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Abstract: There are, still, limitations to predicting the occurrence and prognosis of neurological
disorders. Biomarkers are molecules that can change in different conditions, a feature that makes them
potential tools to improve the diagnosis of disease, establish a prognosis, and monitor treatments.
Metabolites can be used as biomarkers, and are small molecules derived from the metabolic process
found in different biological media, such as tissue samples, cells, or biofluids. They can be identified
using various strategies, targeted or untargeted experiments, and by different techniques, such as
high-performance liquid chromatography, mass spectrometry, or nuclear magnetic resonance. In this
review, we aim to discuss the current knowledge about metabolites as biomarkers for neurological
disorders. We will present recent developments that show the need and the feasibility of identifying
such biomarkers in different neurological disorders, as well as discuss relevant research findings
in the field of metabolomics that are helping to unravel the mechanisms underlying neurological
disorders. Although several relevant results have been reported in metabolomic studies in patients
with neurological diseases, there is still a long way to go for the clinical use of metabolites as potential
biomarkers in these disorders, and more research in the field is needed.

Keywords: amyotrophic lateral sclerosis; Alzheimer’s disease; epilepsy; multiple sclerosis;
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1. Introduction

Neurological disorders are currently listed among the most frequent causes of mortality and severe
physical or psychological impairment throughout the world [1–3]. They can be classified according to
the underlying mechanisms and the effects on different neurological functions. Each of these diseases
has specific endogenous or environmental risk factors, but genetic predisposition plays a relevant role
in many of these neurological conditions [1–3]. Although research on neurological disorders is one of
the most prolific areas in the biomedical field—and significant achievements have been accomplished
in the past few decades—there is still a considerable limitation regarding the tools clinicians and
scientists can use to predict the onset of neurological diseases. Similarly, the field lacks available
predictors of disease prognosis and ways to monitor the response to the treatments. Thus, the search
for new biomarkers of neurological disorders is still needed [1].
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Biomarkers are measurements that reflect a response to normal or pathological processes [2].
These responses can manifest as functional, physiological, biochemical, or molecular interactions [2].
Biomarkers should be easily measured and quantifiable [3]; thus, an ideal biomarker should have high
sensitivity and specificity to allow for the clear distinction between a normal and disease state, and it
should help in monitoring disease progression and treatment response [3]. Among the many classes of
molecular biomarkers, metabolites have the potential to be used individually (i.e., specific metabolites)
or in combination to provide a metabolic signature of the disease [1].

1.1. Metabolites and Metabolomics

Metabolites are small molecules that represent ongoing biological processes in any type of
biological samples, such as tissues, cells, and biofluids (blood, plasma, serum, urine, and cerebrospinal
fluid (CSF)). Metabolites can influence cell responses locally or systemically and may provide insights
into the mechanisms that underlie the disease process as well as disease progression [4–7]. Given that
different molecular pathways can be activated under specific biological conditions, metabolites can
also change depending on drug interactions and toxicity [8]. Interestingly, metabolites can cross the
blood–brain barrier so that molecules found in circulation may well represent the biological phenomena
that occur in the central nervous system (CNS) [9,10]. Circulating metabolites can be released into the
extracellular environment, as free molecules, or inside extracellular vesicles, making it possible for
metabolites to act systemically [11]. Due to these characteristics, and the possibility of being accessed
in a noninvasive manner, metabolites have become potential biomarkers for disease (Figure 1) [8].
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Figure 1. Circulating metabolites. Metabolites are small molecules that act locally, in the tissue
where they are produced, or systemically, when released to the extracellular environment. In the latter
case, metabolites can circulate and be identified in different biofluids, such as plasma serum, urine,
and cerebral spinal fluid. Circulating metabolites can be released as free molecules or inside vesicles.
The production of metabolites can be influenced by changes in the external or internal environment,
such as the microbiome, as well as by the occurrence of disease. In this last case, the disease processes
may impact metabolite production and, thus, make it possible to use metabolites as disease biomarkers.
The figure was created with Biorender.com.

Metabolomics is the systematic analysis of metabolites; it has been applied to the discovery
of disease biomarkers. Metabolomics can be used to investigate different biological systems,
revealing genetic, environmental, and physiological responses associated with physiological and
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pathological states (Figure 2) [6,8,12,13]. The metabolic profile, especially from biofluids, may reflect
the direct metabolic states of a given organism, due to the dynamic exchanging of metabolites with
different tissues [8]. Therefore, in addition to identifying disease biomarkers, metabolomics may also
be used for screening metabolic pathways that are putatively involved in diseases for which no specific
mechanism is known [8,14].
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Figure 2. Metabolomic scheme for identifying biomarkers. Circulating metabolites are found in
biofluids and may be used as disease biomarkers. Metabolomics can be applied to identify metabolites
using high-throughput techniques, such as mass spectrometry or nuclear magnetic resonance (NMR).
By processing and analyzing the data from metabolomics studies, one can identify specific metabolites
as disease biomarkers. This figure was created with Biorender.com.

To identify and quantify different metabolites in biological samples, the acquisition of metabolomics
data should involve molecular techniques in association with adequate experimental designs and
appropriate statistical processing [8,12]. The quantification of the metabolites differs remarkably from
the techniques and strategies used. Relative and absolute quantification are complementary techniques
for metabolic discovery and validation and can be attained by untarget and target strategies [15].
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In addition, to achieve an efficient quantification of specific metabolites in metabolomic studies,
high-throughput tools are needed [15,16].

Among the main analytical methods, mass spectrometry (MS) has been widely used in the
qualitative and quantitative analysis of analytes in the context of metabolomics. This technique displays
high sensitivity for identifying specific metabolites, and it is a high-throughput method, capable of
generating massive amounts of data in the analysis of complex biological systems [8,17,18].

Each fragment is differentiated from the others in a spectrometer called the analyzer, where the
mass/charge ratio (m/z) discriminates among them by different physical principles [8]. The choice of
chromatographic techniques for coupling with a mass spectrometer is determined by analyte-specific
chemical principles and can be divided into gas or liquid chromatography (GC and LC, respectively) [8,19].
However, LC-MS reduces the overlap of signals coming from coeluting molecules, as it leads to
high-efficiency separation and allows for an increase in the detection limit and the quality of the
generated spectra [20].

The higher sensitivity of metabolite detection in MS experiments (lower than 10µmol L−1) faces
some problems involving the compatibility of molecules with a mode of ionization or detection,
and might require previous steps of analysis, as separation by high- or ultra-performance liquid
chromatography (HPLC or UPLC), with the aim to reduce sample complexity and enhance detection
sensibility and metabolome coverage [21–23]. Additionally, those separation techniques also have their
particularities, such as the need for the derivatization process that converts metabolites into volatile
adducts in GC based experiments. All those aspects should be considered as they can influence the
time of the experimental processing and limit the number of samples [24].

Since the 1980s, another technique that has been commonly used in metabolomic studies is
nuclear magnetic resonance (NMR) spectroscopy [25]. This technique is based on the detection of
responses from specific atomic nuclei, located in different magnetic environments, under the influence
of an external magnetic field, and applying an electromagnetic pulse in the radiofrequency band [26].
Despite its limitations, this technique has advantages that still attract many researchers, such as easy
sample preparation, the preservation of samples during analysis, and high reproducibility [8]. Recently,
there have been increasing reports about the combined use of spectral information from both MS and
NMR in studies with complex biological samples [27]. Indeed, an off-line and, most importantly, an
online coupling of these different methods has contributed to more refined and reliable analyses [28,29].

These are the most common strategies used in metabolomics to specific measure metabolites in
a sample; however, they do not give a general idea of the metabolic flux in the biological condition
analyzed. For more dynamic analysis, it is possible to combine MS or NMR with stable isotope tracing
to predict the metabolic networks and pathways and, consequently, indirectly evaluate the biological
effect of the metabolic changes found [15,30–32].

With the recent implementation of single-cell and in vivo real-time studies, the need for more
sensitive and dynamic ways of identifying and quantifying small quantities of metabolites has emerged.
Thus, recent studies have evaluated the tissue metabolomics in vivo through stable isotope tracers to
delimitate the systemic metabolite kinetics, physiological function, and mechanisms affected by genetic
variants or metabolites of interest [15,33–36]. These techniques can be followed by the traditional
metabolomic analysis with MS or NMR to measure metabolic profile [15].

Single-cell analysis has grown in the past few years due to its high specificity and ability to
analyze different cell types separately [15]. However, cell separation and metabolite quantification
are still problematic, requiring the development of new technologies, such as microfluid arrays and
nanodevices for cell separation [37–39]. Moreover, new analytical methods have been developed
for single-cell metabolomic and lipidomic quantification, such as matrix-assisted laser desorption
ionization (MALDI), live single-cell mass spectrometry (LSC-MS), and secondary ionization mass
spectrometry (SIMS) [40–44]. These have higher sensitivity and resolution to detect a small concentration
of metabolites and are commonly associated with a subsequent MS analysis [15]. Furthermore,
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more sensitive metabolite quantification methods are also attractive to discriminate between different
isomers, thus increasing accuracy in biomarker identification.

Beyond the challenge of analytical techniques, other steps have pivotal roles in metabolomics,
such as metabolite identification, metabolic pathway association, and biological validation [21].
While databases like Human Metabolome DataBase (HMDB) [45], PubChem [46], MassBank [47],
and the Lipidomic Gateway LIPID MAPS [48] can be accessed to identify metabolites and lipids,
others like Kioto Encyclopedia of Genes and Genome (KEGG) [49,50], MetaCyc [51], the Small Molecule
Pathway Database (SMPDB) [52], and MetaboLights [53] can be used to characterize the metabolic
pathway [21].

1.2. Metabololites as Clinical Biomarkers

In the past few years, there has been a significant increase in identifying clinically relevant
biomarkers, which show advantages over traditional clinical tests [54,55]. However, most of the
metabolomic studies currently performed aim to investigate the basic mechanism of disease and drug
function and are related to the early stages of developing new drugs [24,25]. Thus, it is fair to say
that the field is lacking studies to identify and, especially, validate biomarkers for clinical use. One of
the reasons may be related to the complex nature of identifying and developing such biomarkers for
clinical use, which require standards and procedures that go well beyond a good scientific question [55].
Furthermore, given the dynamic nature of the physiological and pathological processes in the human
body, which directly have an influence on biofluid composition, and the remarkable heterogeneity
by which an organism reacts to physiological and pathological changes, it is not surprising that to
actually identify reliable biomarkers, capable of accurately predicting different biological conditions,
is a complex task [54]. Thus, to achieve the goal of identifying clinically relevant metabolic biomarkers
one must rely not only on rigorous and standardized experiments, but also take into account several
sources of unspecific variabilities, such as the patient’s diet, comorbidities, medicines used, and other
conditions that may ultimately influence the metabolic profile [54,55].

Furthermore, clinical studies must carefully consider the question they want to solve and then
define a good standard for cohort delimitation, sample collection and preparation, an analytical
technique, and the best approach for statistical analysis [54–56]. In case-control studies, in which the
aim is to look for differences between healthy and diseased individuals, the untargeted metabolomics
approach is recommended, as it can provide a landscape of the systemic condition and allow integrative
interpretation [55]. However, the approach requires a large number of subjects and a good validation
strategy [54]. By contrast, targeted metabolomics should be preferred when evaluating the effect of a
given drug in different biological systems, tissue, or time-points [54,55].

Another critical issue to consider when evaluating clinical use biomarkers is the tissue or biofluid
to be analyzed [55,56]. Tissue metabolomics can provide a precise understanding of the metabolic
profile of a given tissue; however, it requires an invasive procedure to obtain the appropriate samples
to be studied [55]. Thus, biofluids may be used as surrogates by reflecting the metabolic status of
the primary tissue involved in the disease. In neurological disorders, the access to tissue is not only
always invasive, but frequently impossible, making the cerebrospinal fluid (CSF), blood (serum or
plasma) and urine, alternative biofluids that can be used for metabolomic studies [57,58]. Although,
the CSF is considered the most representative biofluid to study neurological disorders. It also requires
invasive procedures, making blood samples (as serum or plasma) the most common biofluid used
metabolomic analysis in neurological diseases [55,58]. Although the collection is the least invasive
procedure, with easy storage [59], it requires complex analytical procedures, as it must be normalized
for creatinine levels or urine osmolality [55]. More recently, saliva has become an interesting biofluid
due to ease of access, with low cost, speed of processing, and similarity to blood compounds [55].
Studies with saliva are especially relevant in accessing large cohorts and challenging patients, such as
children and the elderly population [55].
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This review aims to present recent developments in research that have shown the feasibility of using
metabolites as biomarkers for neurological disorders, as well as to discuss specific applications that
may enter clinical practice in the near future. In addition, we will present the most relevant metabolites
identified as potential biomarkers for the following neurological diseases, presented in alphabetical
order: Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), epilepsy, multiple sclerosis (MuS),
Parkinson’s disease (PD), and stroke. These are listed as amongst the most prevalent neurological
disorders [1–3]. A list of the metabolic findings for these diseases is also presented in Table 1.

2. Metabolites in Specific Neurological Diseases

2.1. Alzheimer’s Disease

AD is the most prevalent neurodegenerative disorder in the elderly population. It has been recognized
as one of the priorities in global public health by the World Health Organization (WHO) [60,61] since it
accounts for 60–70% of all patients with dementia throughout the world [60–62].

Even though age is the strongest risk factor for dementia, an unhealthy lifestyle may contribute to
the development and the rate of progression of the disease [61]. Mild cognitive impairment (MCI) is a
frequent condition in individuals over 65 years old; it has a strong relationship to dementia, but with a
better prognosis [63]. However, there is still no optimal way to predict which individuals with MCI
will indeed develop dementia [64]. This deficiency is partly because, as with many neurodegenerative
disorders, the first symptoms of AD are mild and may start several years before the full establishment
of the disease [60]. Currently, the presumptive diagnosis of AD is performed using a combination
of clinical findings and laboratory tests. However, it still relies heavily on observations of the
progression of symptoms and signs over a long period, an approach that can delay the diagnosis
significantly [60]. Despite the knowledge of the high impact of extracellularβ-amyloid deposits in brain
tissue, the definitive confirmation of AD is still possible only after evaluating the post-mortem tissue
and its physiological alterations [65,66]. However, assessing the presence of β-amyloid deposits in
brain tissue and CSF is still a good way to seek information about the disease stages and prognosis [65].

Both procedures are invasive, and the findings are usually conclusive only several years after
the establishment of dementia [67,68]. Due to these findings, the search for AD biomarkers initially
has been concentrated mainly in the CSF and brain tissues [64]. Indeed, these studies have reported
the presence of additional biomarkers related to β-amyloid metabolism, as well as impaired calcium
homeostasis, lipid metabolism, mitochondrial dysfunction, altered cell signaling, synaptic transmission,
oxidative stress, and inflammation [67,69].

Recently, more metabolomic research has been applied to the search for AD biomarkers,
with promising results [70]; the goal is to establish prognostic indicators and better elucidate some
of the biological mechanisms that underlie disease progression. This information could, in turn,
result in future treatments that minimize neuronal damage. One study evaluated amines, lipids,
oxidative stress compounds, and organic acids using LC-MS and GC-MS in 127 AD patients and 121
control subjects selected by the 42 amino acid β-amyloid peptide (Aβ42) and total tau (t-tau) levels in
the CSF [71]. The authors observed that age and gender-dependent differential metabolic expression
between patients and controls [71]. They identified 26 metabolites after all statistical corrections,
in which triglycerides and amines predominated [71]. From the identified metabolites, 16 lipids,
aminoadipic acid (2-AAA, an intermediate of the lysine pathway), tyrosine, and other amino acids were
decreased in AD patients, while sphingomyelin was increased [71]. Furthermore, the authors proposed
oxidative stress compounds, mainly lysophosphatidic acid (LPA) C18:2 (the most bioactive fraction
of oxidized low-density lipoprotein) and amines, mainly amino acid tyrosine, as regulatory markers
and strong predictors for AD, mostly in Apolipoprotein E gene APOEε4-positive AD. This proposal
implies they have an important role in biochemical dysregulation related to AD.

Notably, recent studies in patients with MCI have produced intriguing results; they have
aimed to identify metabolites that could assist in diagnosis. Although still preliminary, this type
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of study is very promising because it may improve early AD diagnosis accuracy, leading to better
chances of implementing disease-modifying therapies in the future [63]. In this way, a recent study
proposed that it is possible to distinguish AD patients, MCI patients, and healthy individuals
by the differences in metabolites in plasma to perform a targeted quantitative and qualitative
controlled assay [70]. They detected lower plasma levels of acylcarnitine, phosphatidylcholine (PC),
and sphingomyelin in AD and MCI patients compared with healthy individuals. In addition, AD and
MCI patients showed differences in lysophospholipid concentrations, with higher levels in AD patients
and lower levels in MCI patients [70]. Furthermore, the authors proposed dodecanedioylcarnitine,
dodecanoylcarnitine, and one phosphatidylcholine with a long chain and no unsaturation (PCaaC26:0)
as three potential metabolites that might distinguish among AD patients, MCI patients, and healthy
people. This phenomenon may be associated with a dysregulated cascade of acetyl-CoA production
and release, interfering with neuron integrity [70].

One study described altered amino acid metabolism in the amnestic mild cognitive impairment
(aMCI) as a potential biomarker for MCI; it might allow early intervention to avoid or slow AD
progression [63]. This study included 208 elderly individuals recruited from Shanghai, China (98 aMCI
patients, and 110 healthy volunteers) and was carried out through LC analysis from urine samples [63].
From the 20 identified amino acids, only arginine was significantly different between MCI patients and
controls. Arginine is better represented by examining the arginine: (citrulline + ornithine) ratio; thus,
the authors also analyzed citrulline and ornithine. Their data demonstrated that patients with MCI
had a decreased global arginine bioavailability ratio (GABR) [63].

A comparison between 29 patients diagnosed with MCI who subsequently developed AD
(MCI-AD) and 29 healthy individuals indicated that lysophosphatidylethanolamine, named LysoPE
(20:0/0:0)/LysoPE (0:0/20:0), choline, and soraphen A, might be potential early AD biomarkers in
plasma; all were increased in the MCI-AD group [68]. Although soraphen A is a myxobacteria product,
and its interaction with AD should be better studied, it is currently known that it is related to increased
short-chain fatty acids (FA) and choline levels due to its capacity to inhibit acetyl-CoA carboxylase
and avoid FA elongation [68]. Moreover, the data specified choline as the best bet for a promising
biomarker in early AD diagnosis; it was the only confirmed metabolite based on its pure standard.
Choline plays an essential role in neurotransmitter pathways as the acetylcholine precursor, as well as
in some lipids that are related to brain function, such as phosphatidylcholine [68].

Despite the large number of studies applying metabolomics in AD research, the increased relevance
of the disease worldwide, demands more information regarding the initial stages, so that one can
expect a better prognosis for these patients. Moreover, the necessity of a less invasive diagnostic
method has been urgent in the clinic, especially when the primary analysis is performed using CSF
and brain tissue. Therefore, future studies using metabolomics are expected to give us information on
underlying mechanisms of the disease, as much as the discovery of biomarkers that could predict and
help in the diagnosis of molecular progression and therapy response for AD patients.

2.2. Amyotrophic Lateral Sclerosis

ALS is a devastating neurodegenerative disease. It is the most common motor neuron disorder
(MND) and is characterized by the degeneration of upper and lower motor neurons [72]. It is a fatal
and progressive condition in which diagnosis is predominantly performed by clinical observation
and may be delayed due to phenotypic heterogeneity [72–74]. The disease leads to progressive
generalized paresis of bulbar, limb, thoracic, and abdominal muscles. Around 90% of the cases are
sporadic, but 10% are familial; they can be inherited in an autosomal dominant, recessive, or X-linked
manner [12,18,72,75,76]. Among the known pathophysiological mechanisms, oxidative stress and
metabolic alterations, including lipid and glucose metabolism, have been described in patients with
ALS, and deficient energy homeostasis has been shown in patients harboring the gene coding for
superoxide dismutase 1 (SOD1) mutations [73,77–80]. Glutamate toxicity, apoptosis, and protein
misfolding and aggregation are also related to the pathogenesis of ALS [8–10]. However, there is
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still a considerable lack of knowledge regarding the specific mechanism that underlies motor-neuron
degeneration in ALS.

In this context, metabolomics has been used in the past few decades to identify biomarkers that
might improve diagnosis and prognosis and increase understanding of the disease mechanism. A study
profiled 12 elevated compounds associated with the benzothiazole drug class, commonly used to treat
the disorder, on plasma samples of patients with MND, including ALS [5]. Two of the most induced
metabolites were not derived from the drug itself, and thus their levels might represent a metabolic
signature that reflects modified metabolic processes [5]. This study also demonstrated that MND is,
in general, more associated with a metabolomic downregulation pattern [5]. Additional studies have
identified several metabolites in biofluids of patients with ALS; however, the most consistent finding
in these studies has been identifying glutamate as an important circulating metabolite in patients
with ALS [73,78,81,82]. This finding supports the hypothesis of glutamate toxicity in ALS. Hence,
one study utilized H1NMR spectroscopy to examine the metabolite profile of serum from ALS patients
and found an increase in glutamate level [81]. Moreover, they identified reduced levels of glutamine in
the same patients and proposed that these results indicate an imbalance in the glutamate–glutamine
conversion cycle that occurs during excitotoxicity [81]. The authors also identified increased formate
in ALS patients, data that indicate higher production of acetate [81].

Furthermore, a study from 2010 used CSF samples collected from patients with ALS at the time
of diagnosis to analyze the metabolic profile of 17 compounds, including amino acids, organic acids,
and ketone bodies, by NMR spectroscopy [82]. They reported reduced acetate levels and increased
levels of acetone, pyruvate, and ascorbate in ALS patients. Those metabolites play a role in glutamate
excitotoxicity, with involvement in brain glucose metabolism [82].

When looking at CSF samples from patients with sporadic and familial ALS, the sporadic form
seems to represent a more heterogeneous condition when analyzing the metabolomic profile; indeed,
it could not be discriminated from controls [78]. The familial ALS group presented SOD1 mutations,
and it had a more distinguishable metabolomic profile [78]. These results revealed reduced glutamate
and glutamine levels in the CSF of patients with ALS, especially in the SOD1 mutation group [78].
Another important finding was a decrease in creatinine in the CSF of both groups of patients with ALS;
this change might indicate abnormal CNS energy metabolism [78]. Furthermore, a comparison of the
metabolome of CSF samples of patients with ALS and other neurological disorders, using 1HNMR
spectroscopy, confirmed the presence of increased levels of glutamic acid and ascorbic acid, which had
been previously reported in the ALS group. These data indicate a possible role of the impaired
glucose–lactate metabolism in ALS [73].

A study of blood plasma from ALS patients and healthy controls, using MS-targeted metabolomics,
identified significantly higher levels of glutamic acid and homocysteine in the plasma of these
patients [17,83]. Although those molecules are potential biomarkers for ALS, further studies are
necessary to confirm their mechanisms for ALS physiology [83].

More recently, a few metabolomic studies have addressed biomarkers that could indicate a response
to therapy, disease prognosis, or prediction of the risk for developing ALS. One study performed a
targeted metabolomic analysis by tandem mass spectroscopy (MS/MS) in plasma samples of patients
receiving or not receiving olesoxime, a chemical compound with neuroprotective properties [74],
and creatinine and metabolites related to lipid metabolism were identified as the most discriminant
metabolites of disease progression [74]. Moreover, metabolites involved in glutamate metabolism,
especially glutamine, were also altered during disease progression in patients with ALS, independent of
treatment response [74]. Glutamic acid and glycine levels were correlated to disease progression in the
group receiving olesoxime treatment, and the authors described a time-dependent effect [74,84].

Furthermore, a prospective case-control study aimed to evaluate risk factors for developing ALS;
it identified 31 metabolites, most of which were decreased in patients with ALS [85]. The authors’
interpretation was that these could represent biomarkers for a lower risk of developing ALS over
time [85]. Some of these so-called protective metabolites include lipids, such as acylcarnitines,



Metabolites 2020, 10, 389 9 of 32

diacylglycerols, triacylglycerols, and phosphatidylcholines [85]. Interestingly, the authors also observed
increased cholesteryl ester and phosphatidylcholines in ALS [85]. However, it is important to point
out that none of the metabolites reported, as increased or decreased, reached a statistically significant
threshold after corrections for multiple comparisons. Thus, these results should be interpreted with
caution, and there is a need for replication in an independent sample before considering their use in
clinical practice.

These metabolomic studies for ALS contributed significantly to the exploration of the molecular
mechanisms underlying the disease. However, the lack of proper information about exactly how the
MND in ALS happens can be a limiting factor in searching for biomarkers related to the pathological
condition. Moreover, considering how devastating this disease can become, further studies aiming to
find new drug targets, especially using metabolomics, could be very significant for managing patients
with ALS. It would also be ideal to discover a biomarker of disease progression that could facilitate
early diagnosis for these patients. However, the complexity of neurological diseases makes it very
complicated to find a single factor that can serve as their definitive hallmark.

2.3. Epilepsy

Epilepsy is a chronic neurological disorder that affects around 50 million people throughout the
world. It is characterized by the occurrence of epileptic seizures generated by abnormal neuronal
discharges. An inadequate response to the currently available antiseizure medication is a widespread
and critical issue in epilepsy patients. Indeed, in certain circumstances, epilepsy surgery is indicated
to improve seizure control [86]. These features result in a severe economic and social burden for the
patients and/or the health system [87,88]. Furthermore, the choice of medication used to control seizures
in patients with epilepsy is dependent on the type of epilepsy; thus, a correct diagnosis is crucial for
optimizing treatment [87]. Therefore, the search for biomarkers to assist in the diagnosis and help
predict the response to treatment for epilepsy patients is urgently needed; metabolomics has been one
of the tools used for these purposes [89]. However, most metabolomic studies performed on different
tissues and biofluids of patients with epilepsy have also sought to contribute to the investigation of the
mechanisms underlying the disease—and not only the identification of biomarkers. This dual focus
is due to the fact that epilepsy is a heterogeneous condition that comprises many different specific
diseases with distinct mechanisms, clinical presentations, and prognoses [86].

To the best of our knowledge, Cavus et al. were among the first researchers to analyze the
metabolites of extracellular glutamate in surgical tissue from the hippocampi and cortices of patients
with medically refractory epilepsy [90]. The authors aimed to investigate the energetic deficiency in these
tissues, and their results suggested that it could lead to a functional impairment of glutamate transporters
and glutamate reuptake [90]. A subsequent report in 2010—which used 1HNMR- and MS-based
metabonomic analysis in blood serum from patients using different antiseizure medications—did not
find any distinction in the metabolic profile of responders and non-responders to different antiseizure
drugs [91]. Abela and colleagues used an untargeted metabolomics approach to identify potential
plasma biomarkers in patients with a rare genetic syndrome presenting with epilepsy, specifically
Snyder–Robinson syndrome [92]. They found an increase in N8-acetylspermidine and suggested that
this metabolite could be used as a biomarker for the disease [92]. Simultaneously, another study used
metabolomics to distinguish three different types of epilepsy within 48 h after seizure: partial seizure,
generalized seizure, and generalized seizure secondary to partial seizure [93]. These authors used
a GC-MS-based approach and found a distinct metabolomic profile in the serum of patients with
epilepsy. Still, they were unable to differentiate the three types of seizures [93]. The main findings were
elevated lactate and glutamate levels and reduced FAs in the serum of patients with different types of
epilepsy [93]. The authors also implicated 14 endogenous metabolites altered in patients with epilepsy
compared to controls; the disrupted metabolic pathways led to energy deficiencies, inflammation,
and neurotoxicity [93].
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In 2017, another metabolomic–genomic study aimed to identify noninvasive biomarkers using
electrically mapped human cortical regions from patients with medically intractable epilepsy who
underwent surgery for treatment took place [94]. They performed high-resolution magic angle spinning
proton magnetic resonance spectroscopy (HR-MAS1H MRS), complementary DNA (cDNA) microarrays,
and histological analysis in brain tissue resected during surgery. The main findings identified alterations
in 14 metabolites, such as choline, glycerophosphorylcholine, glutamine, glutamate, and lactate [94].
Based on their integrated system biology approach, they suggested their results revealed an altered
metabolic state in the epileptic neocortex that can be used as a future biomarker of the epileptic
activity [94]. Another study analyzed serum samples from drug-resistant epilepsy patients using
1HNMR to identify potential biomarkers for pharmacological treatment [95]. The authors identified
decreases in the concentration levels of glucose, citrate, lactate, and an increase in the concentration
of ketone bodies when comparing epilepsy patients with controls [95]. Based on their observations,
the authors suggested that the increase in ketone bodies might represent the body’s attempt to activate
spontaneous processes to optimize the energetic resources in patients with epilepsy [95]. However,
they highlighted that their results are insufficient to determine the metabolic response of drug resistance
and that further studies are necessary [95]. More recently, the first metabolome-wide association study
of antiseizure medication used in pregnant women was performed to understand better and potentially
predict the abnormal effects of these medications in the developing fetus [96]. The authors found
alterations in metabolites important for neurodevelopment and maternal health, including a decrease
in neurosteroids, progesterone, and 3β-androstanediol [96]. The authors also detected a reduction
in 5-methyltetrahydrofolate and tetrahydrofolate levels in patients taking lamotrigine; these changes
could be related to an increased risk of neurodevelopment disorders in the exposed fetus [96].

As mentioned, a significant percentage of patients with epilepsy do not respond to antiseizure
drugs, and usually, it takes many years for alternative treatments to be indicated, such as tissue
resection surgery. Moreover, the surgical approach is not suitable for all types of epilepsy. Therefore,
studies aiming to identify biomarkers or even molecular patterns that could predict drug response
in epilepsy are very relevant. One big concern when analyzing the metabolome of epilepsy patients,
as seen in other neurological diseases, is the variety of drugs these patients use, which becomes
an important confounding factor for biomarker research. However, recent metabolomic studies of
epilepsy patients aiming to differentiate seizure types and drug response have not succeeded. Thus,
homogenizing the cohort by antiseizure and other drugs, age, sex, and other variants could increase
the chances of identifying significant circulant metabolites in these patients.

2.4. Multiple Sclerosis

MuS is a chronic neurological disease characterized by inflammatory, autoimmune, demyelinating,
and neurodegenerative events [97]. It affects the CNS, and although it is typically presented as episodes
of clinical deterioration followed by periods of remission (relapsing-remitting), most patients with
MuS will present irreversible neurological disabilities over time [97]. The diagnosis of MuS diagnosis
relies on a combination of characteristics seen via neuroimaging studies such as magnetic resonance
imaging (MRI), CSF sampling, and nonspecific clinical symptoms [97]. Given that these findings are
not specific to MuS—especially in the initial stages of the disease—the diagnosis is usually delayed
and often confused with other neuroinflammatory disorders. Nevertheless, evidence has suggested
that early diagnosis—and, consequently, early therapeutic intervention—may attenuate the disease
symptoms and further progression by decreasing the harmful effects of chronic inflammation in the
CNS [98].

Metabolomic studies have been gaining increased importance in the study of MuS, mainly
due to the potential use of metabolic biomarkers to assist in diagnosing MS [97,99,100]. The main
biofluid source for metabolomics studies in MuS is the CSF: studies have identified increased lactate,
glucose, and other metabolites that are putatively involved in energy metabolism, such as choline,
acetone, myoinositol, formate, and threonate [97,101,102]. However, these same studies have also found



Metabolites 2020, 10, 389 11 of 32

decreased citrate levels, mannose, acetate, and phenylalanine when comparing patients with MuS
and healthy controls [103,104]. Recently, an MS-based metabolomics study identified differences in
tryptophan, phenylalanine, and pyrimidine metabolism in the CSF from patients with MuS, progressive,
and relapsing-remitting disease, in comparison with controls [105].

A few studies have also used serum and plasma NMR-based metabolomics in patients with MuS;
they have mainly identified energy metabolism changes, redox, and xenobiotic metabolism associated
with the disease. The identified metabolites included glucose, valine, scylloinositol, glutamine, acetate,
glutamate, lactate, and lysine [106,107]. Analysis of serum samples of a large prospective cohort of
patients with MuS established that most of the altered metabolites are involved with lipid and energy
metabolism, more specifically increased levels of free non-esterified FAs and FA oxidation products.
They also identified phospholipid metabolites [108]. More recently, a clinical trial in 2019 used a
blood-based untargeted approach to search for MuS biomarkers that identify 12 candidate metabolites
in patients. Pyroglutamate, laurate, N-methylmaleimide, acylcarnitine C14:1, and phosphatidylcholine
were among these metabolites. The authors also found metabolites involved in biological pathways
like glutathione metabolism, cellular membrane composition, FA metabolism, and oxidation [109].

An interesting recent work proposed a new method for studying lipidomics and metabolomics in
tears of patients with MuS [110]. The researchers developed a new LC-MS/MS approach that identified
polar lipids, acylcarnitines, free carnitine, and amino acids from the tears. They performed a pilot
experiment in patients with MS and identified 30 tear lipid biomarkers, some of which had also been
found in the CSF of these patients [110]. In addition, they saw a significant increase in the acylcarnitine
levels, an increase in C5OH/C4DC, C10:1, and C8:1, a decrease in C12 and C14:1, and a reduction in
C18:1OH levels in the tears of patients with MuS [110].

As multiple sclerosis presents symptoms that are easily confounded with other diseases,
especially inflammatory ones, it would be of great interest if metabolomics could be applied to
studies aiming to differentiate these diseases with overlapping symptoms, in order to facilitate the
correct diagnosis and, consequently, the right treatment for these patients.

2.5. Parkinson’s Disease

PD is characterized by the neurodegeneration of dopaminergic neurons from various areas of
the CNS, mainly in the substantia nigra [111,112]. PD affects about 1–3% of the global population
over 60 years of age [111]. A PD diagnosis is still essentially based on the patient’s clinical history,
neurological exam, and response to dopaminergic drugs [111]; this approach can lead to misdiagnosis,
especially in the early stages of the disease [111]. Clinically, the most common features are muscle
stiffness, hypokinesia, gait disturbances, and resting tremor. These are slowly progressive; however, the
clear clinical picture starts after the loss of about 80% of striatal dopaminergic neurons or 30–50% of these
neurons in the substantia nigra, leading to a critical decrease in dopamine levels [111,113–115]. There is
also a progressive accumulation of intracellular inclusions, named Lewy bodies, in different brain
regions, as well as in the CSF [111,112]. These aggregates contain a protein called α-synuclein [111].

Although there are rare monogenic forms of PD—which are associated with overexpression
of α-synuclein or mutations in the parkin (PRKN) gene [111,116–120]—most patients with PD do
not report a family history and are considered sporadic cases with unknown etiology [116–118,121].
Thus, identifying biomarkers that could be related to the underlying mechanisms that lead to PD
is important for assisting in the diagnosis and defining specific therapies that target the different
disease mechanisms. Hence, several reports have identified mitochondrial dysfunction caused by
the accumulation of reactive oxygen species (ROS) in PD [112,122–124]. An increase follows this
ROS accumulation in α-synuclein aggregation and the typical Lewy bodies [112]. The decrease in
antioxidant activity in the depletion of ROS can be attributed to several factors: the environmental
exposure to toxic substances, such as pesticides, and the high oxidation potential of the dopamine itself
within dopaminergic neurons [112,125]. In addition, there are other possible mechanisms related to
energy metabolism that seems to also contribute to the development of PD, such as reductions in levels
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of the electron transport chain complex I and mutations in the gene coding for phosphatase and tensin
homolog PTEN-induced kinase 1 (PINK1), which codes for an alleged mitochondrial kinase involved in
mitochondrial fission and fusion processes, mitophagy, and oxidative phosphorylation [123,126–132].
Thus, mitochondrial metabolism seems to be a key mechanism involved in PD [132].

Metabolomic studies in PD have been performed in blood serum from patients. In a 2015 study,
Hatano et al. identified several metabolites that were significantly decreased only during the initial
stages of the disease in patients with PD, such as caffeine and its derivatives and biomolecules related
to purine metabolism [133]. The potential protective action of caffeine against PD may be related to its
mechanism of inhibition of adenosine A2A receptors, which regulate the release of neurotransmitters
such as glutamate and dopamine in the CNS [133–135]. Moreover, some studies have used other
analytical approaches and have identified decreases in other metabolites that belong to purine
metabolisms, such as uric acid and its intermediates, contributing to an increase in cellular oxidative
damage and PD progression [136–138]. Oxidative damage has also been demonstrated in patients with
PD due to the decreased bilirubin/biliverdin ratio in the blood serum of these patients [133]. Biliverdin,
a product of oxygenation and reduction reactions of heme, and bilirubin, a reduced biliverdin product,
are highly regulated by the amounts of ROS. So, the biliverdin concentration is indicative of the levels of
these oxidant agents. Furthermore, decreased levels of antioxidant agents, bilirubin, and ergothioneine
have been reported in the blood serum of patients with PD as in other neurodegenerative diseases [133].

FAs and their products derived from beta-oxidation (FAO) have also been implicated
in the development of PD. FAs such as the medium-long chain, phosphatidylcholine,
and lysophosphatidylcholine are increased in the urine of patients with PD, so they have been
proposed as candidates for biomarkers of PD progression [111,139,140]. The increase in these FAOs
has been linked to the onset of mitochondrial dysfunctions and neuronal loss. Moreover, FAOs play a
role in signaling for both cell viability and apoptosis [111,141]. Furthermore, FAO products, such as
myristoleoylcarnitine, hexanoylcarnitine, decanoylcarnitine, and others, are also increased in the
blood serum of patients in the early stages of PD [141,142]. Other FAOs, such as furoylglycine,
malonylcarnitine, and hexanoylglycine, have also been shown to be increased in the urine of patients
with PD [143,144].

Another important class of metabolites that have been relevant in PD are amino acids, such as
branched-chain amino acids (BCAAs), which have been increased in animal models and patients with
PD [6,143,145]. This set of metabolites comprises leucine, isoleucine, and valine, and they are known
to perform functions related to energy metabolism, regulation of protein synthesis, and prevention
of oxidative damage [146]. Interestingly, there is evidence for a relationship between altered BCAA
metabolism and the onset of mitochondrial dysfunctions through the generation of toxic metabolites of
these amino acids [147].

Altogether, the findings described above indicate that the abnormalities in purine compounds,
FAs, BCAAs, bilirubin, and biliverdin—found in the biofluids of patients with PD—point towards
mitochondrial dysfunction and oxidative damage as key mechanisms involved in the development
and or progression of PD [111,133,148]. However, it is important to note that chronic use of the drug
levodopa by patients with PD may change serum BCAA levels because they are carried across the
blood-brain barrier by the same carriers that allow levodopa and aromatic amino acids to pass into
brain tissue [111,149]. Hence, changes in BCAA, and perhaps other compounds, may result from
specific treatments.

Aromatic amino acids, represented by tyrosine, tryptophan, phenylalanine, and histidine,
are substrates for synthesizing several neurotransmitters [150]. In patients with PD, elevated levels
of monoamine metabolism products, such as 3-methoxytyrosine, 3-methoxytyramine sulfate,
and homovanillic acid, have been found in several biofluids, including plasma, serum, and urine [133,151].
However, such patients were under treatment with levodopa and decarboxylase inhibitors, which can
influence the metabolic profile biotransformation pathways of aromatic amino acids, such as tyrosine
and tryptophan [145,151–153]. Nevertheless, tyrosine, a precursor to both dopamine and levodopa,
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was found at similar levels in healthy individuals and patients with PD, independent of levodopa or a
levodopa equivalent dose [133]. Furthermore, a study found that a reduction in tryptophan and serotonin
levels in serum samples from patients with PD could be related to anxiety and depression symptoms,
which usually appear in more advanced stages of the disease [133]. By contrast, phenylalanine metabolism
components, such as phenylacetate [133] and aspartyl phenylalanine benzoate [139], and histidine
metabolism compounds, such as 1-methylhistidine [142], are increased in serum samples in patients
with PD.

Moreover, there are known common features among different neurodegenerative disorders. Indeed,
PD and ALS are linked to protein misfolding and the consequent aggregation of biomolecules [154],
which is aggravated by mitochondrial dysfunction and oxidative imbalances [77]. Therefore, it is not
surprising that a study identified a similar metabolic profile in CSF and blood plasma of patients
with PD and ALS [6]. In the CSF, there was an increase in α-hydroxybutyric acid, β-hydroxybutyric
acid, and carnitine, and a decrease in ammonia and uracil in both groups of patients [6]. In the blood
plasma, there was an increase in xanthine, carnitine, α-hydroxybutyric acid, and lactate and a decrease
in hippurate, adenine, hypoxanthine, and lysophosphatidylcholine (14:0) [6].

Parkinson’s disease is another neurological disease that could benefit from metabolomic studies
applied to new drug target discovery. The described research has used metabolomics to exploit the
pathological mechanisms involved in developing the symptoms, but biomarker studies are still scarce.
Studies aiming to predict PD development would be a significant contribution to the clinic since,
nowadays, the patient has already lost around 80% of their striatal dopaminergic neurons at the time of
diagnosis. Therefore, metabolomics is a potential tool in investigating molecular mechanisms related
to PD and can be highly applied to drug discovery targets.

2.6. Stroke

Stroke is one of the leading causes of mortality and disabilities around the world [155]. According to
the WHO, it is prevalent in all developed and underdeveloped countries; it significantly burdens
patients, families, and the public health care system [155]. A stroke occurs when there is an obstruction
of blood flow to the brain, a phenomenon that affects its function and leads to cell and tissue damage
and death [156,157]. The blockage of oxygen supply to the brain causes cell death, releasing toxic
chemicals, leading to further tissue damage [9]. Stroke can be classified into two main subtypes:
ischaemic (IS) and hemorrhagic (HS) [156]. IS is the most frequent type; it is characterized by an
interruption to the blood flow due to clots and artery blocks [156]. This subtype has both an acute and
a chronic phase, depending on the time after the initial symptoms; the two phases show differences in
the type of molecular pathways activated and of metabolite profile [158]. Several biological phenomena
occur immediately after a stroke, including cell death, inflammation, changes in energy metabolism,
increased oxidative stress, decreased cell viability, and brain damage [158,159].

The main risk factors for stroke are advanced age, high blood pressure, diabetes, dyslipidemia,
and smoking [157]. However, biologic risk factors influenced by genetic predisposition are also relevant;
hence, even though advanced age is one of the major risk factors, stroke incidence is increasing in
young individuals [160]. An increased level of an inhibitor of the nitric oxide synthase metabolite,
dimethylarginine, has been positively associated with early-onset stroke [161]. Nitric oxide synthase is
part of the pathogenesis of atherosclerosis [161]. Dyslipidemia is a leading cause of carotid stenosis,
which puts one at a higher risk for atherosclerotic stroke. In the severe class of carotid stenosis
patients, researchers have described a decrease in choline and increased homocysteine and lipid
levels [162]. Choline reduction increases the effect of the homocysteine methylation pathway and
choline’s antioxidant property, which exacerbates atherosclerosis risk [162]. Increased homocysteine
levels have been described as associated with an increase in oxidative stress in vascular cells and an
increase in platelet adhesion to vessel walls and can be considered a biomarker for stroke [163].

Furthermore, the downregulation of some metabolites, such as L-homoarginine, cadaverine,
2-oxoglutarate, nicotinamide, valine, and ubiquinone, has also been associated with an increased risk
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of stroke [164–166]. Homoarginine has been described as part of nitric oxide metabolism and can
regulate blood flow and pressure, cell viability, insulin secretion, and platelet aggregation [164]. A few
studies have shown that a decrease in homoarginine levels can be associated with increased stroke
mortality [164,166]. In addition, the reduction of lysine catabolites has been associated with poor stroke
outcomes [165].

Wang et al. [6] evaluated the serum of 40 patients a week after IS and 29 controls using MS.
The authors identified 18 metabolites related to inflammation, energy deficits, oxidative stress,
neurotoxicity, neuroexcitation, and brain injury mechanisms [10]. The authors indicated altered
levels of aromatic amino acids, an upregulation of lactate, and a downregulation of tyrosine and
tryptophan as potential biomarkers for acute IS [10]. In stroke patients, low levels of tyrosine can
increase oxidative stress and inflammation, while low levels of tryptophan can reduce serotonin [10].
Decreases in tryptophan and glutamate levels have been considered potential post-stroke depression
indicators [10,167]. The authors also reported that high levels of glutamate might be involved in
increasing neuronal deaths and the enlargement of infarction size in those patients [10].

The expansion of cerebral injury can also be influenced by oxidative stress due to the overexpression
of matrix metallopeptidase 9 (MMP-9) [166]. A targeted study developed by Kelly et al. associated
elevated MMP-9 with augmented neuronal arachidonic peroxidation metabolite (F2 isoprostanes
(F2Ips)) in stroke patients. These data indicate an increase in oxidative stress processes and a
consequently worse stroke outcome [163,166].

Another group of metabolites, BCAA, was also identified as altered in patients with stroke.
Two studies identified decreased BCAA levels in patients with acute IS compared with controls [9,168].
Thus, these metabolites might influence the bioenergetic homeostasis and citric acid cycle pathways
and might be responsible for increasing stroke severity [9,10,163].

Liu et al. reported that the combination of five metabolites—the downregulation of serine,
isoleucine, and PC 50/50 and the upregulation of betaine and lysoPE(18:2)—in serum samples of patients
after stroke might be a predictor of a good outcome [9]. According to the authors, the downregulation
of serine, isoleucine, and aspartate in acute IS might regulate the growth, repair, and maintenance of
the brain. In contrast, the upregulation of LysoPE might repair the cell membrane [9].

There are different IS types, which are classified according to the etiology of the neurovascular
events and the clinical and research data. This classification is called Trial of Org 10172 in Acute Stroke
Treatment (TOAST) [169]. Each subtype has different etiologies, and thus specific metabolites may be
present in the different TOAST sub-types. Jung et al. reported specific changes in the metabolic profile
of patients with small vessel disease with an increase in lactate, pyruvate, glycolate, and formate,
as well as a decrease in glutamine and methanol secretions [170]. These metabolites have a relevant
function on the oxidative stress process by anaerobic glucose and folic acid metabolisms [163,170].

Inflammation is another relevant process that has been identified in different stroke subtypes.
Jove et al. reported the increased levels of the phospholipid lysophosphatidylcholine (22:6)
(LysoPC(22:6)) in patients with extensive artery atherosclerosis [171]. In addition to the phospholipids
phosphatidylethanolamine (PE) and LysoPC, this signaling molecule has a relevant function on
neuronal membrane stabilization. It might be a potential trigger of the brain inflammation processes
that might influence tissue response after stroke [163]. Another metabolite that might affect the response
after stroke is taurine. High levels of taurine have been reported in patients during the acute IS phase,
leading to increased brain tissue damage brain [172]. However, the right taurine dose could be used as
a potential stroke treatment to reduce neuronal cell loss, apoptosis, and infarct size [172].

HS affects around 10–15% of all patients with stroke; it has been described as a rupture on
brain arteries, causing a severe hemorrhage in the tissue [155,156]. HS is known to have the worst
prognosis when compared with IS [155,156]. High levels of glutamate and histidine reportedly
impair stroke recovery, leading to worse outcomes in patients with subarachnoid hemorrhage, a type
of HS [173,174]. It is believed that the excess of these metabolites causes an increase in excitatory
responses and release of free radicals, creating severe oxidative stress and progressive cell membrane
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degradation [163,173]. Furthermore, the high lactate: pyruvate ratio has been linked to poor prognosis
after a subarachnoid hemorrhage, becoming a useful biomarker for the development, outcome,
and severity of the hemorrhagic event [173,174]. Lactate and pyruvate interfere with anaerobic
glycolysis response and can be indicative of ischemia. Low levels of pyruvate can adversely affect the
Krebs cycle and harm the production of amino acids that are important to repair brain injury [174].

The increase in free amino acids in CSF during hospitalization has also been proposed as a marker
for the catabolism process. One study reported the L form of 2-hydroxyglutarate as a biomarker for
hypoxia response during hemorrhagic brain events [175]. This metabolite increase reportedly predicted
an adverse outcome, including leading to patients’ death [175]. By contrast, decreased levels of the L
form of 2-hydroxyglutarate have been associated with low disability among patients with HS [175].
Lu et al. also reported that an increase in glycine and proline during hospitalization of patients with
subarachnoid hemorrhage might induce meningeal collagen synthesis and serve as a biomarker of the
disease [175].

Metabolomics studies have contributed much to the understanding of the biology underlying
stroke occurrence. Despite all the efforts to distinguish the metabolome of stroke types, improvements
in case-controls cohort characterization could result in more informative and reliable data. Risk factors
and drug usage standardization might lead to more precise results that could be implemented in the
clinic by improving the prognosis and the treatment given to the patients after the stroke. Moreover,
metabolomic studies involving multiple fields on stroke recovery are setting out to determine the best
treatment for each kind of stroke [147].

Table 1. Metabolites discovered for each of the main neurological diseases: Alzheimer’s disease (AD),
amyotrophic lateral sclerosis (ALS), Epilepsy, multiple sclerosis (MuS), Parkinson’s disease (PD), Stroke.

Condition Biological Fluid Type of Analysis Metabolite Biomarker
for Related Mechanisms Ref.

AD

CSF LC-MS/
GC-MS Aminoadipic acid AD prediction Not clear for this condition [69]

CSF LC-MS/
GC-MS Tyrosine AD prediction Neurotransmitter synthesis [69]

CSF LC-MS/
GC-MS Sphingomyelin AD prediction Membrane Constitution [69]

CSF LC-MS/
GC-MS

Lysophosphatidic acid
C18:2 AD prediction Oxidative stress [69]

Plasma FIA/
MS/MS Acylcarnitine AD and MCI prediction Cascade of neurodegeneration [68]

Plasma FIA/
MS/MS Phosphatidylcholine AD and MCI prediction Cascade of neurodegeneration [68]

Plasma FIA/
MS/MS Sphingomyelin AD and MCI prediction Not clear for this condition [68]

Plasma FIA/
MS/MS Lysophospholipids Differentiate AD from

MCI Not clear for this condition [68]

Plasma FIA/
MS/MS

Dodecanedioyl
carnitine

Differentiate AD from
MCI from healthy

subjects
Not clear for this condition [68]

Plasma FIA/
MS/MS Dodecanoylcarnitine

Differentiate AD from
MCI from healthy

subjects
Not clear for this condition [68]

Plasma FIA/
MS/MS PCaaC26:0

Differentiate AD from
MCI from healthy

subjects
Not clear for this condition [68]

Urine LC Arginine aMCI prediction
Protein homeostasis, taurine

metabolism, glutathione
metabolism

[63]

Plasma UPLC-MS/MS Lysophosphatidyl
ethanolamine MCI-AD prediction Membrane Constitution [66]

Plasma UPLC-MS/MS Choline MCI-AD prediction Neurotransmitter synthesis [66]

Plasma UPLC-MS/MS Soraphen A MCI-AD prediction It can interfere in the fatty acid
elongation [66]
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Table 1. Cont.

Condition Biological Fluid Type of Analysis Metabolite Biomarker
for Related Mechanisms Ref.

ALS

Serum/plasma;
CSF; Plasma

NMR-based/MS-target;
NMR-based;

FIA/LC-MS/MS/NMR-based
Glutamate

ALS prediction;
Differentiation from other

neurological disorders;
Drug responsiveness

Glutamate excitotoxicity [17,71,72,
78,81,82]

Serum; CSF;
plasma

NMR-based; CG-MS;
FIA/

LC-MS/MS
Glutamine

ALS prediction; Familial
ALS prediction (SOD1

mutation); Drug
responsiveness

Imbalance in
glutamate–glutamine cycle [72,74,78]

Serum NMR-based Formate ALS prediction Increased levels may cause cell
death [78]

CSF NMR-based Acetate ALS prediction Energy metabolism
dysfunction [5]

CSF NMR-based Acetone ALS prediction Energy metabolism
dysfunction [5]

CSF NMR-based Pyruvate ALS prediction Energy metabolism
dysfunction [5]

CSF NMR-based Ascorbate
ALS prediction;

Differentiation from other
neurological disorders

Oxidative stress [5,71]

CSF CG-MS Creatinine Familial ALS prediction -
SOD1 mutation

Energy metabolism
dysfunction [74]

Plasma MS-target Homocysteine ALS prediction Not clear for this condition [17,81]
Plasma FIA/LC-MS/MS Creatinine Drug responsiveness Not clear for this condition [72]

Plasma FIA/LC-MS/MS/NMR-based Glycine Drug responsiveness
Changes in its levels can affect

the activity of the NMDA
receptor

[72,82]

Plasma LC-MS/MS Acylcarnitines Protective function Not clear for this condition [83]
Plasma LC-MS/MS Diacylglicerols Protective function Not clear for this condition [83]
Plasma LC-MS/MS Triacylglicerols Protective function Not clear for this condition [83]
Plasma LC-MS/MS Phosphatidylcholine Protective function Not clear for this condition [83]

Epilepsy

Plasma LC-MS N8-acetylspermidine Snyder–Robinson
syndrome

Alterations in its levels may
cause an imbalance of

excitatory and inhibitory
mechanisms

[90]

Serum; Brain
tissue; Serum

CG-MS;
HR-MAS1H MRS;

NMR-based
Lactate

Different types of seizures;
Epileptic activity; Drug

responsiveness

Energy metabolism
dysfunction [91–93]

Serum; Brain
tissue

CG-MS;
HR-MAS1H MRS Glutamate Different types of

seizures; Epileptic activity
Glutamate excitotoxicity and

hyperexcitability [91,92]

Brain tissue HR-MAS1H MRS Choline Epileptic activity

Alterations in its levels may
suggest heightened cell
membrane turnover in

high-spiking tissue

[92]

Brain tissue HR-MAS1H MRS Glycerophosphorylcholine Epileptic activity

Alterations in its levels may
suggest heightened cell
membrane turnover in

high-spiking tissue

[92]

Brain tissue HR-MAS1H MRS Glutamine Epileptic activity Not clear for this condition [92]

Serum NMR-based Glucose Drug responsiveness Energy metabolism
dysfunction [93]

Plasma LC-HRMS Neurosteroids Effect of medicines in
fetal development

Neurodevelop-
mental functions [93]

Plasma LC-HRMS Progesterone Effect of medicines in
fetal development

Reduced levels may be related
to a risk factor for miscarriage [93]

Plasma LC-HRMS 3β-androstanediol Effect of medicines in
fetal development Not clear for this condition [93]

Plasma LC-HRMS 5-methyltetrahydrofolate Effect of medicines in
fetal development

AED-induced effect on folate
uptake or metabolism [93]

Plasma LC-HRMS Tetrahydrofolate Effect of medicines in
fetal development

AED-induced effect on folate
uptake or metabolism [93]

MuS

CSF;
Serum NMR-based Acetate

MuS prediction;
Differentiate

Neuromyelitis optica
from MuS and healthy

subjects

The decrease may lead to
myelination dysfunction;

Neurotransmitter synthesis and
suggested as a marker of

astrocyte metabolism

[101,104,
107]

CSF NMR-based N-Methyl metabolites Demyelination process
Impairment in the

choline-glycine cycle and
myelin synthesis

[101]

CSF NMR-based Sarcosine
(N-methyl-glycine) Demyelination process

Impairment in the
choline-glycine cycle and

myelin synthesis
[101]

CSF NMR-based Formate Demyelination process
Impairment in the

choline-glycine cycle and
myelin synthesis

[101,102]

CSF NMR-based Lactate MuS prediction

The increase was related to CSF
mononuclear cells in MS

patients and demyelinating
areas

[102]

CSF NMR-based N-acetyl aspartate
(NAA)

Differentiate chronic
lesions from healthy

subjects

The decrease may be related to
chronic demyelinating plaques [102,103]

CSF NMR-based Choline

Differentiate acute from
chronic plaques and

normal-appearing white
matter

Increase related to active
demyelinating plaques [102]
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Table 1. Cont.

Condition Biological Fluid Type of Analysis Metabolite Biomarker
for Related Mechanisms Ref.

CSF NMR-based Citrate MuS prediction

The decrease can be related to
the disruption of the TCA cycle
through the pyruvate pathway

and the formation of myelin

[102–104]

CSF NMR-based Threonate MuS prediction Not clear for this condition [103]
CSF NMR-based Myo-inositol MuS prediction Not clear for this condition [103]
CSF NMR-based Mannose MuS prediction Not clear for this condition [103]
CSF NMR-based Phenylalanine MuS prediction Not clear for this condition [103]
CSF NMR-based 3-hydroxybutyrate MuS prediction Not clear for this condition [103]
CSF NMR-based 2-hydroxyisovalerate MuS prediction Not clear for this condition [103]

CSF NMR-based 2-hydroxybutyrate MuS prediction
The increase may be related to

raised lipid oxidation and
oxidative stress

[104]

CSF;
Serum

NMR-based;
GC-MS Pyroglutamate MuS prediction

The increase may be related to
impairment in antioxidant

pathways and leads to central
nervous system dysfunction

[104,109]

CSF NMR-based Acetone MuS prediction
The increase may be related to

impairment in energetic
metabolism

[104]

CSF;
Serum NMR-based Glucose MuS prediction

The decrease can be related to
disturbed energy generation

and progress of MS
[104,106]

CSF HRMS Kynurenate Differentiate SPMuS from
RRMuS patients Tryptophan metabolism [105]

CSF HRMS 5-hydroxytryptophan Differentiate SPMuS from
RRMuS patients Tryptophan metabolism [105]

CSF HRMS 5-hydroxyindoleacetate Differentiate SPMuS from
RRMuS patients Tryptophan metabolism [105]

CSF HRMS N-acetylserotonin Differentiate SPMuS from
RRMuS patients Tryptophan metabolism [105]

CSF HRMS Uridine Differentiate SPMuS from
RRMuS patients

Pyrimidine metabolism;
Significantly associated with

disability, disease activity, and
brain atrophy

[105]

CSF HRMS Deoxyuridine Differentiate SPMuS from
RRMuS patients

Pyrimidine metabolism;
Significantly associated with

disability, disease activity, and
brain atrophy

[105]

CSF HRMS Thymine Differentiate SPMuS from
RRMuS patients

Pyrimidine metabolism;
Significantly associated with

disability, disease activity, and
brain atrophy

[105]

CSF HRMS Glutamine Differentiate SPMuS from
RRMuS patients

Pyrimidine metabolism;
Significantly associated with

disability, disease activity, and
brain atrophy

[105]

Serum NMR-based Selenium MuS prediction The decrease may be related to
oxidative stress [106]

Serum NMR-based Valine MuS prediction
The decrease may be related to
myelination dysfunction of the

neurons
[106]

Serum NMR-based Scyllo-inositol
Differentiate MuS from

Neuromyelitis optica and
healthy subjects

May be related to diffuse glial
proliferation, demyelination,

and neuronal damages
[107]

Serum UHPLC-MS Sphingomyelin MuS prognosis
One of the main lipid class in
myelin; influence the immune

response
[108]

Serum UHPLC-MS Lysophosphatidyl
ethanolamine MuS prognosis Modulates the immune

response [108]

Serum UHPLC-MS Hydrocortisone MuS severity Not clear for this condition [108]
Serum UHPLC-MS Tryptophan MuS severity Not clear for this condition [108]

Serum UHPLC-MS Glutamate MuS severity

Related to excitatory
neurotransmitter and

oligodendrocyte death in the
white matter

[108]

Serum UHPLC-MS Eicosapentaenoic acid MuS severity Related to the activation of the
immune system [108]

Serum UHPLC-MS 13S-hydroxyoctadecadienoic
acid MuS severity Not clear for this condition [108]

Serum UHPLC-MS Lysophosphatidyl
cholines MuS severity

Present in the cell membrane;
role in proliferative growth and

apoptosis
[108]

Serum UHPLC-MS Lysophosphatidyl
ethanolamines MuS severity Not clear for this condition [108]

Serum GC-MS Laurate Differentiate MuS from
healthy subjects

Saturated fatty acid, may be
related to immune response [109]

Serum GC-MS N-methylmaleimide Differentiate MuS from
healthy subjects

May be related to
mitochondrial function and

energy metabolism
[109]

Serum GC-MS Acylcarnitine C14:1 Differentiate MuS from
healthy subjects

Related to mitochondrial
function and energy

metabolism
[109]

Serum GC-MS Phosphatidylcholine Differentiate MuS from
healthy subjects

Present in cell membrane and
myelin [109]
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Table 1. Cont.

Condition Biological Fluid Type of Analysis Metabolite Biomarker
for Related Mechanisms Ref.

PD

CSF;
Urine;

Brain of goldfish
homogenate

GC-MS/LC-MS;
NMR-based BCAA

Differentiate PD from
healthy subjects;

Idiopathic PD prediction;
PD Goldfish model

Protein synthesis, energy
production, and synthesis of

the neurotransmitter glutamate
[6,143,145]

Serum UPLC-MS/MS Caffeine Differentiate PD from
healthy subjects

Regulate the release of
neurotransmitters (glutamate

and dopamine)
[133]

Serum UPLC-MS/MS Tryptophan Differentiate PD from
healthy subjects

The decrease may be associated
with psychiatric problems in

advanced PD
[133]

Serum UPLC-MS/MS Ergothioneine Differentiate PD from
healthy subjects

A decrease may suggest
elevated oxidative stress [133]

Serum UPLC-MS/MS Bilirubin/Biliverdin
ratio

Differentiate PD from
healthy subjects

A decrease may suggest
elevated oxidative stress [133]

Serum; Plasma Enzymatic Methods Uric acid PD prediction
Antioxidant. An increase may
suggest a potential protective

effect
[136–138]

Serum MS-based FA metabolism (acyl
carnitine pathway)

PD prognosis and MCI
development

Medium-long chain FA derived
from beta-oxidation. Related to
mitochondrial dysfunction and

neuronal loss

[142]

Urine HPLC-HRMS Steroidogenesis
metabolism PD progression

May be related to oxidative
stress, inflammation, and

neuron injury
[143]

Urine HPLC-HRMS Fatty acid
beta-oxidation PD progression

May be related to
mitochondrial dysfunction,

oxidative stress, and impaired
energy metabolism

[143]

Urine HPLC-HRMS Histidine metabolism PD progression Suppressive neurotransmitter
effects, and hormone secretion [143]

Urine HPLC-HRMS Phenylalanine
metabolism PD progression Not clear for this condition [143]

Urine
HPLC-HRMS;

GC-MS
/LC-MS

Tryptophan metabolism PD progression;
Idiopathic PD prediction

Related to mitochondrial
disturbances and impairment
of brain energy metabolism

[143,144]

Urine
HPLC-HRMS;

GC-MS/
LC-MS

Glycine derivation PD progression;
Idiopathic PD prediction

Stimulate the release of
dopamine and acetylcholine [143,144]

Urine HPLC-HRMS Nucleotide metabolism PD progression Not clear for this condition [143]
Urine HPLC-HRMS Tyrosine metabolism PD progression Not clear for this condition [143]

Urine GC-MS/
LC-MS

Steroid hormone
biosynthesis Idiopathic PD prediction

Related to oxidative stress, and
dopamine cell degeneration in

PD
[144]

Urine GC-MS/
LC-MS

Phenylalanine
metabolism Idiopathic PD prediction Precursor for dopamine [144]

Brain of goldfish
homogenate NMR-based Myo-inositol PD Goldfish model

Glial marker. An increase may
suggest disruptive cell
functions in the brain

[145]

Brain of goldfish
homogenate NMR-based N-acetylaspartate PD Goldfish model

The decrease may suggest
neuronal dysfunction or cell

loss
[145]

Brain of goldfish
homogenate NMR-based Betaine PD Goldfish model Reduced may suggest a

reduced antioxidant capacity [145]

Brain of goldfish
homogenate NMR-based Phosphatidylcholines PD Goldfish model

Component of cellular
membranes. Decrease related

to membrane damage
[145]

Brain of goldfish
homogenate NMR-based Creatine and

phosphocreatine PD Goldfish model
The decrease can be related to
severe oxidative damage and

energy impairment
[145]

Brain of goldfish
homogenate NMR-based Cholesterol PD Goldfish model

The decrease may be related to
elevated oxidative stress;

impaired brain mitochondria
[145]

Brain of goldfish
homogenate NMR-based Polyunsaturated fatty

acid PD Goldfish model The decrease may be associated
with elevated oxidative stress [145]

CSF UHPLC/
GC-MS Benzoate PD progression Derived from the catabolism of

phenylalanine [139]

Plasma UHPLC/
GC-MS Theobromine PD progression Phenylalanine metabolism [139]

Plasma UHPLC/GC-MS Theophylline PD progression Metabolites of the purine
compound caffeine [139]

Plasma UHPLC/GC-MS Paraxanthine PD progression Metabolites of the purine
compound caffeine [139]

Plasma UHPLC/GC-MS 1-methylxanthine PD progression Metabolites of the purine
compound caffeine [139]

Plasma UHPLC/GC-MS 5-dodecanoate PD progression Fatty acid metabolism [139]
Plasma UHPLC/GC-MS 3-hydroxydecanoate PD progression Fatty acid metabolism [139]
Plasma UHPLC/GC-MS Docosadienoate PD progression Fatty acid metabolism [139]
Plasma UHPLC/GC-MS Docosatrienoate PD progression Fatty acid metabolism [139]
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Table 1. Cont.

Condition Biological Fluid Type of Analysis Metabolite Biomarker
for Related Mechanisms Ref.

Stroke

Serum GC-MS/
LC-MS Isoleucine Differentiate AIS from

healthy subjects

Signaling molecule to regulate
the growth, repair, and

maintenance of the brain
functions

[9]

Serum GC-MS/
LC-MS Serine Differentiate AIS from

healthy subjects

Signaling molecule to regulate
the growth, repair, and

maintenance of the brain
functions

[9]

Serum GC-MS/
LC-MS Phosphatidylcholine Differentiate AIS from

healthy subjects
Component of cellular

membrane [9]

Serum GC-MS/LC-MS Betaine Differentiate AIS from
healthy subjects

Part of the choline pathway;
part of the antioxidant process [9]

Serum GC-MS/LC-MS LysophosphatidylethanolamineDifferentiate AIS from
healthy subjects

Component of cellular
membrane [9]

Serum GC-MS/LC-MS Carnitine Differentiate AIS from
healthy subjects

Help the catabolism of lipids
and energy conversion [9]

Serum;
Plasma/Urine

GC-MS;
NMR-based Lactate

AIS prediction
Small vessel disease

prediction

An increase may indicate
anaerobic glycolysis, hypoxia,

and ischemia
[10,170]

Serum GC-MS Tyrosine AIS prediction
A low level can lead to

oxidative stress and
inflammation

[10]

Serum;
CSF GC-MS Tryptophan

AIS prediction;
Long-term outcome of

subarachnoid
hemorrhage

A low level can reduce
serotonin [10,175]

Plasma HPLC Dimethylarginine Early-onset stroke
Inhibitor of nitric oxide

synthase, part of the
pathogenesis of atherosclerosis

[161]

Plasma NMR-based Choline Carotid artery stenosis
pathogenesis

Its reduction increases the
homocysteine methylation

pathway
[162]

Plasma NMR-based Homocysteine Carotid artery stenosis
pathogenesis

The increase could be
associated with oxidative stress

in vascular cells and platelet
adhesion

[162]

Plasma LC-MS Lysophosphatidylcholine
Stroke recurrence;

Large artery
atherosclerosis

It may be a potential trigger of
the brain inflammation

processes
[163,171]

Serum LC-MS/MS Acetyl-L-lysine Thrombotic ischemic
prediction

The decrease may suggest
elevated lysine catabolism and

excitotoxic activity
[165]

Serum LC-MS/MS Cadaverine Thrombotic ischemic
prediction

The decrease may suggest
elevated lysine catabolism and

excitotoxic activity
[165]

Serum LC-MS/MS 2-oxoglutarate Thrombotic ischemic
prediction

The decrease may suggest
elevated lysine catabolism and

excitotoxic activity
[165]

Serum LC-MS/MS Nicotinamide Thrombotic ischemic
prediction

The decrease may suggest
elevated lysine catabolism and

excitotoxic activity
[165]

Serum LC-MS/MS Valine Thrombotic ischemic
prediction

A decrease may suggest an
excitotoxic activity [165]

Plasma;
CSF

LC-MS;
GC-MS BCAA

Stroke outcome and
severity;

Long-term outcome of
subarachnoid
hemorrhage

Decreased may influence the
bioenergetic homeostasis and

impair the citric acid cycle
pathways

[168,175]

Plasma/
Urine NMR-based Pyruvate Small vessel disease

prediction
The increase may be related to

anaerobic glycolysis [170]

Plasma/
Urine NMR-based Glycolate Small vessel disease

prediction

The increase may be related to
folic acid deficiency and
hyperhomocysteinemia

[170]

Plasma/
Urine NMR-based Formate Small vessel disease

prediction

The increase may be related to
folic acid deficiency and
hyperhomocysteinemia

[170]

Plasma/
Urine NMR-based Glutamine Small vessel disease

prediction

The decrease may be related to
elevating of glial fibrillary
acidic protein and brain

damage

[170]

Plasma/
Urine NMR-based Methanol Small vessel disease

prediction
The decrease may be related to

hyperhomocysteinemia [170]

Plasma HPLC Taurine Stroke prognosis and
recovery

Osmoregulator and
neuromodulator. The increase
may be related to brain tissue

damage

[172]



Metabolites 2020, 10, 389 20 of 32

Table 1. Cont.

Condition Biological Fluid Type of Analysis Metabolite Biomarker
for Related Mechanisms Ref.

Blood
Mobile Photometric -

Enzyme-kinetic
Analyzer

Lactate:Pyruvate ratio Hemorrhagic stroke
prognosis

Reduced pyruvate may be
related to impairment in

energetic and repair functions
[174]

CSF GC-MS 2-hydroxyglutarate
Long-term outcome of

subarachnoid
hemorrhage

The increase was related to
adverse outcome and death,

while the decrease was related
to low disability outcomes

[175]

CSF GC-MS Glycine
Long-term outcome of

subarachnoid
hemorrhage

Not clear for this condition [175]

CSF GC-MS Proline
Long-term outcome of

subarachnoid
hemorrhage

Not clear for this condition [175]

CSF—Cerebrospinal Fluid; MS—Mass Spectrometry; LC/MS—Liquid Chromatography Mass Spectrometry;
GC/MS—Gas Chromatography Mass Spectrometry; FIA/MS/MS—Flow Injection Analysis using tandem
Mass Spectrometry; MCI—Mild Cognitive Impairment; UPLC MS/MS—Ultra Performance Liquid
Chromatography—Tandem Mass Spectrometer; NMR—Nuclear magnetic Resonance; SOD1—Superoxide dismutase
1; HMRS—High-Resolution Mass Spectrometry; TCA—Tricarboxylic Acid Cycle; FA—Fatty acids; HPLC—High
Performance Liquid Chromatography; AIS—Acute Ischemic Stroke.

2.7. Overview of Relevant Metabolites in Neurological Disorders

The first interesting observation is that there are altered metabolic processes in common among
the different neurological disorders. In this context, we can identify metabolites such as glutamate
and glutamine related to hyperexcitation and neuronal excitotoxicity processes—processes commonly
observed in diseases such as epilepsy, ALS, and MuS, in which the phenomena of hyperexcitability
and neuronal loss are present [176,177]. These metabolites are part of the glutamate–glutamine cycle,
which plays a role in controlling neuronal excitability and cell viability, among other functions [81,177].
Furthermore, changes in their concentrations may also be present in stroke, where affected regions
with low oxygen support produce less ATP, leading to an influx of calcium and consequent release of
glutamate into the synapse [178].

Acetylcholine, which plays a central role in the functioning of the central nervous system, is another
metabolite that stands-out from the metabolomic studies in neurological disorders. Several studies have
demonstrated its importance by identifying changes in the concentrations of one of its biosynthetic
precursors, choline. Acetylcholine has been linked to seizures in patients with epilepsy, and the
cholinergic system deficiency has been identified in patients with AD and MuS [179]. Moreover, there is
a correlation between cholinergic neurotransmission changes with some specific clinical manifestations,
such as changes in the motor system, behavior, memory, and attention [180].

Several studies have found abnormal levels of BCAA and its metabolites in patients with PD
and stroke [6,143,145,168,175], and have been linked to neurodegenerative diseases [75]. BCAA is
involved in the synthesis of proteins, energy production, and the synthesis of neurotransmitters,
such as glutamate [104].

Pyruvate and lactate are two metabolites involved in energy metabolism, which are frequently
found in neurodegenerative disorders. Pyruvate participates in the glycolytic metabolism pathway,
and it can be used in either aerobic oxidation or anaerobic glycolysis. Following the anaerobic glycolysis
pathway, it is a substrate to form lactate. Following the aerobic oxidation pathway, pyruvate is a
substrate to the citric acid metabolism (also known as tricarboxylic acid—TCA—cycle) [170]. It has
been suggested that pyruvate and lactate play a role in the ischemic process occurring in patients
with stroke, and are related to the exacerbation of the anaerobic pathway and impairment in the
TCA cycle and its correlated functions and metabolites [170]. In ALS, this imbalance in the energetic
metabolism was suggested as well [5]. However, lactate was found in acute MuS demyelinated plaques,
which could not be explained by the anaerobic glycolysis mechanism [102]. Another metabolite related
to energy impairment is acetone. This ketosis end-product was found in studies of MuS and ALS and
may indicate impairment of energy metabolism associated with the use of acetoacetyl-CoA as a source
of energy [104].
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Many studies have already demonstrated the importance of some phospholipids such as
lysophosphatidylethanolamine and sphingomyelin to assess the degree of neuronal damage and
changes in the myelin sheath potential predictors of the stage of diseases such as AD, PD,
and MuS [70,109,111]. In addition, it is also possible to observe the involvement of harmful oxidative
processes, with the potential to affect membranes, as has already been proposed for Lysophosphatidic
acid C18: 2 in patients with AD [71]. Furthermore, carnitine and the related metabolite acetylcarnitine,
an intermediary of fatty acid oxidation, were found in studies on AD, ALS, MS, and stroke and related
to impairment mitochondrial and energy metabolisms and fatty acids transport during the catabolism
of lipids [9,68,83,109]. Because of the acetyl group, the acetylcarnitine can cross the blood–brain
barrier more easily and is the preferred form in the central nervous system [9]. Moreover, carnitine
and acetylcarnitine have neurotrophic, neuroprotective, and neuromodulator properties that may be
important in neurodegenerative disorders [9].

Interestingly, it is possible to detect several similarities in the metabolic profile of different
neurodegenerative disorders [9]. These are mainly related to energetic metabolism, oxidative pathways,
and cellular membrane [9]. Although the above-mentioned findings may indicate a common mechanism
present in different conditions in which neurodegeneration is present, it may also indicate a limitation
of metabolic studies to discriminate the various biological pathways involved in neurodegeneration.

3. Perspectives and Conclusions

Neurological diseases are complex and multifactorial; they significantly impact the patient’s
quality of life. Therefore, discovering new approaches that can assist in the early diagnosis, establishing
prognosis, and monitoring treatment response is of paramount importance. Metabolites can be used as
disease biomarkers, and metabolomic studies have the potential to discover candidate molecules that
could be used as noninvasive biomarkers of neurological disorders. As they can be found in circulation,
they are easily accessible with minimally invasive procedures. This factor represents a significant
additional advantage for the clinical setting application, especially if one considers the limitations on
accessing disease tissue in most neurological disorders.

In this review, we have described the main data regarding metabolomics studies on neurological
diseases. Despite the advanced research in this field, a large volume of the information generated
came from exploratory studies and the reporting of new methods rather than work on discovery and
validation of biomarkers for clinical use [26]. Indeed, most studies rely on exploratory approaches
to better understand disease mechanisms [26]. Even though high-throughput metabolomics has
not identified a definite metabolic biomarker to assist in the clinical management of patients with
neurological disorders, these broad approaches may generate a list of candidate molecules and
characteristic metabolic profiles for the disease, which should be subsequently used for validation
studies before going into clinical application.

Furthermore, the metabolomic profile is influenced by several environmental and biological
factors, which may be unrelated to the cause of the disease, leading to confounding factors in
interpreting the results [154]. Certainly, unspecific individual variability is one of the biggest challenges
in applied medical research, and all efforts should be made to decrease its impact on the final results.
Unspecific variability or confounding factors not related to the cause of the disease under investigation
can be introduced in all steps of a metabolomic study, from cohort selection to sample preparation
and data analysis. As a result of this, reliable early study design and qualified data interpretation are
essential to avoid critical pitfalls.

It also should consider the current lack of information on the function of candidate biomarkers
identified, requiring additional in vitro and in vivo metabolomic studies [154]. The development of new
and advanced technologies to identify unknown metabolites can help to solve this issue. More sensitive
and accurate methods allow the identification of less concentrated molecules, which could still lead to
effects on disease mechanism. It is also important to highlight recent metabolomic studies performed
in tissue from genetically manipulated animal models of disease [33–36]. These may not only help to
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elucidate disease mechanisms but can also identify targets for genetic therapies. In the in vitro area,
the relevance of single-cell studies has increased in the past few years due to their potential to interpret
each cell type’s metabolic profile separately. Nevertheless, as we discussed previously, this analysis
needs highly sensitive and accurate methods.

Even though the technological developments in metabolomics have been impressive over the past
few years, there are still important caveats to be considered. A possible source confounding evidence is
the distinction between identifying a putative cause of the disease and a simple correlation between the
presence of a metabolite and the disease [15]. This distinction cannot be easily solved based solely on
metabolomics experiments, and usually requires additional biological studies. An additional concern
with metabolomic studies is considering if the metabolites identified are directly associated with the
biological event of interest or secondary to differences in genetic background, epigenetic regulation,
or disturbed microbiome [15]. Indeed, the microbiota’s metabolism has emerged as a point of interest
due to their ability to mediate or modify disease risk, including neurological disorders, by affecting host
immunity, endocrine function, drug metabolism, and neurological signaling [181–183]. Understanding the
microbiota’s metabolic profile and how it affects the neurological disease’s development, outcome,
and treatment is still lacking, and additional studies are needed.

The complexity of the biological mechanisms on which the neurological diseases rely upon makes
it very difficult to find a unique metabolite or biomarker that could distinguish a specific disease-state
or predict treatment response [7,13,14]. Therefore, it is probably more productive to search for a profile
of metabolites, which may better predict the phenotype and mechanisms of interest [7].

In addition, a combination of metabolomics and other types of ‘omics’ data should also be explored
when searching for insights into disease mechanisms and biomarkers of disease [155]. Although very
relevant for the investigation of disease mechanism, there is still a lack of multi-omics implementation,
mainly due to the complexity of data integration, validation, and interpretation [184,185]. The multi-omics
approach is an exciting strategy to understand the simultaneous biological mechanisms occurring during
a disease. It considers an integration among imaging, genomic and regulatory variants, proteins, lipids,
and metabolites, leading to a complete characterization of the disease’s mechanisms. An important
limitation of the multi-omics approach applied to human samples is the presence of inter-individual
variability, which may affect the ability to identify disease-specific variants. Thus, to tease apart what is a
normal variation and what is genuinely associated with disease states, one needs powerful and advanced
computational and statistical tools, some of which are just being developed [185]. In biologically complex
diseases, such as neurological disorders, one expects an array of mechanisms, such as neuroinflammation,
oxidative stress, and neurodegeneration, to name a few, and there will be the need to establish some
hierarchical classification among them to understand better the flux of events leading to disease and,
most notably to identify potential therapeutic targets. Despite all these issues, the multi-omics strategy
is a promising approach to enable additional clinical decision-making accuracy on treatment and
diagnosis [13]. Thus, metabolomics can become an essential tool in precision medicine.

In summary, recent studies have identified metabolites as potentially associated with neurological
diseases. The development of new technologies allows for the analysis of smaller and less concentrated
molecules with high efficacy, enabling the development of studies on single-cell metabolomics, which,
together with the recent investigation of the metabolomics of the microbiota and multi-omics analysis,
will likely provide a never seen broader view of the influences of metabolites in disease. However,
additional studies are required in metabolomics, especially those aimed at translating basic research
into clinical practice and the implementation of metabolomics techniques in the clinic [156].
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