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Abstract:  
The accurate identification of promoter regions and transcription start sites is a challenge to the construction of human 
transcription regulation networks. Thus, an efficient prediction method based on theoretical formulation is necessary for this 
purpose. We used the method of increment diversity with quadratic discriminant analysis (IDQD) to predict transcription start 
sites (TSS). The method produced sensitivity and positive predictive value of more than 65% with positives to negatives ratio 
of 1:58. The performance evaluation using Receiver Operator Characteristics (ROC) showed an auROC (area under ROC) of 
greater than 96%. The evaluation by Precision Recall Curves (PRC) showed an auPRC (area under PRC) of about 26% for 
positives to negatives ratio of 1:679 and about 64% for positives to negatives ratio of 1:113. The results documented in this 
approach are either better or comparable to other known methods. 
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Background: 
The accurate prediction of promoter sequence and 
transcription start site (TSS) is important in the construction 
of human transcription-regulation networks. Transcription 
initiation is a difficult problem which is dependent of DNA 
sequence and chromatin remodeling [1]. Lack of complete 
understanding on the distribution of chromatin remodeling in 
relation to known DNA sequences is a challenge in promoter 
and TSS prediction [2]. There are number of promoter 
prediction tools known till date [3-6]. Bajic and colleagues 
reviewed eight promoter prediction programs and reported 
that all of them showed a positive predictive value of less than 
65% [7]. Thus, recognition of transcription starts site is a 
difficult task and not much progress has been made in its 
predictions.  
 
Sonnenburg and colleagues used support vector machine with 
advanced sequence kernels for the accurate recognition of 
transcription start sites in human sequences with high 
prediction accuracy [8]. They evaluated four leading TSS 
prediction tools using performance evaluation parameters, 
area under the Receiver Operator Characteristics (ROC) and 
area under the Precision Recall Curves (PRC). The area under 
ROC was 90% at a chunk size resolution of 50 or 500 bases. 
However, the area under PRC was not significantly high in 
the analysis. This is attributed to variability of regulation 
element and complexity of regulation network in eukaryotic 
genomes. Regulation elements are short and are both easily 
erased and generated in evolution. The on and off of these 

elements during short evolutionary time can result in diversity 
of regulation elements and in their genomic arrangements.  
 
The discovery of a large amount of alternative promoters in 
the human genome and our current knowledge on 
differentially regulated alternative TSSs in different tissues 
and families of genes increases the complexity of TSS 
recognition and prediction [2, 9]. Therefore, it is important to 
develop an efficient tool utilizing comprehensive sequence 
information for recognizing a variety of TSSs in a simple and 
unified formalism with high sensitivity and positive predictive 
value. We used increment diversity with quadratic 
discriminant analysis (IDQD) as a prediction method for 
splice junction identification. The method predicted 
exon/intron boundaries successfully for model genomes [10]. 
Here, we describe IDQD as a method to predict TSS with 
good accuracy. 
 
Methodology: 
Dataset 
We used the database dbTSS version 4.0 [11] to create a 
dataset of 4254 genes to generate TSS data for training. This 
set is similar to the genes studied elsewhere [8]. We extracted 
a window of size 2000 (labeled by -1000,…, -1, +1, …, 
+1000) around the TSS (at site +1) for each gene. This set 
constituted the training positive set. We drew 10 negatives of 
2000 bp at random from locations between 100bp 
downstream of the TSS and the end of the gene for each gene 
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as described elsewhere [7]. This set constituted the training 
positive set. We created a test set as described elsewhere [8] 
and used the set of genes 1024 that are new in dbTSS version 
5.2 [2]. We then extracted sequences of size 2000 containing 
TSS for each gene. They consist of the test set (positives). We 
then identified classical TSSs as described by Bajic and 
colleagues [7]. The negatives are drawn from 100bp 
downstream of the TSS to the end of the gene in a shifted 
window of 2000 bp with step 50, 500, or 1000 bp. They 
consist of the negative test set. The ratio of the size of 
negative set to positive is 679 (for step 50) 113 (for step 500) 
and 58 (for step 1000), respectively. The negatives/positives 
ratios are comparable with those used in chunk method 
described elsewhere [8]. The performance evaluation of any 
prediction method is strongly dependent on the ratio of the 
size of negatives to positives. To make a fair comparison of 
our method with other programs we changed the step of 
shifted window to obtain different sizes of negative set and 
therefore the different ratios of negatives to positives.  
 
IDQD algorithm 
The characters of a sample, a sequence or a group of 
sequences, are described by a set of numbers is the 
assumption in the model. The i-th character is expressed by 
number ni. ni describes the number of certain base in a given 
site of a sequence or a group of sequences. We call ni the 
character number or informational parameter of the sample 
(i=1,…,s). Consider the sequence X to be classified and 
define the diversity of sequence X as given in equation 1 (see 
supplementary material). 
 
To give a classification of sequence X we should compare it 
with some standard samples (called standard diversity source 
S). Let the i-th character in standard source expressed by 
number mi (i=1,…,s) where mi is the sum of the i-th character 
number over all standard samples. The same definition is 
applied to diversity of standard source S. Likewise, the total 
diversity of the system X+S, D(X+S), can be defined in the 
same manner. The increment of diversity is defined by 
equation 2 in supplementary material. ID gives the relation of 
sequence X with standard source S. The smallest ID has the 
most intimate relation of X to S. 
 
When there are r set of sequence characters, we have r feature 
variables ID1 to IDr and we need to integrate them by 
quadratic discriminant analysis. Given a problem (or a test) of 
classification, we average the increment of diversity (IDj, j=1, 
…, r) over positive group or negative group in training set 
(denoted by μ1 or μ2 respectively) and thus deduce the 
corresponding covariance (denoted by r r×  matrix ∑1 or ∑2 
respectively). The increment of diversity is denoted by R for 
sequences to be classified. The discriminant function that 
differentiates with X belonging to positive group or negative 
group is given in equation 3 (see supplementary material). 
The sample X is classified into positive group as ξ > ξ0 or 
negative group as ξ ≤ ξ0. In quadratic discriminant analysis, 
the threshold ξ0 is taken as 0. However, due to the limited size 
of positive and negative group and the large difference 

between them, the optimal threshold ξ0 is not 0 and it should 
be empirically determined. The ROC and PRC curves through 
varying the parameter ξ0 are plotted for single-number 
performance evaluation. We initially calculated 28 ID 
parameters (for definitions see supplementary material) from 
promoter sequences. 
 
Discussion: 
We used two groups of performance measures to assess the 
accuracy on TSS prediction. The first group includes 
sensitivity (Sn), specificity (Sp), false positive rate (FPR), 
positive predictive value (PPV) and correlation coefficient 
(CC). Please see supplementary material for definitions for 
these performance parameters. The second group named 
“single-number” performance measure include auROC (area 
under the curve receiver operator characteristics) and auPRC 
(area under the curve precision recall curves).  
 
The results of TSS prediction are summarized in Table 1 and 
Table 2 (see supplementary material for Tables). Table 1 (see 
supplementary material) shows the results depending on 
threshold ξ0. The sensitivity decreases with increasing ξ0 
while positive predictive value and correlation coefficient 
increase with ξ0. In test set of window step 1000bp, both 
sensitivity and PPV can achieve a higher value, higher than 
65% under threshold ξ0=3, which seems better than eight 
promoter prediction programs analyzed elsewhere [7]. We 
notice here that the distance between two negatives equal 
1000 bp (the false positive rate 0.007 per 1000 bases) and the 
ratio of the number of positives to negatives is 1:58. This is 
lower than or comparable with the corresponding value in 
eight programs analyzed elsewhere [7]. In [7] a window of [-
2000, +2000] was set relative to the TSS location. If we 
assume the distance between two negatives is 2000bp or 
more, the IDQD program will give higher prediction 
accuracy.  
 
A detailed comparison of IDQD with other programs is made 
using auROC and auPRC. In IDQD we obtained auROC 
>96% and auPRC of about 26% for window step 50, auPRC 
of about 64% for step 500 and auPRC of about 76 for step 
1000. We find these results are comparable with the 
performance of ARTS [8] and higher than other methods with 
the same positive to negative ratio (see Table 2 in 
supplementary material). The ROC and PRC curves for test 
set (corresponding to Table 2 under supplementary material) 
of window steps 500 are plotted in Figure 1. 
 
The above prediction on typical TSSs of 1024 genes shows 
the effectiveness of IDQD algorithm. Results on TSS 
prediction were improved using algorithm with the same ID 
parameters for whole genome searching on classical TSSs 
(collected in database dbTSS2006) in chromosomes 4, 21 and 
22. With window size 2000 bp and step 1000 bp，we 
obtained an auROC of 97% and auPRC of 65%. Both Sn and 
PPV exceeding 65% for optimal ξ0 = 10. 
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Figure 1: The ROC and PRC curves for test set of step 500. 
 
IDQD algorithm and the choice of ID parameters 
In a classification problem when the feature of the sample are 
denoted by a frequency distribution and compared with a 
standard source, the system can be described by diversity 
measure and classification is achieved by ID method. The 
program contains the calculation of a given character 
projected onto high dimensional space. When the size of 
standard sample set is large, making influences of fluctuation 
negligible, the diversity of standard samples includes accurate 
information about the frequency distribution of the character.  
 
Thus, we use ID to evaluate the detailed difference between 
any sample and the standard set to find the optimal 
hyperplane for the classification of samples in multi-
dimensional space. The estimation error is reduced in this 
approach since the difference among all real samples has been 
carefully considered in training set. Moreover, one can always 
define several different diversity functions as feature variables 
to describe sequence characteristics. The method is feasible 
enough for solving classification problem. Although the 
definition of diversity measure is similar to Shannon 
information in some respects, the ID method is far more 
different from mutual information and like information 
theoretical approaches in its application.  
 
The efficient extraction of sequence information by use of 
diversity measure in high-dimensional space and the synthesis 
of different types of sequence information into one 
discriminant function are two important factors for the 
success of IDQD algorithm. The different IDs are integrated 
into one nonlinear discriminant function ξ through quadratic 
discriminant analysis. The only adjustable parameter that 
existed in IDQD algorithm is the threshold of ξ, namely ξ0. 
Thus, the algorithm is easy to evaluate. The parameters are 
empirically determined in principle to obtain optimal 
evaluation. However, in ROC and PRC analysis the threshold 
ξ0 is terated as a variable to plot curves for performance 
evaluation. 
  
In IDQD, the ID selection is an important step. It is known 
that hexamer score and pentamer score were used as 
discriminant functions in promoter recognition [12, 13]. Many 
regulatory motifs in human promoters are composed of 6- to 

8-nucleotide fragments [14]. The sequence information on 
base frequency and base correlation in TATA region and 
initiator region is also represented by hexamer distribution. 
The TSS signals exist mainly in a sequence of 2000 bp. In the 
present study, we use 6-mer frequencies in four 500 bp 
segments as the most important information (namely, 
diversities X1 to X4, see supplementary material) for the 
reorganization of promoter and TSS. A segment length of 
500bp has been taken under consideration of the variation of 
6-mer frequency in different regions of promoters. To 
emphasize the local information on base frequency and DNA 
structure in the vicinity of initiator, we introduced diversities 
on 5-mer and 4- mer frequencies in several consecutive 25 bp 
sequences. After comparing with other segment lengths we 
found that 25bp is a better choice for describing the local 
peculiarities of promoter sequences. However, both diversities 
on 5-mer and 4-mer frequencies (X5 to X9 and X10 to X12, see 
supplementary material) are important for TSS recognition.  
 
The use of a single diversity will lower prediction efficiency. 
The pentamer information is essentially related to initiator 
sequence while the tetramer information is responsible for the 
local deviation of DNA helix structure and di-nucleotide 
stacking energy [15]. Besides, G+C content (X13, see 
supplementary material) and CpG DIMER content (X14, see 
supplementary material) in 2000bp long sequence are also 
useful, since the base frequency distribution in promoters is 
different from non-promoters and the CpG content is 
important for recognizing a specific class of promoters.  
 
Thus, we used 14 diversities in our analysis. Each of the 
diversity is introduced with two increments of diversity (ID). 
One increment is relative to the diversity of positive set of 
standard source and another is relative to the negative set of 
standard source. We then calculated the prediction accuracy 
using double increments and this is higher than single 
increment. Hence, the ID selection is guided by the 
performance evaluation (sensitivity, specificity, accuracy, 
PPV, auROC and auPRC). However, if two ID selections lead 
to the same performance measure we use the one with lower 
dimension. It should be noted that the dimension of the 
discriminant vector is the sum of dimensions of each diversity 
component and the dimension of the discriminant vector R = 
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(I1, I2,…,I28) presented in this analysis is of order 
(4096×24)+420. 
 
Acknowledgement: 
The work was partly supported by National Science 
Foundation of China, No. 90403010 and Scientific Research 
Projects of Inner Mongolia’s Universities, No. NJZY07065. 
 
References:  
[01] The ENCODE Project Consortium, Nature, 477: 799 

(2007) [PMID: 17571346] 
[02] R. Yamashita et al., Nucleic Acids Res., 34: D86 

(2006) [PMID: 16381981] 
[03] S. Knudsen, Bioinformatics, 15: 356 (1999) [PMID: 

10366655] 
[04] R. V. Davuluri et al., Nature Genet., 29: 412 (2001) 

[PMID: 11726928] 
[05] V. B. Bajic et al., Bioinformatics, 18: 198 (2002) 

[PMID: 11836231] 

[06] T. A. Down et al., Genome Res., 12: 458 (2002) 
[PMID: 11875034] 

[07] V. B. Bajic et al., Nat. Biotechnol., 22: 1467 (2004) 
[PMID: 15529174] 

[08] S. Sonnenburg et al., Bioinformatics, 22: e472 (2006) 
[PMID: 16873509] 

[09] N. D. Trinklein et al., Genome Res., 17: 720 (2007) 
[PMID: 17567992] 

[10] L. R. Zhang & L. F. Luo, Nucleic Acids Res., 31: 6214 
(2003) [PMID: 14576308] 

[11] Y. Suzuki et al., Nucleic Acids Res., 30: 328 (2002) 
[PMID: 11752328] 

[12] R. V. Davuluri et al., Nature Genetics, 29: 412 (2001) 
[PMID: 11726928] 

[13] P. É. Jacques et al., BMC Bioinformatics, 7: 423 
(2006) [PMID: 17014715] 

[14] X. H. Xie et al., Nature, 434: 338 (2005) [PMID: 
15735639] 

[15] L. Tsai et al., J. Biomol. Struc. and Dynamics, 20: 127 
(2002) [PMID: 12144359] 

 
Edited by D. R. Flower 

                                              Citation: Lu and Luo, Bioinformation 2(7): 316-321 (2008) 
         License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in  

                                         any medium, for non-commercial purposes, provided the original author and source are credited. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



Bioinformation by Biomedical Informatics Publishing Group                                     open access 
www.bioinformation.net                         Prediction Model 
____________________________________________________________________________ 

ISSN 0973-2063                                                                          
Bioinformation 2(7): 316-321 (2008) 

Bioinformation, an open access forum 
© 2008 Biomedical Informatics Publishing Group 

320

Supplementary material 
 
 Equations: 
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= Σ- -i iR μ R μ
 

 
→ 

         
(3) 

where p and q denote the size of positive and negative group respectively and Σ  is the determinant of matrix Σ . 
 

ξ0 Sn(%) Sp(%) PPV(%) CC
3 76.75 97.13 72.78 0.72 
0 81.05 95.96 66.74 0.71 

Training set 

-3 87.75 93.14 56.11 0.67 
3 74.98 99.27 13.09 0.31 
0 78.56 98.70 8.16 0.25 

Test set, Step 50  

-3 85.83 96.46 3.45 0.17 
3 75.96 99.27 47.95 0.60 
0 79.57 98.72 35.45 0.53 

Test set, Step 500 

-3 85.74 96.47 17.73 0.38 
3 78.04 99.30 65.58 0.71 
0 81.46 98.69 51.50 0.64 

Test set, Step 1000 

-3 87.97 96.52 30.26 0.50 
Table 1: Prediction on typical TSSs using IDQD and evaluated by Sn, Sp, PPV and CC. Calculations are given in three 
thresholds, ξ0=0, +3 and -3. When ξ0=3 both sensitivity and positive predictive values, exceed 65% in test set of step 1000 bp 
where the ratio of the size of positive set to negative is 1:58. 
 

 Area under ROC (%) Area under PRC (%) 
Training set 96.69 81.28 

Test set, step 50 
96.63 (ARTS 92.77;  Eponine 88.48; 
McPromoter 92.55;  First EF 71.29) 
 

26.15 (ARTS 26.18; Eponine  1.79; 
McPromoter 6.32;  First EF 6.54) 

Test set, step 500 
97.28 (ARTS 93.44;  Eponine 91.51; 
McPromoter 93.59;  First EF 90.25) 
 

64.06 (ARTS 57.19; Eponine 40.80; 
McPromoter 24.23; First EF 40.89) 

Test set, step 1000 98.10 (ARTS 93.85;  Eponine 92.07; 
McPromoter 93.80;  First EF 92.86) 

76.03 (ARTS 67.71; Eponine 52.75; 
McPromoter 35.43; First EF 56.00) 
 

Table 2: Prediction on typical TSSs using IDQD and evaluated by developing auROC and auPRC is shown. The results by 
Sonnenburg and colleagues [8] are given in brackets for comparison. Our test set of step 50 (the ratio of the number of 
positives to negatives 1567:1063726) is comparable with chunk size 50 in the case of this reference where the ratio of the 
number of positives to negatives is 1588:1087664. Our test set of step 500 (the ratio of the number of positives to negatives 
940:106037) is comparable with chunk size 500 where the ratio of the number of positives to negatives is 943:108783. The test 
set of step 1000 (the ratio of the number of positives to negatives 906:52853) is also comparable with the chunk size 1000 in 
this case. 
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Definition: 
 
ID definition: 
6 mer: 
The difference of sequence construction between promoters and non-promoters were used to choose 6-mer frequencies as the 
main source of information for TSS identification. We used 6-mer frequencies in a shifted window of step 1 between -1000bp 
and -501bp, we defined diversity D(X) of sequence X as X1, and defined ID between X1 and diversity of standard source in 
positive (negative) training set as I1 (I2). Similarly we used 6-mer frequencies in shifted windows between -500bp to -1bp, 
+1bp (TSS) to +500bp, and +501bp to +1000bp, we defined diversity of sequence X as X2, X3 and X4, respectively. The 
corresponding IDs with positive (negative) training sets as I3(I4), I5(I6) and I7(I8). The dimension of each of above IDs is to the 
order of 46＝4096. 
 
5 mer: 
The site-specific information in initiator near TSS were used to choose 5-mer frequencies in consecutive four 25 bp-long 
sequences in -200bp:-101bp (defining diversity X5), -100bp:-1bp (defining diversity X6), +1bp:+100bp (defining diversity X7), 
+101bp:+200bp (defining diversity X8) and +201bp:+300bp (defining diversity X9) as the sources of information for 
recognizing TSS. The diversity X5 is defined by 5-mer frequencies in -200bp:-176p, -175bp:-151bp, -150bp:-126bp and -
125bp:-101bp, and the corresponding ID with positive (negative) training sets I9(I10) has dimension 4×45＝4096. The other 
four diversities X6, X7, X8, X9 are defined in the same way and the corresponding IDs are denoted by I11 to I18. 
 
4 mer: 
The structural information near the TSS were used to choose 4-mer frequencies in consecutive sixteen 25 bp-long sequences in 
-600bp:-201bp, -200bp:+200bp and +201bp:+600bp. The three diversities are denoted by X10, X11, X12 and the corresponding 
IDs by I19 to I24. Each ID has dimension 16×44＝4096. 
 
G+C content: 
The G+C contents in each of 10bp interval from -1000bp to +1000bp were used to define diversity X13 and the corresponding 
IDs I25 and I26 (with dimension 200). The CpG content was calculated in each of 200bp interval from -1000bp to +1000bp and 
thus was used to define diversity X14 and the corresponding IDs I27 and I28 (with dimension 10). 
 
Discriminant vector: 
A Discriminant vector for sequence X is defined by R = I1, I2, …, I28. iX G∈  (i = 1, positive group and i = 2, negative group) 
and the average of R over positive group or negative group is μ1 or μ2 and the corresponding covariance is Σ1 or Σ2 in Equation 
(3). 
 
ROC and PRC 
The ROC and PRC curves (corresponding to Table 2) for test set step 500 is developed in Figure 1. 
 
Performance measure 

[ /( )] 100%Sn TP TP FN= + ×  [ /( )] 100%PPV TP TP FP= + ×  

[ /( )] 100%Sp TN TN FP= + ×  

/( ) 1FRP FP TN FP Sp= + = −  

( ) ( )
( ) ( ) ( ) ( )

TP TN FN FPCC
TP FN TN FP TP FP TN FN

× − ×
=

+ × + × + × +  

TP = true positive; TN = true negative; FN = false negative; FP = false positive  
 
 
 
 
 
 


