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Abstract: The new coronavirus disease 2019 (COVID-19) pandemic is an emerging situation with high
rates of morbidity and mortality, in the pathophysiology of which inflammation and thrombosis are
implicated. The disease is directly connected to the nutritional status of patients and a well-balanced
diet is recommended by official sources. Recently, the role of platelet activating factor (PAF) was
suggested in the pathogenesis of COVID-19. In the present review several micronutrients (vitamin A,
vitamin C, vitamin E, vitamin D, selenium, omega-3 fatty acids, and minerals), phytochemicals and
Mediterranean diet compounds with potential anti-COVID activity are presented. We further under-
line that the well-known anti-inflammatory and anti-thrombotic actions of the investigated nutrients
and/or holistic dietary schemes, such as the Mediterranean diet, are also mediated through PAF.
In conclusion, there is no single food to prevent coronavirus Although the relationship between PAF
and COVID-19 is not robust, a healthy diet containing PAF inhibitors may target both inflammation
and thrombosis and prevent the deleterious effects of COVID-19. The next step is the experimental
confirmation or not of the PAF-COVID-19 hypothesis.

Keywords: platelet activating factor; thrombosis; inflammation; Mediterranean diet; PAF-inhibitors

1. Introduction

The new coronavirus disease 2019 (COVID-19) pandemic is an emerging situation
with high rates of infectivity, morbidity and mortality [1]. The pathophysiology of the
disease involves a cytokine storm and the activation of thrombotic pathways [2]. It was
recently documented in Wuhan, China, that the disease is directly connected to the nutri-
tional status of severely and critically ill patients [3]. Although “there is no diet to prevent
coronavirus” [4] and there are limited applied clinical nutrition protocols for COVID-19
patients [5–7], the focus of the international community shifts to recommending a healthy
dietary pattern [8], intended to control inflammation and thrombosis, which accompany the
syndromes’ complications [2]. Indeed, a well-balanced diet ensures the proper functioning
of the immune system [4] and several micro-constituents alone or as part of a healthy dietary
pattern, such as the Mediterranean diet, play a role in viral infections [9], inflammation [10]
and thrombosis [11,12]. A key molecule implicated in COVID-19 pathology is platelet acti-
vating factor (PAF), as recently highlighted by our group [2,13]. More particularly, PAF is a
glyceryl-ether phospholipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) [14], which
is a potent mediator of inflammation and thrombosis [15,16]. It is produced by various
cells such as platelets, endothelial cells, macrophages, monocytes, neutrophils and other
cells continuously or upon inflammatory stimuli [15]. It is noted that the main biosynthetic
enzymes of PAF are lyso-PAF-acetyltransferases and dithiothreitol-insensitive CDP-choline:
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1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT). PAF is catabolized by
PAF acetylhydrolase or lipoprotein associated phospholipase A2 (Lp-PLA2) [15]. PAF
levels, PAF induced platelet aggregation and the activity of its metabolic enzymes correlate
with various clinical states such as asthma, stroke, atherosclerosis, heart failure, cancer,
kidney disease and viral diseases [9,15,17].

With respect to COVID-19, PAF is a highly pyrogenic agent [18] and it affects the
activity of angiotensin converting enzyme 2 (ACE2) [19], which is used as a receptor
to facilitate the entrance of SARS-CoV-2 into the cells [20]. According to a lipidomic
analysis human cells infected with the coronavirus HCoV-229E are enriched in PAF [21].
Moreover, oxidized phospholipids, which contain PAF and PAF-like lipids [22,23] have
been detected in the respiratory system of patients with SARS-CoV-1 and seem to increase
cytokine production and lung injury via Toll-like receptor (TLR)4 [24]. Another similarity
between the phenotypic manifestations of COVID-19 and PAF actions is that they are both
connected to Kawasaki-like disease in children [25]. PAF has been also found to increase
phagocytic capacity in equine alveolar macrophages [26] and its levels are increased in
acute pulmonary disease [27], pulmonary hypertension [28] and sepsis [29]. Interestingly,
the first-line drugs used in the COVID-19 epidemic, such as chloroquine have been also
found to reduce PAF induced pulmonary edema [30]. Hopefully, specific inhibitors such as
rupatadine can modulate the action of PAF [31] and they have been proposed as potential
candidate therapeutic compounds against COVID-19 [13]. Inversely, widely prescribed
medicines, such as statins or antiretroviral drugs with pleiotropic actions also influence
PAF [32,33].

The inhibitors of PAF found in natural products and microconstituents of the diet are of
increasing interest [11,34]. In fact, diet can directly affect PAF induced platelet aggregation,
PAF levels and/or the activity and expression of PAF metabolic enzymes [35] or it can
act indirectly by modifying its environment (i.e., oxidative stress) [23]. Furthermore, the
modulation of PAF by dietary parameters has been shown to affect the manifestation of
disease [36]. Given the newly suggested role of PAF and its dietary inhibitors in relation to
the COVID-19 epidemic in limited works [2,10,13,37], the scope of the present mini-review
is to thoroughly present the potential anti-PAF actions of nutrients providing “protection”
against COVID-19. We further suggest that the well-known anti-inflammatory and anti-
thrombotic actions of micronutrients, phytochemicals and/or holistic dietary schemes are
also mediated through PAF.

2. Micronutrients, COVID-19 and PAF

Several micronutrients have been suggested to act as immunomodulatory agents
against COVID-19 [38]. Their main actions along with their potential anti-thrombotic and
anti-PAF effect, are briefly presented and are depicted in Figure 1.

2.1. Vitamin A

Carotenoids have immunoregulatory actions including reducing free radicals [39]
and pro-inflammatory molecules, such as IL-2 and TNF-α. Moreover, vitamin A down-
regulates IFNγ production, an action which is more evident in a high oxidative stress
environment [40]. Vitamin A is implicated in respiratory diseases since it plays a role in
the formation of a healthy mucus layer [41] and its overt or subclinical deficiency increases
morbidity and mortality from infections and respiratory diseases [41].

Retinoic acid can modulate the gene expression of PAF-receptor [42] and acts synergis-
tically with PAF to activate the inducible prostaglandin synthase gene [43]. Prostaglandins
synthesis contributes to gastric mucosal defense, although different effects are attributed to
the many kinds of prostaglandins [44]. It is also noted that serum retinol has been inversely
related to the activity of Lp-PLA2 in epidemiological studies [45]. The interplay of vitamin
A and PAF in immunity is also highlighted by the fact that the host-versus- graft reaction,
in which PAF is implicated [46], is enhanced by high levels of vitamin A (34).
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Figure 1. Protective role of nutrition against COVID-19 through modulation of PAF actions and
metabolism. Figure legend: Various agents activate cells (usually mast cells) and secrete platelet
activating factor (PAF). The produced PAF then affects various target cells (tissue-organs). In activated
target cells, coronavirus 19 binds to PAF receptors (PAFRs) exposed to their pericellular membrane,
enters these cells more easily and further induces PAF production. The action of PAF through
inflammasomes, which is not mediated through PAFRs should not be ignored. Of course, the virus
can also enter and act on the initially activated cells (usually mast cells) causing its known actions.
Prolonged and replenished PAF production (feedback control) goes hand in hand with a prolonged
inflammatory and prothrombotic response and the characteristic phenotypic manifestations of
COVID-19. PAF inhibitors can act (i) by inactivating PAFRs and (ii) by affecting PAF metabolism.
PAF inhibitors have been found to typically reduce the activity of one or both PAF key biosynthetic
enzymes (regulatory enzymes) and/or increase the activity of the PAF key degrading enzyme. The
role of antioxidants, micronutrients and phytochemicals that limits the initial activation by reducing
oxidative stress and/or the production of PAF-like activity compounds in a non-enzymatic way is
also pointed out.

2.2. Vitamin C

Vitamin C acts as an antioxidant and can boost the immune system [47]. It is involved
in the function and integrity of mucosal cells, the normal functioning of T cells while it also
exerts antimicrobial effects [37]. Vitamin C and concentration is high in leukocytes and it
is utilized in the case of infection [48]. Vitamin C reduces the risk, the severity, and the
duration of different infectious diseases, its status has been associated with pneumonia [49]
and the supplementation with vitamin C may prevent and treat respiratory and systemic
infections [47]. Therapeutic doses of vitamin C (24 gr/day intravenously, for seven days)
are currently being tested in hospitalized COVID-19 patients [7]. However, official sources
indicate that there is no evidence yet to support intravenous super doses of vitamin C in
the management of COVID-19 [50].

In addition, vitamin C decreased markers of thrombosis, such as tissue plasminogen
activator and von Willebrand factor in high risk patients with cardiovascular disease and
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diabetes [51], an action already suggested in the 1970s [52]. In the same context, it has been
found to reduce PAF levels in vitro [53]. Indeed, vitamin C reduces oxidative stress [47],
which is a strong trigger for synthesis of PAF [54] and its receptor [55]. It is also noted that
in frailty, which worsens COVID-19 outcomes [56] the PAF catabolic enzyme Lp-PLA2 is
increased (suggesting its upregulation to counter-balance PAF levels) while anti-oxidant
status is decreased (vitamin C, E, α-tocopherol, biological anti-oxidant potential, and total
thiol levels) [57]. Vitamin C status could thus affect the inflammatory and micro-thrombotic
environment including PAF and the morbidity of COVID-19.

2.3. Vitamin D

Vitamin D exerts antimicrobial and anti-oxidant effects and supports the immune
system against respiratory infection [58]. According to a meta-analysis vitamin D supple-
mentation reduces the risk of acute respiratory infections [59], has been inversely related
to hepatitis viral load [60] and improves antibacterial immunity in HIV-1 patients [61].
An inverse association between mean levels of vitamin D and the number of COVID-19
cases/1 M was recently reported in a cross-sectional European study [62] whereas a UK
study did not find an association between the vitamin’s status and COVID-19 risk [63].
Moreover, low levels of vitamin D were found in COVID-19 positive patients [64] or hospi-
talized patients with COVID-19 [65] and have been connected to the severity of the disease.
The hypothesis that vitamin D may explain susceptibility to COVID-19 infection in dark
colored skin individuals does not seem to be valid [63]. It is noteworthy that several clinical
trials are on the way regarding the role of vitamin D in the prevention and treatment of
COVID-19, reviewed elsewhere [48].

In vitro data suggest that 1,25-dihydroxyvitamin D3 reduces the secretion of the
catabolic enzyme PAF-AH from placenta macrophages [66], which implies an interrela-
tion between PAF and the vitamin. Moreover, paricalcitol has an anti-inflammatory and
anti-PAF action in hemodialysis patients inhibiting PAF/thrombin-induced platelet aggre-
gation, reducing the activity of PAF biosynthetic enzymes and increasing the activity of the
catabolic enzyme of PAF, i.e., PAF-AH [67]. The connection between vitamin D and PAF is
further substantiated by the known anti-thrombotic effects of vitamin D [68].

2.4. Vitamin E

Vitamin E acts as an antioxidant and has a role in the proper functioning of the
immune system [58]. Indeed, it protects cell membranes, including those of immune cells
from lipid peroxidation [69]. In cases of influenza infection, the lung levels of vitamin E are
reduced [70], and supplementation with the vitamin reduces the severity and duration of
the disease [71,72]. In the same context, in a meta-analysis of randomized controlled trials
vitamin E reduced C-reactive protein (CRP) levels [73]. A combination of vitamin E and
C has been recently proposed for ameliorating cardiac injuries of critically ill COVID-19
patients, which furthers underline their role in the COVID-19 disease [74].

Vitamin E deficiency is connected to increased PAF synthesis in rat polynuclear
cells [75]. Moreover, vitamin E inhibits PAF induced platelet aggregation [76–78] and PAF
synthesis [79]. In addition, lycopene alone or in combination with a-tocopherol reduces
PAF synthesis in stimulated endothelial cells [80], which can further blunt the inflammatory
cataract. Vitamin E and increased Lp-PLA2 have been associated with decreased asthma
development [81], and the vitamin may indirectly affect Lp-PLA2 since it improves LDL
quality, in which the enzyme is attached [82]. However, high levels of vitamin E ingested
as a supplement (1500 IU for two weeks) seem not to influence the concentration of lyso-
PAF [83]. In total, vitamin E can affect PAF levels, metabolism and its actions on platelets,
i.e., the pro-thrombotic state.

2.5. Selenium

Selenium has been proposed to potentially play a role in COVID-19 prevention, since
in the form of sodium selenite it can oxidize thiol groups in the virus protein disulfide
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isomerase and thus inhibit the entrance viruses into the cell [84]. It also has an antioxidant
role since it is a structural component of glutathione peroxidases, a family of antioxidant
enzymes [85]. In parallel, selenoprotein H is involved in redox transcription while seleno-
protein K found in the endoplasmic reticulum, is involved in calcium flux in immune cells
which is a critical step in immune response [85]. Selenium deficiency is associated with an
increase in inflammatory molecules [86], and selenium supplementation has been found to
improve the response against H1N1 virus [87]. In mouse models of asthma there seems to
be a reverse-U relation with selenium concentration since too little or too much contributed
to asthma attenuation [88]. The relationship selenium and the immune system is further
corroborated in hospitalized patients with COVID-19, in which selenium levels were found
to be sub-optimal [65]. Moreover, good selenium status, as assessed by the selenium hair
content, has been connected to a higher recovery rate from COVID-19 [89].

The relationship between selenium and PAF can be considered under the prism of
the effects of selenium on oxidative stress and phospholipid metabolism. Firstly, the
modulation of oxidative stress by selenium could affect PAF metabolism, as for example
it deactivates Lp-PLA2 [23] and increases PAF synthesis [54]. Secondly, selenoprotein I is
implicated in phospholipid biosynthesis [85]. Moreover, PAF production is increased in
the case of selenium deficiency in endothelial cells [90,91] possibly through activation of its
biosynthetic enzyme lyso-PAF-acetyltransferase [90]. It is noted that the content of diet in
selenium did not alter Lp-PLA2 in rats [92], while selenium deficiency is associated with
arterial thrombosis and selenium seems to decrease platelet aggregation [93]. It can be thus
hypothesized that worse outcomes of COVID-19 on the grounds of selenium deficiency
may be at least in part attributed to increased PAF and an associated pro-thrombotic state.

2.6. Omega-3 Fatty Acids

Omega-3 fatty acids have anti-inflammatory and anti-thrombotic effects [10], and
they may interfere with virus entry and replication through modulation of lipid rafts [94].
The results from animal studies show that mice with Klebsiella pneumoniae or Streptococ-
cus pneumoniae had an upregulated immune defense and less bacterial burden when fed
omega-3 fatty acids [95,96]. However, it is noted that fish oil-fed mice display impaired
resistance to influenza infection [97,98] denoting a more complex immunomodulating
effect of omega-3 fatty acids.

Omega-3 fatty acids also exert antithrombotic effects by various mechanisms including
a reduction in thromboxane synthesis [99] and PAF [100,101]. Omega-3 fatty acids are
incorporated in the cell membrane and may regulate the activity of PLA2 and thus lyso-PAF
production, which is a prodrome molecule for PAF production [102]. DHA inhibits PAF
increase in cell lines [103]. Moreover, omega-3 can reduce PAF production in Human
Umbilical Vein Endothelial Cells (HUVEC) [101]. In cases of endotoxemia, which is also
observed in seriously ill COVID-19 patients [104], linolenic acid has been found to reduce
PAF production in Sprague-Dawley rats [105]. In addition, a diet rich in fish oils (10%) has
been found to reduce PAF and LTB4 [106]. As far as PAF enzymes are concerned, a negative
association has been documented between the PAF catabolic enzyme Lp-PLA2 and adipose
tissue omega-3 fatty acids [107] while the effects of supplementation did not change the
enzyme’s activity in healthy adults [108] but decreased the enzyme in volunteers with
stable angina [109] and hypertriglyceridemia [110]. It is noted that Lp-PLA2, increases as a
result of increased PAF in order to catabolize it, thus, the trend for an inverse association
of Lp-PLA2 with omega-3 fatty acids, implies a negative association with PAF. Moreover,
results from a cross-sectional study of our group have shown that omega-6 fatty acids were
positively correlated with PAF-CPT while no significant correlations were observed with
omega-3 fatty acids and PAF or its enzymes [111].

2.7. Zinc, Copper, Magnesium and Iron

Zinc plays a role in maintaining the integrity of mucosal cells and antigen response [37].
It has antimicrobial, anti-inflammatory and antioxidant effects [37]. Moreover, it has been
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found to inhibit the activity and replication of coronavirus (SARS-CoV-1) [112], and it
has a role in interferon-γ production [113]. Zinc deficiency can increase susceptibility to
various infections, including those of the respiratory system [114]. Zinc supplementation
in mechanically ventilated trauma patients was related to decreased risk of ventilator-
associated pneumonia [115]. Moreover, zinc may mediate the beneficial effects of the
chloroquine, a drug which is widely used against COVID-19. Indeed, chloroquine is a zinc
ionophore, which increases intracellular Zn2+ levels [116].

Copper can prevent oxidative DNA damage and decrease inflammatory markers [37],
as it is a part of antioxidant enzymes such as Zn-Cu-superoxide dismutase and cerulo-
plasmin [117]. Its deficiency is connected with an increased rate of infections [118], which
may be related to its role in T-cell proliferation and Natural Killer (NK) activity [113].
On the other hand, macrophages can attack pathogens with high copper and as a result
the concentration of copper may be found increased in lung infection [119]. However, no
direct connection to COVID-19 has been identified to date.

Iron participates in the differentiation and growth of epithelial tissue and the produc-
tion of reactive oxygen species, which combat pathogens [58]. Supplementary iron intake
has been found to reduce respiratory infections [120] while pulmonary iron modulation
represents a defensive mechanism against various respiratory pathogens [121]. Despite
the important role of iron in the immune system, iron-containing enzymes are essential
for the replication of coronavirus [122] and the chelation of iron compounds may prove
beneficial [37]. Iron can also modulate interferon production [113].

The interrelation between PAF and zinc, copper and magnesium is not very clear.
A low zinc diet reduces platelet aggregation suggesting a role of this nutrient in hemosta-
sis [123], while zinc and copper chelate complexes have a PAF inhibitory activity mainly
attributed to stereochemical interactions [124,125]. Chelating agents such as Mg2+, re-
duce the activity of PAF biosynthetic enzymes, such as Lyso-PAF-acetyltransferase [126].
The relationship between PAF and copper and iron with has been investigated under the
prism of copper and iron induced oxidation of lipids and PAF-related enzymes [23]. It is
noted that metal- induced oxidative stress in the presence of superoxide can inactivate PAF
acetylhydrolase [127] and thus potentially increase PAF levels. In addition, macrophage
responsiveness to PAF is altered by interferon [128] and provides protection against PAF
induced injury [129], which may reflect an indirect connection of some minerals with PAF
through interferon.

2.8. Phytochemicals

Phytochemicals, such as polyphenols, act as antioxidants, modulate LDL oxida-
tion [130], and also exert anti-inflammatory, antiplatelet [131] and antiviral activity [132].
Resveratrol, is an inhibitor of SARS-CoV-1 [133] and curcumin was recently reported to
bind to the target receptors of SARS-CoV-2 [134]. In addition, curcumin combined with
vitamin C glycyrrhizic acid promotes interferons production and has immunomodulatory
properties [135]. Luteolin binds to the surface spike protein of SARS-Cov-2 inhibiting in
this way its entry into cells and it is a potential inhibitor of SARS-CoV-2’s main protease
(SARS-CoV 3CL) [136]. Moreover, lignans exhibit antiviral activity [137].

With respect to PAF, resveratrol and tyrosol as well as their acetylated derivatives
inhibit PAF induced platelet aggregation [138] while curcumin is a PAF inhibitor [139] and
plays a role in thrombosis and coagulation [140,141]. Moreover, curcumin and phenolic
compounds acting as antioxidants can modulate LDL oxidation [130] and the subsequent
production of PAF and PAF-like lipids [22]. Their effect could be also directly exerted on
PAF biosynthetic enzymes as demonstrated by in vitro studies. Indeed, resveratrol and
quercetin can inhibit both PAF’s main biosynthetic enzymes in vitro [142,143], phenolic
compounds reduce the activity of PAF biosynthetic enzymes in cell cultures stimulated with
IL-1β [144] and flavonoids, have been documented to reduce lyso-PAF acetyltransferase
activity [145]. More particularly, pro-anthocyanidins [146], luteolin [145], quercetin [80,147],
hesperidin [147] and naringin [147] reduce the activity of lyso-PAF acetyltransferase in
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cell lines. Licoricidin and other components were also documented to inhibit lyso-PAF
acetyltransferase [148]. Moreover, the antioxidant capacity of the diet, which is at least
in part affected by phytochemical intake, was inversely related with PAF levels and the
activity of lyso-PAF-acetyltransferase in healthy volunteers as evidenced by our group [34].
In parallel, PAF has been inversely related to antioxidant-rich foods (herbal drinks and
coffee) [34]. Lignans, which have been proposed as an anti-COVID compound [137] are also
PAF inhibitors [149]. Thus, the effects of flavonoids and other phytochemicals on PAF levels,
actions, and its metabolic enzymes generate the hypothesis that their anti-inflammatory
and anti-thrombotic actions are at least in part mediated by the PAF circuit.

Interestingly, certain natural flavonoids also have anti-PAF activity, in addition to
their anti-inflammatory actions and ability to block coronavirus from binding to target
cells [2,13,136].

3. Mediterranean Diet, Mediterranean Foods, COVID-19 and PAF

The Mediterranean diet including olive oil, fish, honey, fruits, vegetables and herbs
is rich in polyphenols and other micro-constituents [35] and it has been inversely related
to respiratory diseases [150], inflammation [151] and thrombosis [11,35]. It is possible
that the combination of phytochemicals as those occurring in the Mediterranean diet
have amplified actions in comparison to sole compounds [152]. In fact, complex natural
product mixtures synergistically target multiple networks involved in inflammatory and
thrombosis [152]. The adoption of Mediterranean diet as a whole reduces PAF induced
platelet aggregation in patients with 2 diabetes [153,154]. Moreover, it has been suggested
to be a potentially protective diet against COVID-19 [10,155]. It is noted that the adoption
of the Mediterranean Diet decreases length of stay and mortality in hospitalized patients
>65 y of age [156,157], which is of interest in the era of COVID-19 and the challenges of
health systems.

Several natural products which are intrinsic characteristics of the Mediterranean diet
such as garlic, salvia and olive oil have been proposed as additional measures for the
prevention and treatment of COVID-19 [158]. These and additional Mediterranean foods
will be briefly presented and a special reference will be provided on their relation with PAF
and its enzymes. It is noted that PAF has been inversely related to a healthy dietary pattern
including legumes, vegetables, poultry and fish [34].

3.1. Olive Oil

Olive oil contains monounsaturated fatty acids and several microconstituents with
antioxidant and anti-thrombotic action, such as polyphenols [159] and polar lipids [36].
Its anti-oxidant, anti-inflammatory and anti-thrombotic action render it a candidate food
against COVID-19 [158]. It is noted that olive oil polar lipids act as PAF antagonists [36,160],
and bioactive compounds have also been found in olive oil pomace and its byproducts [161].
From in vitro data it has been shown that olive oil polar lipids inhibit PAF-CPT which is a
biosynthetic enzyme for PAF [142]. Moreover, lyso-PAF-AT has been negatively associated
with a dietary pattern rich in olive oil and whole-wheat products as documented by our
research team [34]. Lastly, the consumption of a yogurt enriched with PAF-inhibitors
isolated from olive-oil by-products, led to attenuation of subclinical inflammation and
platelet sensitivity to thrombotic stimuli in apparently healthy volunteers [162].

3.2. Fish

Fish have anti-inflammatory and anti-thrombotic properties, and they exert beneficial
effects in the respiratory tract (see also omega-3 fatty acids) [159]. Indeed, fish has anti-
aggregatory effects mediated by PAF inhibition [153,163,164] attributed to polar lipids,
neutral lipids [165] and other lipids, such as gangliosides [166]. Moreover, from in vitro
data it has been shown that fish polar lipids inhibit PAF-CPT [142]. Fish polar lipids retard
atherosclerosis in rabbits by down-regulating PAF biosynthesis and up-regulating PAF
catabolism [167]. Interestingly, the antibacterial properties of fish go hand in hand with
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their anti-PAF activity, suggesting that PAF antagonists and agonists in fish may also have
antibacterial activity [168].

3.3. Honey

Detailed nutritional records of Cretan participants of the Seven Countries Study,
highlight the presence of honey in their every-day diet [169] and Plato considered honey
an essential component of a healthy diet [170]. Indeed, stingless bee honey has been found
to inhibit TNF-α, IL-6 and interferon secretion from stimulated macrophages [171] and
to reduce inflammation in animal models [172]. Honey has anti-bacterial properties due
to its content of phenolic compounds, the production of hydrogen peroxide and other
mechanisms such as osmosis [173]. Moreover, it has been suggested to have a role against
COVID-19 epidemic [174,175], it has six compounds related to the receptor active site of
COVID-19’s main protease according to a in silico approach [176] and is currently being
tested in a clinical trial (clinical trial NCT04323345) [176]. It is noted that honey displays
anti-thrombotic activity [177] and it especially acts as a PAF inhibitor [178]. In total, the anti-
bacterial, the anti-thrombotic and anti-PAF effects of honey render it a potentially useful
food against the COVID epidemic.

3.4. Milk and Yogurt

Dairy products constitute a principal source of vitamin D, which has been proposed
to play a role in the fight against the COVID-19 epidemic [179–181]. It is noted that milk,
yogurt and fermented milk products also contain PAF inhibitors [182–184], with goat
yogurt presenting a more protective effect [185].

3.5. Plant Foods

Plant foods with antiviral properties have been recently reviewed as anti-COVID
agents, as they prevent viral replication, enhance antibody production against influenza
virus, and improve T-cell function [159]. A recent work reported the inhibition of COVID-19
with the use of molecular docking by plant terpenoids, such as Ginkgolide A [186], which
is also one of the most potent PAF inhibitors [187]. Garlic and onion which are also used in
many recipes of the Mediterranean diet [188] also contain PAF inhibitors [189,190]. More-
over, wild greens, which are rich in polyphenols have a postprandial anti-PAF effect [191].
Rice (Oryza sativa L.), traditionally used in several Mediterranean meals [188] may also be
implicated in COVID-19, since rice bran policosanol extract has anti-aggregatory activity
(although studies have researched only ADP-induced platelet aggregation and not PAF
as an aggregatory agent) [192]. In addition, rice policosanol has been found to activate
the nuclear factor erythroid 2-related factor 2 (Nrf-2) pathway[193], a molecular pathway
playing a role in combating COVID-19 [194], which can also modulate PAF-acetylhydrolase
transcription [195].

3.6. Wine and Its Products

Although wine is not recommended by national bodies as a means to fight coro-
navirus [8], the Mediterranean way of living and eating incorporates moderate wine
consumption in its philosophy. A Mediterranean diet with moderate wine quantities
could affect the pro-thrombotic status [196] and possibly the body’s response to a virus.
As it has been documented by our group wine consumption reduces PAF-induced platelet
aggregation [197] and specific wine varieties affect PAF biosynthetic enzymes [198] in the
postprandial state. Moreover, several bioactive lipids have been isolated from wines that
exhibit anti-PAF biological activity [199–202] and reduce the activity of its biosynthetic en-
zymes in monocytes [143]. Last but not least, bioactive compounds with anti-aggregatory
have been also isolated from grape pomace extracts [203], which may render winery
by-products useful for the production of functional foods.
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4. Data from Clinical Trials

Since the results of clinical trials can be different from those obtained from in vitro
studies a special reference is made to clinical trials regarding nutrient/foods and PAF
metabolism (Table 1). As it can be seen, the majority of studies have focused on platelet ag-
gregation [153,154,162,191,197,203–207] and/or PAF catabolic enzymes [108,206,208–215]
and had promising results in both healthy subjects [108,154,162,197,198,206,207,216] and
high-risk individuals [153,191,204,208–215,217–222]. Additionally, ongoing or recently
finished clinical trials regarding CODIV-19 are displayed in Table 2. It is noted that only
nutrients or foods which may modulate PAF and/or its enzymes are displayed. To our
knowledge there is no ongoing trial with such nutrients and PAF measurement as an
end point.
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Table 1. Human clinical trials regarding the effects of foods/nutrients on PAF and its metabolism.

Nutrient/Food Intervention Volunteers Age Health Status PAF Induced Platelet
Aggregation PAF Levels PAF Biosynthetic

Enzymes
PAF Catabolic

Enzymes Ref.

Vitamin D 15 weeks n = 10
n = 9 (control)

56 ± 10
52 ± 13 Healthy ↓ [223]

Fish oils, omega-3

Fish oil
Olive oil 10 weeks n = 15 (fish oil)

n = 15 (olive oil) 61.9 ± 1.2 Peripheral vascular disease
↓

In the fish oil group
↑ in the olive oil group

no changes
(measured in
neutrophils)

[224]

Fish
Fish oil (2 doses)

Fish + fish oil
placebo

12 weeks n = 120 (for all groups) 30–60 ↓
(not in the control group) [204]

EPA + DHA
omega-6 acute n = 20 Psoriasis

↓ in n-3
Group

↑ in the n-6 group
[205]

omega-3 +atorvastatin
placebo + atorvastatin 8 weeks n =123

n = 122 56.1 ± 10.2 Hypertriglyceridemia

↓ (n-3 +
atorvastatin vs.

placebo +
atorvastatin

[218]

EPA (2 doses) * 12 weeks n = 702 (for all groups) 61 ± 10 Hypertriglyceridemia ↓ [225]

EPA * 12 weeks n = 126
n = 120

60.2 ± 9.7
61.0 ± 9.9 Hypertriglyceridemia, high CRP ↓ [226]

EPA * 12 weeks
n = 19 (4 g)
n = 30 (2 g)

n = 36 (control)

68.2 ± 7.2
67.9 ± 8.3
68.0 ± 8.4

Hypertriglyceridemia, and
chronic kidney disease ↓ [208]

EPA * (2 doses) 12 weeks
171 (2 g)_
165 (4 g)

165(control)
Not reported Hypertriglyceridemia, diabetes

mellitus-2 and statin therapy
↓

(high dose) [209]

EPA or
DHA 6 weeks n = 59 (for all groups, men) 61.2 ± 51.2 Hypertention and type 2

diabetes no changes [210]

omega-3 30 days n = 54 30–80 angina ↓ [109]
EPA+ DHA

0/0.85/ 3.4 g/day 8 weeks n = 25 (crossover) 44.3 ± 9.8 Hypertriglyceridemia ↓ [110]

EPA (2 g, 4 g)
(control)

n = 77 (4 g)
n = 76 (2 g)

n = 76 (control)
52.9 ± 9.34 Hypertriglyceridemia ↓ [219]

omega-3 (2 g, 4 g)
control 6 weeks

n = 209 (2 g)
n= 207 (4 g)

n = 211 (control
60.8 ± 9.6

Statin-treated patients
with residual

hypertriglyceridemia
↓ [220]

omega-3 esterified to
glycerol or as ethyl esters 8 weeks n = 120 62.4 ± 10.0 Hypertriglyceridemia

↓
With ethyl

esters of n-3
[221]

omega-6 or omega -3
(parenteral nutrition) 10 days n = 10 patients

n = 8 healthy control 53.7 ± 13.8 Sepsis
↑in the n-3 group

(baseline levels were
suppressed)

[222]

omega-3 2 g, 3, 4 g 12 weeks

n = 100 (2 g)
n = 101 (3 g)
n - = 99 (4 g)

n = 99 (control)

51.1 ± 9.8
51.2 ± 8.8

52.9 ± 10.9
50.8 ± 10.6

Hypertriglyceridemia ↓ [211]
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Table 1. Cont.

Nutrient/Food Intervention Volunteers Age Health Status PAF Induced Platelet
Aggregation PAF Levels PAF Biosynthetic

Enzymes
PAF Catabolic

Enzymes Ref.

EPA (2 g, 4 g)
control 12 weeks n = 215 (women) ~60 ± 10 Hypertriglyceridemia ↓ [212]

omega-3 3 months n = 27
n = 35 (control)

62.3 ± 9.7
60.2 ± 10.8 Hypertension no change [213]

a-linolenic acid
EPA+DHA 8 weeks

n = 20 ALA
n = 20 EPA + DHA
n - = 19 (control)

63.4 ± 8.2
62.1 ± 7.7
58.6 ± 6.3

Healthy no change

omega-3 (2 g, 6.6 g)
control (olive oil) 12 weeks

n = 20 (2 g)
n = 20 (6.6 g)

n = 20 (control)

36.5 ± 11
37.0 ± 10
37.9 ± 10

Healthy no change [108]

olive oil (control)
EPA 600 mg/day

EPA 1800 mg/day, DHA
600 mg/day

6 weeks

n = 26 (control)
n = 27 (600 mg EPA)
n = 26 (1800 mg EPA)
n = 28 (600 mg DHA)

52.2 ± 10.4 52.8
± 11.6

52.2 ± 11.6
52.3 ± 12.6

Healthy ↓
high dose EPA [217]

Mediterranean diet

fast-food
Mediterranean-type diet 4 weeks

n = 22 healthy
n = 22 type 2 diabetes

n = 22 control
56 ± 15 Healthy and with type 2

diabetes
↓

(not in the control group) [154]

traditional Greek
Mediterranean-type

meals
28 days

n = 22 healthy
n = 24 type 2 diabetes
n = 22 type 2 diabetes

-control

53 ± 12 Healthy and with type 2
diabetes

↓
(not in the control group) [153]

Diet and exercise

Diet and exercise 24 weeks n = 22 44.0 ± 1.3 HIV ↓ [214]

substitution of whole
grains and legumes for

refined rice
12 weeks n = 50 (whole grain)

n = 49 (control)
56.3 ± 1.2
55.4 ± 1.5

Impaired fasting glucose,
impaired glucose tolerance or

newly diagnosed T2D
↓ [215]

Plants and plant extracts

wild plant meals, namely,
Reichardia picroides,
Cynara cardunculus,

Urospermum picroides
and Chrysanthemum

coronarium, and a
control meal, which

contained no wild plant

acute n = 24 58.6 ± 11.3 Metabolic syndrome ↓ with the Urospermum
picroides meal [191]

plant extract supplement 8 weeks n = 30 (supplement)
n = 28 (control)

34.9 ± 5.8
(supplement)

32.9 ± 5.6
(control group)

Healthy ↓ no change ↑ [206]

ginkgolide mixture acute n = 6 25–35 Healthy ↓ [207]
Garlic extract 5 days n = 14 20–55 Healthy no change [216]
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Table 1. Cont.

Nutrient/Food Intervention Volunteers Age Health Status PAF Induced Platelet
Aggregation PAF Levels PAF Biosynthetic

Enzymes
PAF Catabolic

Enzymes Ref.

Alcohol and wine

Wine (Robola, Cabernet
Sauvignon) acute n = 12 31.3 ± 4.3y Healthy ↓lyso-PAf-AT

↓ PAF-CPT no changes [198]

Wine (Robola, Cabernet
Sauvignon) acute n = 10 31.3 ± 4.3 Healthy ↓ [197]

Beer or alcohol-free 3 weeks n = 11 lean
n = 9 overweight

19 ± 2
21 ± 2 Healthy no changes [227]

Others

Yogurt with bioactive
ingredients from olive-oil

by-products
8 weeks n = 92 35–65 Healthy ↓ [162]

* Results from the same study (ANCHOR study). ↓: reduction; ↑: increase; EPA: Eicosapentaenoic acid; DHA: Docosahexaenoic acid; CRP: C-reactive protein; ALA: alpha-linolenic acid; AT:acetyltransferase, CPT:
cholinephosphotransferase.
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Table 2. Clinical trials regarding COVID-19 and foods or nutrients with anti-PAF actions.

Nutrient-Food Quantity Duration Volunteers Main Outcomes Registration at
www.clinicaltrials.gov

Vitamin C 10 g 400 NCT04584437
Vitamin C 10 g intravenously 72 hours 500 In-hospital mortality, length of stay, virus load NCT04323514

Vitamin C and melatonin 1 g vitamin C
10 mg melatonin 14 days 150 Symptom severity NCT04530539

Vitamin C and zinc
8 g vitamin C or

50 mg zinc or
8 g vitamin C + 50 mg zinc

28 days 520 Symptom duration NCT04342728

Vitamin C, vitamin D, zinc Not reported 12 weeks 600 Rate of recover, symptoms, NCT04334512

Vitamin C, vitamin D, zinc, B12

Vitamin C 28 g intravenously
zinc Citrate 30 mg

Vitamin D3 5000 IU daily
Vitamin B12 500 ug

7–14 days 200 Symptoms, length of stay NCT04395768

Vitamin C, vitamin D, zinc Not reported 14 weeks 600 medical workers Prevention of COVID-19 symptoms NCT04335084

Vitamin D 9600 IU/day on days 1 and 2, and
3200 IU/day on days 3 through 28 28 days 2700 participants with newly diagnosed

COVID-19

Hospitalization or death in index cases,
self-reported disease severity in index cases

time to hospitalization or death in index cases,
ICU admission/ventilation support in index cases,
SARS-CoV-2 infection in close household contacts,

self-reported disease severity in close
household contacts

NCT04536298

Vitamin D 50,000 IU/week 8 weeks 100 Cytokine levels NCT04476745

Vitamin D 200,000 IU on admission 240

Length of hospitalization, Number of cases
admitted to Intensive Care Unit, Length of use of

mechanic ventilator
inflammatory markers, vitamin D,

NCT04449718

Vitamin D 10,000 IU bolus dose followed by
10,000 IU once a week 16 weeks 2414 health care workers Distribution of disease severity, disease severity NCT04483635

Vitamin D 800 IU
3200 IU 6 m 6200 individuals with

25-hydroxyvitamin D level <75 nmol/L Acute respiratory infection, COVID-19 diagnosis NCT04579640

Vitamin D

10,000 IU/day (age 18–69 years) or
15,000 IU/day (age 70+)

2 w: if vitamin D <30 ng/mL,
continue the dosage for 3 more weeks.
If vitamin D: 30–49 ng/mL, continue

at a dosage of 5000 IU/day.
If vitamin D >50 ng/mL, stop

supplementation.

6 weeks 41 Vitamin D, severity of COVID-19 symptoms NCT04407286

Vitamin D
6000 IU

6000 IU + 20,000 IU vitamin D3 daily
for 3 days

12 m 140 Vitamin D, Change in SARS-CoV-2 antibody titers,
inflammatory markers NCT04482673

www.clinicaltrials.gov
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Table 2. Cont.

Nutrient-Food Quantity Duration Volunteers Main Outcomes Registration at
www.clinicaltrials.gov

Vitamin D 5000 IU) 9 m 2099 hospital
workers Respiratory tract infections NCT04596657

vitamin D
and zinc

2000 IU
30 mg 2 m 3140 Survival rate NCT04351490

vitamin D
and zinc

180,000 international units (IU)
40 mg of zinc 8 weeks 700 Time to recover, all-cause mortality, symptoms, levels of vitamins NCT04641195

Omega-3 300 mg of omega3-FA 8 weeks 100 Serum ACE levels, serum ACE2 levels, lipid profile NCT04658433

Fish oil wild salmon and fish oil complex 1 g,
300 mg omega-3 8 weeks 100 Cytokine levels, lipid profile, glucose levels NCT04483271

Fish oil

Cod liver oil: 5 mL
(Contains: 10 ug of vitamin D, 1.2 g of
long-chained n-3 polyunsaturated fatty
acids (DHA 0.6 g and EPA 0.4 g), 250 ug

vitamin A and 10 mg vitamin E).

6 m 80,000 Number of participants diagnosed with serious Covid-19,
self-reported airway infection, hospitalization, infections NCT04609423

Zinc, Quercetin, Bromelain and
Vitamin C

zinc 50 mg
vitamin C 1000 mg 5–10 days 60

Time to hospital discharge
serum zinc

Time of negativization of COVID-PCR
NCT04468139

Zinc, vitamin C Zinc 220 mg
vitamin C 1 g 10 days 50 Symptoms reduction time frame, severity of symptoms NCT04558424

Zinc

high dose Zinc supplementation in
combination with copper, vitamin C/E
and beta-carotene vs. low dose zinc and

multivitamin supplement

3 m 4500 Hospitalization, Illness without hospitalization, mortality NCT04551339

Anti-inflammatory/antioxidant
supplement

vitamin A (as β-carotene) 500 ug,
Vitamin C 250 mg, vitamin E 90 mg,

Selenium 15 ug,
Zinc 7.5 mg.

14 days 40 Nutritional risk, inflammatory indices, ferritin, anthropometry etc. NCT04323228

Quercetin 500 mg 30 days 200 Survival time, Length of stay in hospital, days of mechanical
ventilation, blood exams etc. NCT04578158

Licorice 250 mg standardized extract (25%
Glycyrrhizin - 62.5 mg) 10 days 70 Number of people recovering from COVID-19, mechanical

support, hospital stay NCT04487964

Plant polyphenol Plant polyphenol
+Vitamin D3 100,000 IU on day 1 15 days 200 Hospitalization rates for COVID-19 NCT04400890

Herbal extract (Cretan IAMA)

1 mL/day
Thymbra 59 capitata (L.) Cav.,

Origanum dictamnus L., Salvia
fruticosa Mill. in extra virgin olive oil

2 weeks 20 Symptom resolution NCT04705753

Honey 1 gm/kg/day 14 days 1000 Rate of recovery, resolution of lung inflammation NCT04323345

ACE: Angiotensin converting enzyme.

www.clinicaltrials.gov
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5. Hypothesis versus Epidemiological Data

The hypothesis of the protective effect of the Mediterranean Diet against COVID-19
should be regarded in parallel with epidemiological data. It can be argued that several
Mediterranean countries, such as Italy and Spain had a high burden of the disease. It is
difficult to make a safe assumption since the adherence of Southern European Mediter-
ranean countries to the Mediterranean diet is generally considered rather moderate [228].
However, the adoption of the Mediterranean diet is lower in northern Italy than in the
south of the country, which may in part explain the observed situation in Italy [229].

Moreover, dietary changes in the quarantine may account for some differences, since
limited access to fresh foods may be observed, in favor of packaged foods, which have a
longer shelf life. Indeed, in Italy, 37.3% of respondents changed their diet and physical
activity levels but only 16.7% of them improved their habits [230]. Italian adolescents
increased their intake of legumes, fruit, sweets, and fast food during quarantine and had
no change in vegetables intake, while Spanish adolescents and the general population
displayed more healthy changes in their diet [231,232].

In contrast, preliminary results from the COVIdiet in Greece, presented at the Webinar
held by the Hellenic Dietetic Association have shown that participants improved their
eating habits and reduced their consumption of fast food, especially those who were
already more aware of the importance of a healthy diet. However, cooking increased,
and the preparation and consumption of homemade sweets and pastries also increased
increased [233].

6. Conclusions

In conclusion, there is no single food to prevent, heal, or treat coronavirus. Although
the relationship between PAF and COVID-19 is not robust, a healthy diet containing PAF
inhibitors may target both inflammation and thrombosis and prevent the deleterious effects
of COVID-19. After completing our theoretical new approach on PAF and COVID-19, the
next step is the experimental confirmation or not of the PAF–COVID-19 hypothesis.
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EPA Eicosapentaenoic acid
DHA Docosahexaenoic acid
CRP C-reactive protein
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