyTorch-Geometric.66 The number of hidden channels and filters of

SchNet is 128, and the number of Gaussian is set as 50 for continuous filter

layers. We implement a multitask network for datasets with multi-objec-

tives. We run experiments on a server with eight NVIDIA RTX 2080 Ti

graphics cards.
Conclusions

Chemistry can be a challenging domain for deep learning because of the

computational and materials cost per training example. For example,

each row in the Tox21 dataset costs about $50–$300 million USD.67 There-

fore, contributing data to a public dataset may be impossible for institu-

tions due to the intrinsic value of the data. Federated learning is a way to

build global models while preventing the dissemination of chemical data.

We propose a benchmark called FedChem for heterogeneous chemical

data, which mimics how chemical data distributes among institutions.

FedChem is composed of regression- and classification-learning scenarios

from the existing MoleculeNet dataset and utilizes scaffold splitting and

LDA to assign molecules with different structures to different clients.

FedChem can be tuned to generate scenarios with different degrees of het-

erogeneity. Given that existing federated-learning methods perform poorly

on FedChem, we propose an instance reweighting framework called

FLIT(+), inspired by focal loss, to align the training process across clients.

We show that FLIT(+) is robust to different tasks and datasets with exten-

sive experiments. One possible future direction is to develop personalized

federated learning for FedChem.46 Moreover, since our current heteroge-

neous simulation method may not lead to severe structural heterogeneity

problems in some cases, we will explore other approaches for more het-

erogeneous settings.
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