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Abstract
Many large network data sets are noisy and contain links representing low-intensity relation-

ships that are difficult to differentiate from random interactions. This is especially relevant

for high-throughput data from systems biology, large-scale ecological data, but also for Web

2.0 data on human interactions. In these networks with missing and spurious links, it is pos-

sible to refine the data based on the principle of structural similarity, which assesses the

shared neighborhood of two nodes. By using similarity measures to globally rank all possi-

ble links and choosing the top-ranked pairs, true links can be validated, missing links

inferred, and spurious observations removed. While many similarity measures have been

proposed to this end, there is no general consensus on which one to use. In this article, we

first contribute a set of benchmarks for complex networks from three different settings (e-

commerce, systems biology, and social networks) and thus enable a quantitative perfor-

mance analysis of classic node similarity measures. Based on this, we then propose a new

methodology for link assessment called z* that assesses the statistical significance of the

number of their common neighbors by comparison with the expected value in a suitably

chosen random graph model and which is a consistently top-performing algorithm for all

benchmarks. In addition to a global ranking of links, we also use this method to identify the

most similar neighbors of each single node in a local ranking, thereby showing the versatility

of the method in two distinct scenarios and augmenting its applicability. Finally, we perform

an exploratory analysis on an oceanographic plankton data set and find that the distribution

of microbes follows similar biogeographic rules as those of macroorganisms, a result that

rejects the global dispersal hypothesis for microbes.

Introduction
Modern sciences like biology, economics, sociology, and even linguistics increasingly rely on
the analysis of large complex networks [1–5]. Such complex networks represent entities of a
given system as nodes which are linked if the corresponding entities participate in a well-

PLOSONE | DOI:10.1371/journal.pone.0152536 April 20, 2016 1 / 17

a11111

OPEN ACCESS

Citation: Spitz A, Gimmler A, Stoeck T, Zweig KA,
Horvát E-g (2016) Assessing Low-Intensity
Relationships in Complex Networks. PLoS ONE 11
(4): e0152536. doi:10.1371/journal.pone.0152536

Editor: Irene Sendiña-Nadal, Universidad Rey Juan
Carlos, SPAIN

Received: September 21, 2015

Accepted: March 15, 2016

Published: April 20, 2016

Copyright: © 2016 Spitz et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Instructions for
accessing all relevant data (other than the Netflix data
set) are included in S1 Text. The data set from Netflix
was obtained via www.netflixprize.com, and the
authors do not have permission to share it.

Funding: This work was supported by Deutsche
Forschungsgemeinschaft, grant No. STO414/11-1 to
TS (http://www.dfg.de), and BioComp, no specific
grant number, granted to TS, AG, and KZ (http://www.
uni-kl.de/en/vorlage-einrichtung/home/).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0152536&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.netflixprize.com
http://www.dfg.de
http://www.uni-kl.de/en/vorlage-einrichtung/home/
http://www.uni-kl.de/en/vorlage-einrichtung/home/


defined relationship. The majority of complex networks suffer from low-intensity relationships
that can be difficult to distinguish from incidental observations, i.e. false positives [6]. There
are two basic ways of dealing with such a problem by applying a threshold to the measured
intensity values. The first is to set a threshold which is high enough to exclude false positive
links almost entirely. This approach, however, is likely to result in many false negative links,
because it also removes true links with a low-intensity [7, 8]. The second approach uses a lower
significance threshold which includes interactions with low intensity at the expense of adding
false positive observations as well. This dilemma is similar to a common problem in learning,
where sets of variables are generally not separable by a linear separator. It can thus be beneficial
to increase the dimensions of the considered space, i.e. to include additional information
instead of relying on a single threshold.

One possibility for such a new dimension lies in the structure of the network itself. Complex
networks are highly resilient against noise in the data when links are added or removed uni-
formly at random [9, 10]. In this article we explore this approach and show that it is possible to
tackle the problem of missing (false negative) or additional (false positive) links by evaluating
similarities in the connection patterns of incident nodes. This structural similarity idea [11, 12]
is based on the observation that entities that are alike tend to share parts of their immediate
neighborhood. Therefore, the main assumption is that the represented relationship adheres to
the notion of homophily, i.e. entities that are alike are more likely to be connected than entities
that are not alike. While the notion of homophily has so far mainly been used in the context of
social networks, it can easily be extended to networks of other entities such as proteins sharing
a biological function or movies with similar genre, plot, or cast. The idea of a generalized
homophily forms the basis of recommendation algorithms [13, 14], one-mode projections of
bipartite networks [15, 16], and clustering algorithms [10]. It has also been used for assessing
the quality of biological data, as shown by Goldberg and Roth [17]: Protein–protein interaction
databases contain noisy data, since they are based on high-throughput experiments which
induce many false positive observations. Furthermore, they include a large percentage of pro-
tein pairs that have not yet been tested and result in false negative interactions [18]. As an alter-
native to high-throughput experiments, protein–protein interactions can be observed through
more reliable methods like co-immunoprecipitation. Interactions that are verified by these
small-scale methods can thus be used as ground truth, i.e. they should be ranked high by an
effective node similarity measure, independent of whether the interaction itself has ever been
observed in a high-throughput experiment. Goldberg and Roth tested four different similarity
measures and showed that the significance of the number of common neighbors of any two
proteins with respect to a hypergeometric null model obtains the best performance, i.e. it
ranked verified interactions higher than any other tested method. However, without other
ground truth data sets, the analysis of Goldberg and Roth was limited to protein–protein inter-
actions and to those similarity measures that are usually applied in biology. Here, we perform a
more comprehensive study that includes a wider range of similarity measures and is based on
data sets from areas as diverse as biology, sociology, and economics. The goal is to find the best
similarity measure or ranking approach for assessing the quality of links that represent low-
intensity relationships in a given complex network.

Our work is related to the vast body of research on link prediction (for instance [19, 20]),
recommender systems (for example [14]), and the branch of network analysis that focuses on
node similarity [21, 22]. Some of the proposed approaches in these areas rely on supervised
learning, meaning that they require the existence of ground truth observations that include
both positive and negative samples. However, in the majority of cases that are of practical rele-
vance, such observations are not available or can only be acquired through costly experiments
and surveys. Studies that face the issue of a lacking ground truth instead employ a form of
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unsupervised learning. Typical approaches are based on an exploratory analysis that uses scor-
ing functions aimed at ranking positive samples higher than negative samples [23]–an
approach which imposes difficulties in the evaluation of the proposed methods’ performance.
In this article, we therefore use only unsupervised approaches, but evaluate their quality based
on carefully constructed ground truths. This enables us to compare some of the most com-
monly used similarity measures and to suggest a novel methodology that outperforms them in
assessing the veracity of links.

Methods
In this section, we introduce the data sets that we use as benchmarks for evaluation and for-
mally define the compared similarity measures before we present a new way of assessing the
similarity of two nodes’ neighborhoods based on a statistical significance test of the number of
their common neighbors.

The data
We compiled data sets describing relationships in diverse complex systems and created up-to-
date benchmarks (see S1 Text). The first such benchmark is for a protein–protein interaction
(PPI) network based on the Database for Interacting Proteins (DIP) [24]. The ground truth is
given by the manually checked, so-called core interactions. Based on data provided by Yang
and Leskovec [25], we created a benchmark for assessing the quality of friendship networks on
LiveJournal. Finally, we use product ratings by users fromMovieLens and Netflix to assess the
similarity of movies based on two ground truth sets, one containing movie series and the other
consisting of TV series. The latter two data sets are bipartite, i.e. they contain only links
between users and products. The ground truth is given as a subset of pairs of products that are
similar. Table 1 describes the size of these data sets and ground truths.

Note that the data sets have different characteristics with respect to the nature of the ground
truth and the number of ground truth links that are contained in the original data (see
Table 2):

1. In the bipartite data sets, no ground truth links are directly contained in the network data,
because the ground truth contains pairs of movies or seasons of the same TV series, while
the network is a bipartite network between users and the movies they rated with at least a 4
on a scale from 1 to 5. Based on various similarity measures, 1,416,621 pairs of movies are
ranked in the MovieLens Movies data set, 450 of which are part of the ground truth. In
the Netflix Movies data set, 5,078,220 pairs are ranked and 904 of those belong to the
ground truth. In the Netflix TV Series data set, 3,475,430 pairs are ranked and the
ground truth contains 951 links.

2. By construction, the PPI network data contains all available ground truth information,
which is hidden by numerous spurious interactions. Additionally, some of the observed
interactions may in fact correspond to actual interactions, but have not yet been tested in
small-scale experiments (not validated interactions). Furthermore, some of the actual inter-
actions may not have been observed yet (missing interactions). In the PPI data set, there
are 3,543 ground truth links and 431,324 ranked protein–protein pairs.

3. The social network of the LiveJournal data contains 19.5% of the ground truth relation-
ships. Of all possible pairs of users, 1,440,611 are ranked by their respective similarity, of
which 24,533 belong to the ground truth.
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With this selection of data sets we cover diverse real-world systems that differ not only in
terms of their nature and size, but for which the compiled ground truths also vary significantly
in their coverage as shown by the percentage of ground truth links that are contained in the
data (see Table 2). Moreover, the mechanisms behind the formation of links in the individual
networks are very dissimilar and relate in different ways to the concept of structural similarity.
Therefore, these data sets pose a broad range of challenges for similarity measures that arise
from different network signatures. Based on these data sets we can thus provide a more thor-
ough evaluation of the performance of a number of similarity measures in tackling the two
prominent link assessment tasks that we present in the following. The ground truth and the
available data sets can be found in a zip-file (Supporting Information).

The link assessment problem
An already quite well-researched problem is the link prediction problem that asks, given a static
snapshot of network at time t, for a prediction of which of the yet unconnected node pairs will
be most likely connected in the next time unit t + 1 [20]. The link assessment problem asks,
given a static snapshot of network at time t, for an assessment of the links in it, i.e., whether the
observed ones are truly existing (true positives) and whether not observed ones are indeed
missing (true negatives). The problem comes in two versions: the most straightforward link
assessment task aims at finding the pairs of nodes that are globally most likely to be connected.
This is a key problem in experimental biology where researchers are often required to avoid
arduous and expensive studies on a huge selection of agents by reducing the potentially over-
whelming set of possibilities to the most probable interactions. Besides this formulation on a
global level, the problem can also be addressed at a local scale by asking for the most likely

Table 1. Data sets and ground truths.

Data set Type Number of nodes Number of links Number of GT links GT density

PPI not bipartite 5,078 proteins 22,148 interactions 3,543 2.75 � 10−4
LiveJournal not bipartite 11,755 individuals 80,023 friendships 126,515 1.83 � 10−3
MovieLens Movies bipartite 9,153 films & 15,185 users 1,077,270 ratings 450 1.07 � 10−5
Netflix Movies bipartite 16,306 films & 20,078 users 2,399,429 ratings 904 6.80 � 10−6
Netflix TV Series bipartite 951 7.15 � 10−6

Size of the used data sets and the corresponding ground truths.

doi:10.1371/journal.pone.0152536.t001

Table 2. Type and coverage of the data sets and ground truths.

Network
type

Data set Relationship Ground truth Percentage of ground truth
links contained in data

biological PPI high-throughput and manual
observation of protein–protein
interactions

manually verified
interactions marked as DIP
core

100%

social LiveJournal declared friendship user-defined groups 19.5%

product-
rating

MovieLens Movies Netflix
Movies Netflix TV Series

rating of movies by users movie sequels seasons of
TV series

0%

The data comprises three different complex systems and five ground truth data sets. The ground truth is either partially or completely contained in the not

bipartite networks (LiveJournal friendship network and PPI network), but not contained in the bipartite networks (movie-rating networks).

doi:10.1371/journal.pone.0152536.t002
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links of a given node. In e-commerce or social networks, the problem of link assessment arises
whenever individuals are searching for products that are tailored to their needs or suggestions
of potential companions and colleagues. These two versions of the problem can be formalized
as follows.

Given a data set which is modelled by an undirected graph G = (V, E) consisting of a set of
nodes V and a set of links E, as well as a ground truth data set EGT � V × V, find a similarity
measure s : V � V ! Rmaps links that are contained in the ground truth to a higher value
than links that are not contained in the ground truth (see Fig 1A). We can then differentiate
between the global and the local link assessment problem:

1. Global link assessment problem (GLAP): a similarity measure s is said to be globally optimal
if, for all (v, w) 2 EGT and all (v0, w0) =2 EGT: s(v, w)� s(v0, w0).

2. Local link assessment problem (LLAP): a similarity measure s is said to be locally optimal if,
for all v in V, s(v, w)� s(v, u) if (v, w) 2 EGT and (v, u) =2 EGT.

Note that a globally optimal similarity measure is necessarily locally optimal as well, but not
necessarily vice versa (see S2 Text). With a globally optimal similarity measure, all node pairs
can be ranked globally based on the observed graph, and the top k pairs can then be included
in a new graph (Fig 1B). If k equals the number of ground truth links t: = |EGT|, the new graph
consists of only the ground truth links. In the local ranking approach, for each node v, the new
graph contains the links which connect v with the nodes that are most similar to it. The num-
ber of included links t(v) equals the number of v’s ground truth links, i.e. t(v) := |{(v, w)j(v, w)
2 EGT}| (Fig 1C). The node similarity measures presented in the following can be used both in
the GLAP and LLAP setting.

Node similarity measures
Different scientific communities have proposed structural similarity measures for validation of
experimental findings [17], recommendation systems based on data-mining [26], and compu-
tation of one-mode projections [27, 28]. In this article, we compare the performance of the
most popular structural similarity measures in solving the GLAP and the LLAP (for further
details see S3 Text). These measures are inherently based on the number of common neighbors
n(v, w) of two nodes v, w:

1. The Jaccard index [29, 30] of a pair of nodes, which equals n(v, w) divided by the size of the
union of their neighborhoods. The degree d(v) of a node v is defined as the number of its
neighbors.

Jaccardðv;wÞ :¼ nðv;wÞ
dðvÞ þ dðwÞ � nðv;wÞ ð1Þ

2. The cosine [31] of a pair of nodes is given by n(v, w) normalized by the geometric mean of
their degrees:

cosineðv;wÞ :¼ nðv;wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðvÞdðwÞp ð2Þ
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Fig 1. A simplified network used for the schematic illustration of the link assessment problem. (A)
Given a set of ground truth links, some of them are included in the observed graph (solid red), while others
are not (dashed red). Spurious observed links are colored gray. (B,C) Using a structural similarity measure, a
global (local) assessment infers that the globally (locally) most similar node pairs should be connected.
Inferred links are colored blue, validated links are colored violet.

doi:10.1371/journal.pone.0152536.g001
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3. The Pearson correlation coefficient [32] is computed based on the adjacency vectors of the
two nodes:

Pearsonðv;wÞ :¼ covðv;wÞ
s½v�s½w� ; ð3Þ

where cov(v, w) denotes the covariance of the adjacency vectors of nodes v and w, while σ[v]
denotes the standard deviation of the adjacency vector of node v.

4. The AdamicAdarmeasure [33, 34] is defined as the weighted sum of the degrees of v and
w’s common neighbors. If N(v, w) denotes the set of common neighbors of v and w, the
measure can be defined as:

AdamicAdarðv;wÞ :¼
X

u2Nðv;wÞ

1

logðdðuÞÞ ð4Þ

5. The resource allocation index (rai) refines the number of common neighbours by assigning
highly connected neighbours less weight [35]:

raiðv;wÞ :¼
X

u2Nðv;wÞ

1

dðuÞ ð5Þ

6. Based on a simple null model in which for each node u, d(u) neighbors are picked uniformly
at random like in the configuration model [36], the difference between n(v, w) and the
expected number of common neighbors [22] is also known as the leverage [26]:

leverageðv;wÞ :¼ 1

jV j nðv;wÞ � dðvÞdðwÞ
jV j

� �
; ð6Þ

where |V| denotes the number of nodes in the graph.

7. The Leicht-Holme-Newman index (lhn) is based on the same simple null model and is
defined as the ratio between the observed and expected number of common neighbors [21],
also known as the lift [26]:

lhnðv;wÞ :¼ nðv;wÞ
dðvÞdðwÞ ð7Þ

8. The p-value of the number of common neighbors in a hypergeometric null model is called
hypergeom [17, 37]. It is computed from the degrees of the two nodes and the total number
of nodes as follows:

hypergeomðv;wÞ :¼
XminfdðvÞ;dðwÞg

c¼nðv;wÞ

dðvÞ
c

 ! jV j � dðvÞ
dðwÞ � c

 !

jV j
dðwÞ

 ! ð8Þ
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Note that some of the measures have a slightly different formulation when adapted to bipar-
tite graphs as detailed in S3 Text. In the next section, we describe the new approach to link
assessment by evaluating the statistical significance of the number of common neighbors in
comparison to a more realistic random graph model, the fixed degree sequence model (FDSM).

A novel methodology for link assessment based on comparison with the
FDSM
The leverage, the Leicht-Holme-Newman index, and the p-value of the number of common
neighbors based on a hypergeometric null model compare the observed number of common
neighbors with an expected value or assess the statistical significance of an observation with
respect to some expected distribution. Such an expected value or the distribution of the
expected values can also be obtained from a set of random graphs that have the same number
of nodes and links and the same degree sequence as the observed graph [23]. Theoretical
research showed that this null model, known as the fixed degree sequence model (FDSM), is
superior to the simple random graph model deployed by the configuration model for at least
some graph families [38]. It was also empirically shown, that the expected values of various
graph structures in the FDSM cannot simply be approximated by other, simpler random graph
models [39], such as the average clustering coefficient. However, the performance of the statis-
tical assessment of the number of common neighbors based on their expected value in the
FDSM in the link assessment task has not been investigated yet. The main contribution of this
paper is the study of the quality of different test statistics deduced from a comparison of the
observed number of common neighbors with those expected in the FDSM in the broader con-
text of link assessment, both for bipartite and non-bipartite graphs.

The FDSM contains all graphs with a given degree sequence that are simple, i.e., those without
multiple links and self-links. There is an algorithm with which such graphs can be built uniformly
at random [40, 41]. By randomly sampling a large number of such graphs, both the expected
value hn(v, w)i and the sample deviation σ[n(v, w)] can be approximated. Based on this, the sam-
ple z-score of an observed number of common neighbors n(v, w) is computed by the formula:

zðv;wÞ :¼ nðv;wÞ � hnðv;wÞi
s½nðv;wÞ� ð9Þ

Additionally, the same set of random graphs allows computing the empirical p-value, i.e., the
number of sample graphs in which v andw have at least n(v, w) neighbors.

While in theory, the ranking of all node pairs by the z-score and the p-value should be the
same, empirical research shows that this is actually not the case. This is on the one hand caused
by the limited number of samples that can be drawn. In consequence, very low p-values cannot
be approximated precisely. On the other hand, the statistical assessment of pairs of nodes in
which both have a low degree and a comparatively high number of common neighbors is prob-
lematic because the distribution of expected values is then not well approximated by a normal
curve (for further details see S3 Text). These node pairs produce a high number of 0 or very
low p-values. As we will show below, a ranking that sorts all node pairs by their p-value and
where ties are broken by their z-scores, can amend the weaknesses of both statistics and shows
consistent top performances in the link assessment problem.

Results
Having introduced the traditional node similarity measures and z� based on the proposal to
use the FDSM as an appropriate null model, we now present the results of our evaluation on
our benchmarks. To this end, we include both the global and local link assessment problem.
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Identifying the overall most probable links: Performance evaluation for
GLAP
For every pair of nodes with n(v, w)>0, we compute all of the presented similarity measures.
To quantify their performance with respect to the global version of the link assessment prob-
lem, we first calculate the corresponding area under the receiver operator characteristic (ROC)
curve (AUC). The AUC is a scalar performance measure that quantifies the probability that a
randomly chosen ground truth link is assigned a higher score than a randomly chosen pair of
nodes without a link in the ground truth. A perfect predictor achieves an AUC of 1, while ran-
dom guessing yields a value of 0.5. As shown in Fig 2 (upper row), z� is always among the top 5
performing measures for all data sets. However, the measures that perform better than z� in
some of the data sets, have an inconsistent performance overall. A ranking based on the z-score
is the best competitor and reaches top performance in three out of five data sets, but ranks
third and second to last for the other two data sets. Furthermore, the measures that outperform
z� in the case of the PPI data set are the weakest predictors for the other data sets: namely Ada-
micAdar, rai, leverage, and hypergeom, which are well behind the other measures for the bipar-
tite data sets MovieLens Movies, Netflix Movies, and Netflix TV Series. For all
data sets besides PPI, we find that the AUC is not well suited to differentiate between the top-
performing measures. For example, for the Netflix TV Series data set, the top 5 measures
all have an AUC of at least 0.996. This is due to the fact that the ground truth edges are very
sparse w.r.t. the number of all possible edges, i.e., the ground truth is very imbalanced (see
Table 1).

The AUC has been shown to be an inaccurate performance measure for small and imbal-
anced samples [42]. In all five data sets, the imbalance is at least 2 out of 1000 (see Table 1) and
for the two ground truth data sets in Netflix, we find only 7 ground truth edges per one

Fig 2. Quality of discovering the ground truth in the GLAP as quantified by the area under the ROC curve AUC (upper row) and the positive
predictive value PPVk (lower row). Based on both performance measures, z* is the only stable top-performing method for link assessment for all data sets
with the exception of PPIwhen using the AUC.

doi:10.1371/journal.pone.0152536.g002
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million possible edges. Thus, we also compute a second measure, which was designed for
strongly imbalanced data sets, to evaluate the quality of the predictions. Instead of aggregating
over the entire range of thresholds (as in the calculation of the AUC), this measure quantifies
the classification accuracy at a single, data set-driven threshold and evaluates the identification
of the top-ranked links instead of the entire ranking. Since most applications require just a few
predictions to guide experiments or make personalized suggestions, this is a sensible and prac-
tical alternative. Based on a proposal by Liben-Nowell and Kleinberg, the measure we will call
hereafter PPVk is defined as the positive predictive value among the first k node pairs with the
highest similarities, where k := t, i.e. the number of links in the ground truth [34]. It can be
shown that the PPVk has a linear correlation with the sensitivity (the ability of the measure to
rank the positive links high) and the specificity (the ability to rank negative links low) at this
specific threshold and thus combines both performance measures into one. Fig 2 (lower row)
compares the PPVk values that result from the various similarity measures. The PPVk differen-
tiates between the similarity measures better than the AUC. Again, on the example of the Net-
flix TV Series data set, the top-5 measures now have values between 0.72 and 0.65, where z�

identifies 72% ground truth edges among the top 951 ranked node pairs while the z-score rank-
ing only identifies 0.65%. A second example also immediately reveals that the AUC is not well
suited to quantify the performance of a link assessment method for very imbalanced data sets:
while the AUC indicates that almost all measures perform very well in the MovieLens Mov-
ies set, the PPVk shows that at most 30% of the most important top 450 predictions are
ground truth edges. This is due to the fact that positive links are ranked high in comparison to
most of the negative links, but are ranked low when compared to the small number of positive
links, which is caused by the imbalance in the data. Thus, a measure that performs well based
on the PPVk and poorly according to the AUC is a measure for which the first k entries are pre-
dominantly ground truth edges, but which ranks the remaining edges from the ground truth
low. Since one is usually only interested in the top predictions, the PPVk is the more meaning-
ful quality measure for imbalanced link assessment tasks. Based on the PPVk, z� performs best
in the bipartite data sets and second-best after rai in the non-bipartite data sets. In the case of
MovieLens Movies (A PPVk of 0.30 vs 0.22), and Netflix Movies (0.39 vs 0.21) z� is
even overtaking the second-best measure by a large margin; the difference of the values to rai
in the non-bipartite data sets is 0.03 for both, the PPI data set (0.24 vs 0.21) and the Live
Journal data set (0.40 vs 0.37). Note also that the performance of rai is below 0.08 for all
bipartite data sets.

To illustrate the accuracy of the results provided by z�, in Fig 3A we show the example of
the 15 James Bond movies that can be found in the Netflix data set—it is a challenging
example because in the data set, the years of production of these films range from 1962 to 2002.
The list of the t = 904 globally most similar node pairs based on z� in the Netflix Movies
ground truth contains 55 of the 105 possible edges between these movies.

Detecting links on a node-by-node basis: Performance evaluation for the
LLAP
Next, we evaluate the similarity measures with respect to the LLAP. Since we are interested in a
certain number of the topmost predictions in this case, we again use the PPVk to quantify the
accuracy of the measures among the t(v) locally highest ranked links for every node v. Recall
that t(v) denotes the number of ground truth links of node v. As shown in Fig 4, the measures
have varying performance in solving this version of the link assessment problem as well,
depending on the data set. However, z� remains the top-performer in three out of five cases,
and in the LiveJournal data set the difference between its performance and the top-
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performer is only 0.004. In the PPIdata set, it has a performance of PPVk = 0.33 with a differ-
ence of 0.03 to the top-performing measures rai and AdamicAdar (both with a PPVk = 0.36).

Fig 3B depicts the result of the local assessment according to z�, illustrated again on the
example of the James Bond movies from the Netflix Movies data set. The novel method
finds 201 out of 210 (96%) ground truth edges. Note that, based on the quality assessment pro-
vided by the PPVk, all measures are significantly better in solving the LLAP than the GLAP.
Accordingly, for each measure and data set, the PPVk that is achieved when choosing the t
globally highest ranked node pairs is much lower than if the t(v) locally highest ranked links of
every node v are chosen. The reason for this is that the PPVk as quality measure considers
more information about the problem in the LLAP, as we use the number of ground truth edges
per node for the calculations, thus making this task easier, independently of the employed simi-
larity measure.

The only stable top-performing method: z*
Regardless of the considered version of the link assessment task, none of the traditional similar-
ity measures is consistently stable over all data sets. Fig 5 shows the PPVk for each similarity
measure as the percentage of the maximally achieved PPVk by any of the measures on the same

Fig 3. Similarities inferred by z* for the James Bondmovies in the Netflix Movies ground truth.We show links between the globally most similar
pairs of movies involving at least one of the Bond movies (global assessment, A) and the 14 most similar movies to each movie in the Bond series according
to a local assessment (B). Duplicate edges are disregarded.

doi:10.1371/journal.pone.0152536.g003

Fig 4. Performance of the different similarity measures in the LLAP as quantified by the PPVk.

doi:10.1371/journal.pone.0152536.g004
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data set. In 6 out of 10 cases, z� obtains the maximum PPVk. While, e.g., AdamicAdar and rai
are (near) optimal in some data sets for solving either the GLAP or the LLAP, they perform
poorly in others. For example, AdamicAdar achieves the maximal PPVk of all similarity mea-
sures on the PPI and the LiveJournal data in the LLAP, but is below 5% of the maximally
achieved PPVk on the MovieLens Movies and Netflix Movies data in the GLAP.
Accordingly, assessing the statistical significance of the number of common neighbors with
respect to the FDSM as in the newly introduced z� is the only stable, top-performing method in
both the GLAP and the LLAP. The efficient combination of the p-value and z-score proposed
by z� largely improves the performance of its constituent elements. For instance, when applied
to the Netflix Movies data set to solve the global assessment problem, the p-value barely
achieves 0.5% of the performance of z�, while the z-score obtains 37%. For a data set without
further information, z� is thus the most promising method for solving the link assessment
problem.

Spatial scaling of oceanic plankton
In a final, exploratory step, we apply the top-performing measure z� to a novel oceanographic
data set with no known ground truth to demonstrate how the method can be used to obtain
practical insight. Thereby, we address a fundamental and controversially debated question in
microbial ecology, namely biogeographic distribution patterns of unicellular microbes. The
spatial (and temporal) distribution of biodiversity is an essential cornerstone in the under-
standing of mechanisms that generate and maintain diversity and contribute to ecosystem
functioning [43]. While it can be argued that microbes are not restricted by geographic barriers
(e.g. Finlay [44]), there exists evidence for spatial patterns of microbes on different distance

Fig 5. Overview of the performance of the individual measures for the considered data sets. For each measure, we show the achieved performance on
the given data set as the percentage of the PPVk of the top-performing measure. In both link assessment problems, z* is the most stable, top-performing
similarity measure.

doi:10.1371/journal.pone.0152536.g005
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scales (e.g. as reviewed in Martiny et al. [45]). Thus far, however, the question of spatial scaling
of microbes has been difficult to address adequately and with rigor due to incomplete sample
sizes and low coverage of sampling regions that were processed and analyzed in the same con-
text. The TARA Oceans project with its global sampling [46] in concerto with high-throughput
sequencing strategies produced massive data sets (up to sample saturation [47]), thus alleviat-
ing these difficulties and eliminating biases of previous analyses, which may have led to the
contrasting views on spatial microbial diversity patterns (see S4 Text).

We applied z� to ciliated plankton communities (CPCs) that were sampled to completion
with the aim of contributing reliable data to the biogeography debate concerning microbes. To
establish co-occurrence patterns, each CPC is connected to the most similar CPC according to
the local ranking approach (see Fig 6). It can be seen that CPCs within the same oceanic region
are more connected to each other than to CPCs of different regions. For example, in 10 out of
13 cases, the CPCs that are most similar to CPCs from the North- and South-Indian Ocean
(NIO and SIO, respectively) originate from the same oceanic regions. In the case of the Red Sea
(RS), all CPCs are connected to each other and of the seven CPCs in the Mediterranean Sea
(MS), six are linked. Thus, both these marginal seas grow their unique characteristic CPCs
despite their physical connection through the Suez Canal. In the Mediterranean Sea, only the

Fig 6. Each sample location’s ciliated plankton community (CPC) is connected to the most similar other CPC according to z* in a local ranking
approach. The results suggest that the global dispersal hypothesis for microbes as postulated by Finlay [44] should be rejected. Instead, the new method
shows clear evidence that microbes follow similar biogeographic rules as higher animals and plants as evidenced by Martiny et al. [45]. Shorthand notation
for the oceanic regions: MS (Mediteranean Sea); NIO (North Indian Ocean); RS (Red Sea); SAO (South Atlantic Ocean); SPO (South Pacific Ocean); SIO
(South Indian Ocean); SO (Southern Ocean). The direction of edges is disregarded.

doi:10.1371/journal.pone.0152536.g006
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Strait of Gibraltar CPC (MSG) is more similar to a South Atlantic CPC (SAO6) than to the
other Mediterranean CPCs. This is not unexpected, since surface waters in the Strait of Gibral-
tar are characteristic Atlantic water masses [48]. Our data nicely demonstrate the transition of
Atlantic CPCs into Mediterranean Sea CPCs.

Over the whole data set, 26 out of 35 links are connecting CPCs from exactly the same
region. Combining NIO and SIO into a single region, the ratio improves to 29: 35. Thus, even
though all oceanic regions are connected with each other through the meridional overturning
circulation [49], which provides the opportunity for a circumglobal passive dispersal of micro-
bial plankton, local diversity patterns are significantly more frequent than distant diversity pat-
terns. This indicates a strong local species sorting, which contributes to the generation of a
highly complex diversity. A global dispersal of microbes seems unlikely, even in the oceanic
realm, where no physical barriers act as dispersal barriers (as would be the case for high moun-
tain ranges on a continental scale). Thus, our analysis strongly supports the hypothesis that
microorganisms (or at least CPCs) follow similar dispersal patterns and rules as macroorgan-
isms [45].

Conclusions and Discussion
In this article we considered the link assessment problem, the task of disentangling complex
networks by distinguishing low-intensity real interactions from other spurious connections
that may be erroneously included due to false observations and missing connections that may
be incorrectly omitted. This problem is prevalent in most complex network settings based on
real-world observations and has two predominant versions. In the global version, the overall
most likely links are identified (i.e. links with the highest probability of being true). In the local
version of the problem, links are assessed on a node-by-node basis to find the most probable
neighbors for a given node. As such, link assessment has some important similarities and dis-
similarities with other lines of current research. On the one hand, the local version of the prob-
lem is formally equivalent to the one-mode projection of bipartite graphs and can be directly
applied in personalized recommendation [14, 15]. On the other hand, it extends link predic-
tion, i.e. the problem of assessing the likelihood that two yet unconnected nodes will be con-
nected in the future, given a snapshot of some dynamically evolving network. In link
assessment, additionally to inferring missing links, edges that are present in the observed net-
work are validated based on the likelihood that the two nodes should be connected given the
surrounding network topology.

To find or develop a method that is applicable broadly and independently of the data set in
question, we considered several data sets of interactions including a protein network from DIP, a
social network from LiveJournal, and movie/TV networks fromMovieLens and Netflix. On
these data sets we compared a number of previously introduced similarity measures and then
proposed a novel method, which is based on the statistical assessment of the number of common
neighbors against an appropriate random graph model, the FDSM.We found that this degree-
preserving random graph model is superior to other null models like the configuration or the
hypergeometric model. Ranking node pairs by the empirical p-value in the FDSM and then brak-
ing ties by the z-score, the resulting z�-ranking is thus a simple, yet efficient way to benefit from
the information contained in both test statistics. We showed that z� has the best consistent per-
formance on these data sets. As a potential direction for future research, obtaining access to an
even broader selection of benchmarks might allow disentangling the relationship between net-
work structure and the performance of the individual measures. Eventually, such studies could
be aimed at identifying network typologies that are constructed around the computationally least
demanding measures that approach the top performance of z� most reliably and effectively.
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Recently, attempts have been made to tackle the link prediction problem by combining mul-
tiple similarity measures through so-called ensemble methods (see for instance [50]). Accord-
ingly, a common strategy is to use all available similarity measures as features in some
prediction algorithm, such as logistic regression or support vector machines. However, these
methods require the knowledge of a ground truth data set, the computation of several candi-
date measures, and many non-trivial modelling decisions throughout the process. This renders
them useless in exploratory settings, where little data requirement and easy computation are
invaluable. Thus, in this article, we focused on unsupervised methods and assessed their quality
based on data set from very different domains.

Finally, we applied the method to a high-throughput sequence data set obtained from a
global collection of microbial ocean plankton (data without ground truth) and explored a
debated open question about the distribution of microbes on different scales. Based on this
data, we found evidence that the global dispersal hypothesis for microbes should be rejected.
Instead, the new method provides clear evidence that microbes follow similar biogeographic
rules as higher animals and plants. This exploratory analysis, alongside the results of our
benchmarks, shows that it is possible to refine data from noisy large-scale data sets by using a
method which is only based on structural information. This indicates that the notion of homo-
phily, which states that nodes with high similarity are more likely to form links, is much more
universal than previously thought and even extends to non-human entities such as proteins
and movies.

Supporting Information
S1 Text. Data preprocessing and ground truths.
(PDF)

S2 Text. Optimality in the link assessment problem.
(PDF)

S3 Text. Existing similarity measures and z�.
(PDF)

S4 Text. Ecological data.
(PDF)

S1 Data. Zip of all ground truth and available data sets.
(ZIP)

Acknowledgments
The authors would like to thank Brian Uzzi, Satyam Mukherjee, Michael Mauskapf, Michael
Schnabel, Jay Uparna, and Wen Zhou for their feedback. We gratefully acknowledge the assis-
tance of the Northwestern Institute on Complex Systems (NICO), the Heidelberg Collabora-
tory for Image Processing (HCI), and the Heidelberg Interdisciplinary Center for Scientific
Computing (IWR) in providing computational resources.

Author Contributions
Conceived and designed the experiments: KZ AS EAH AG TS. Performed the experiments:
EAH AS. Analyzed the data: EAH AS AG TS KZ. Contributed reagents/materials/analysis
tools: EAH AS AG TS KZ. Wrote the paper: EAH AS AG TS KZ. Revision: EAH AG TS KZ.
Supervised the project: KZ EAH.

Low-Intensity Relationships in Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0152536 April 20, 2016 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152536.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152536.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152536.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152536.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152536.s005


References
1. Bascompte J. Disentangling the web of life. Science. 2009; 325(5939):416–419. doi: 10.1126/science.

1170749 PMID: 19628856

2. Schweitzer F, Fagiolo G, Sornette D, Vega-Redondo F, Vespignani A, White D. Economic Networks:
The New Challenges. Science. 2009; 325(5939):422–425. PMID: 19628858

3. Vega-Redondo F. Complex Social Networks. Cambridge University Press, New York, USA; 2007.

4. Lazer D, Pentland A, Adamic L, Aral S, Barabási AL, Brewer D, et al. Computational Social Science.
Science. 2009; 323:721–723. doi: 10.1126/science.1167742 PMID: 19197046

5. Michel JB, Shen Y, Aiden AP, Veres A, Gray M, Team TGB, et al. Quantitative Analysis of Culture
Using Millions of Digitized Books. Science. 2011; 331:176–132. doi: 10.1126/science.1199644 PMID:
21163965

6. Serrano MÁ, Boguñá M, Vespignani A. Extracting the multiscale backbone of complex weighted net-
works. Proceedings of the National Academy of Sciences. 2009; 106(16):6483–6488. doi: 10.1073/
pnas.0808904106

7. Uhlmann S, Mannsperger H, Zhang J, Horvát EÁ, Schmidt C, Küblbeck M, et al. Global miRNA Regula-
tion of A Local Protein Network: Case Study with the EGFR-Driven Cell Cycle Network in Breast Can-
cer. Molecular Systems Biology. 2012; 8:570.

8. Malumbres M. miRNAs versus oncogenes: the power of social networking. Molecular Systems Biology.
2012; 8:569. doi: 10.1038/msb.2012.2 PMID: 22333973

9. Horvát EÁ, Zhang J, Uhlmann S, Sahin Ö, Zweig K. A network-based method to assess the statistical
significance of mild co-regulation effects. PLOSONE. 2013; 8(9):e73413. doi: 10.1371/journal.pone.
0073413 PMID: 24039936

10. Ahn YY, Bagrow J, Lehmann S. Link communities reveal multiscale complexity in networks. Nature.
2010; 466:761–765. doi: 10.1038/nature09182 PMID: 20562860

11. Lorrain F, White HC. Structural equivalence of individuals in social networks. The Journal of Mathemati-
cal Sociology. 1971; 1(1):49–80. doi: 10.1080/0022250X.1971.9989788

12. Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge University
Press; 1994.

13. Linden G, Smith B, York J. Amazon.com Recommendations. Item-to-Item Collaborative Filtering. IEEE
Internet Computing. 2003; 7(1):76–80. doi: 10.1109/MIC.2003.1167344

14. Lü L, Medo M, Yeung CH, Zhang YC, Zhang ZK, Zhou T. Recommender systems. Physics Reports.
2012; 519(1):1–49. doi: 10.1016/j.physrep.2012.02.006

15. Zhou T, Ren J, Medo M, Zhang YC. Bipartite network projection and personal recommendation. Physi-
cal Review E. 2007; 76(4):046115. doi: 10.1103/PhysRevE.76.046115

16. Zweig KA. How to Forget the Second Side of the Story: A NewMethod for the One-Mode Projection of
Bipartite Graphs. In: Proceedings of the second International Conference on Advances in Social Net-
work Analysis and Mining. IEEE Computer Society; 2010. p. 200–207.

17. Goldberg DS, Roth FP. Assessing experimentally derived interactions in a small world. Proceedings of
the National Acedemy of Sciences. 2003; 100(8):4372–4376. doi: 10.1073/pnas.0735871100

18. De Las Rivas J, Fontanillo C. Protein–Protein Interactions Essentials: Key Concepts to Building and
Analyzing Interactome Networks. PLoS Computational Biology. 2010; 6(6):e100807. doi: 10.1371/
journal.pcbi.1000807

19. Getoor L, Diehl CP. Link mining: a survey. ACM SIGKDD Explorations Newsletter. 2005; 7:3–12. doi:
10.1145/1117454.1117456

20. Lü L, Zhou T. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its
Applications. 2011; 390(6):1150–1170. doi: 10.1016/j.physa.2010.11.027

21. Leicht EA, Holme P, NewmanMEJ. Vertex similarity in networks. Physical Review E. 2006; 73
(2):026120. doi: 10.1103/PhysRevE.73.026120

22. NewmanMEJ. Networks. An introduction. Oxford; 2010.

23. Kolaczyk ED. Statistical Analysis of Network Data: Methods and Models. New York: Springer; 2009.

24. Database of Interacting Proteins. http://dip.doe-mbi.ucla.edu/dip/Main.cgi;.

25. Yang J, Leskovec J. Defining and evaluating network communities based on ground-truth. In: Proceed-
ings of the ACM SIGKDDWorkshop on Mining Data Semantics. 3; 2012.

26. Geng L, Hamilton H. Interestingness measures for data mining: A survey. ACM Computing Surveys.
2006; 38(3):9. doi: 10.1145/1132960.1132963

Low-Intensity Relationships in Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0152536 April 20, 2016 16 / 17

http://dx.doi.org/10.1126/science.1170749
http://dx.doi.org/10.1126/science.1170749
http://www.ncbi.nlm.nih.gov/pubmed/19628856
http://www.ncbi.nlm.nih.gov/pubmed/19628858
http://dx.doi.org/10.1126/science.1167742
http://www.ncbi.nlm.nih.gov/pubmed/19197046
http://dx.doi.org/10.1126/science.1199644
http://www.ncbi.nlm.nih.gov/pubmed/21163965
http://dx.doi.org/10.1073/pnas.0808904106
http://dx.doi.org/10.1073/pnas.0808904106
http://dx.doi.org/10.1038/msb.2012.2
http://www.ncbi.nlm.nih.gov/pubmed/22333973
http://dx.doi.org/10.1371/journal.pone.0073413
http://dx.doi.org/10.1371/journal.pone.0073413
http://www.ncbi.nlm.nih.gov/pubmed/24039936
http://dx.doi.org/10.1038/nature09182
http://www.ncbi.nlm.nih.gov/pubmed/20562860
http://dx.doi.org/10.1080/0022250X.1971.9989788
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1016/j.physrep.2012.02.006
http://dx.doi.org/10.1103/PhysRevE.76.046115
http://dx.doi.org/10.1073/pnas.0735871100
http://dx.doi.org/10.1371/journal.pcbi.1000807
http://dx.doi.org/10.1371/journal.pcbi.1000807
http://dx.doi.org/10.1145/1117454.1117456
http://dx.doi.org/10.1016/j.physa.2010.11.027
http://dx.doi.org/10.1103/PhysRevE.73.026120
http://dip.doe-mbi.ucla.edu/dip/Main.cgi
http://dx.doi.org/10.1145/1132960.1132963


27. Li M, Fan Y, Chen J, Gao L, Di Z, Wu J. Weighted networks of scientific communication: the measure-
ment and topological role of weight. Physica A. 2005; 350:643–656. doi: 10.1016/j.physa.2004.11.039

28. NewmanM. Scientific collaboration networks. I. Network construction and fundamental results. Phys
Rev E. 2001; 64:016131. doi: 10.1103/PhysRevE.64.016131

29. Jaccard P. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines.
Bulletin de la Société Vaudoise des Sciences Naturelles. 1901; 37:241–272.

30. Wolf YI, Karev G, Koonin EV. Scale-free networks in biology: new insights into the fundamentals of evo-
lution? Bioessays. 2002; 24(2):105–109. PMID: 11835273

31. Salton G, McGill MJ. Introduction to Modern Information Retrieval. New York, NY, USA: McGraw-Hill,
Inc.; 1986.

32. Rodgers JL, Nicewander WA. Thirteen ways to look at the correlation coefficient. The American Statisti-
cian. 1988; 42(1):59–66. doi: 10.1080/00031305.1988.10475524

33. Adamic LA, Adar E. Friends and neighbors on the web. Social Networks. 2003; 25(3):211–230. doi: 10.
1016/S0378-8733(03)00009-1

34. Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. Journal of the American
Society for Information Science and Technology. 2007; 58(7):1019–1031. doi: 10.1002/asi.20591

35. Zhou T, Lü L L, Zhang YC. Predicting missing links via local information. The European Physical Jour-
nal B. 2009; 71(4):623–630. doi: 10.1140/epjb/e2009-00335-8

36. Molloy M, Reed B. A critical point for random graphs with a given degree sequence. Random Structures
and Algorithms. 1995; 6(2–3):161–179. doi: 10.1002/rsa.3240060204

37. Travazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic net-
work architecture. Nature Genetics. 1999; 22(3):281–285. doi: 10.1038/10343

38. Zweig KA, Kaufmann M. A systematic approach to the one-mode projection of bipartite graphs. Social
Network Analysis and Mining. 2011; 1(3):187–218. doi: 10.1007/s13278-011-0021-0

39. SchlauchWE, Horvát EÁ, Zweig KA. Different flavors of randomness: comparing random graph models
with fixed degree sequences. Social Network Analysis and Mining. 2015; 5(1). doi: 10.1007/s13278-
015-0267-z

40. Cobb GW, Chen YP. An application of Markov Chain Monte Carlo to community ecology. The American
Mathematical Monthly. 2003; 110(4):265–288. doi: 10.2307/3647877

41. Berger A, Müller-Hannemann M. Uniform Sampling of Digraphs with a Fixed Degree Sequence. In:
Graph Theoretic Concepts in Computer Science. vol. 6410 of Lecture Notes in Computer Science.
Springer; 2010. p. 220–231.

42. Hanczar B, Hua J, Sima C, Weinstein J, Bittner M, Dougherty ER. Small-sample precision of ROC-
related estimates. Bioinformatics. 2010; 26(6):822–830. doi: 10.1093/bioinformatics/btq037 PMID:
20130029

43. Green J, Bohannan B. Spatial Scaling of Microbial biodiversity. Trends in Ecology & Evolution. 2006;
21:501–507. doi: 10.1016/j.tree.2006.06.012

44. Finlay B. Global dispersal of free-living microbial eukaryote species. Science. 2002; 296:1061–1063.
doi: 10.1126/science.1070710 PMID: 12004115

45. Martiny J, Bohannan B, Brown J, Colwell R, Fuhrman J, Green J, et al. Microbial biogeography: putting
microorganisms on the map. Nature Reviews Microbiology. 2006; 4:102–112. doi: 10.1038/
nrmicro1341 PMID: 16415926

46. Karsenti E, Acinas S, Bork P, Bowler C, Vargas CD, Raes J, et al. A Holistic Approach to Marine Eco-
Systems Biology. PLOS Biology. 2011; 9(10):e1001177. doi: 10.1371/journal.pbio.1001177 PMID:
22028628

47. de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Eukaryotic plankton diversity in
the sunlit ocean. Science. 2015; 348 (6237). doi: 10.1126/science.1261605

48. Price J, Baringer M, Lueck R, Johnson G, Ambar I, Parrilla G, et al. Mediterranean outflow mixing and
dynamics. Science. 1993; 259:1277–1282. doi: 10.1126/science.259.5099.1277 PMID: 17732247

49. Lozier M. Deconstructing the conveyor belt. Science. 2010; 328:1507–1511. doi: 10.1126/science.
1189250 PMID: 20558705

50. Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, et al. Wisdom of crowds for
robust gene network inference. Nature Methods. 2012; 9(8):796–804. doi: 10.1038/nmeth.2016 PMID:
22796662

Low-Intensity Relationships in Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0152536 April 20, 2016 17 / 17

http://dx.doi.org/10.1016/j.physa.2004.11.039
http://dx.doi.org/10.1103/PhysRevE.64.016131
http://www.ncbi.nlm.nih.gov/pubmed/11835273
http://dx.doi.org/10.1080/00031305.1988.10475524
http://dx.doi.org/10.1016/S0378-8733(03)00009-1
http://dx.doi.org/10.1016/S0378-8733(03)00009-1
http://dx.doi.org/10.1002/asi.20591
http://dx.doi.org/10.1140/epjb/e2009-00335-8
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1038/10343
http://dx.doi.org/10.1007/s13278-011-0021-0
http://dx.doi.org/10.1007/s13278-015-0267-z
http://dx.doi.org/10.1007/s13278-015-0267-z
http://dx.doi.org/10.2307/3647877
http://dx.doi.org/10.1093/bioinformatics/btq037
http://www.ncbi.nlm.nih.gov/pubmed/20130029
http://dx.doi.org/10.1016/j.tree.2006.06.012
http://dx.doi.org/10.1126/science.1070710
http://www.ncbi.nlm.nih.gov/pubmed/12004115
http://dx.doi.org/10.1038/nrmicro1341
http://dx.doi.org/10.1038/nrmicro1341
http://www.ncbi.nlm.nih.gov/pubmed/16415926
http://dx.doi.org/10.1371/journal.pbio.1001177
http://www.ncbi.nlm.nih.gov/pubmed/22028628
http://dx.doi.org/10.1126/science.1261605
http://dx.doi.org/10.1126/science.259.5099.1277
http://www.ncbi.nlm.nih.gov/pubmed/17732247
http://dx.doi.org/10.1126/science.1189250
http://dx.doi.org/10.1126/science.1189250
http://www.ncbi.nlm.nih.gov/pubmed/20558705
http://dx.doi.org/10.1038/nmeth.2016
http://www.ncbi.nlm.nih.gov/pubmed/22796662

