
RESEARCH ARTICLE

Abnormal network flow detection based on

application execution patterns from Web of

Things (WoT) platforms

Young Yoon*, Hyunwoo Jung, Hana Lee

Department of Computer Engineering, Hongik University, Seoul, South Korea

* young.yoon@hongik.ac.kr

Abstract

In this paper, we present a research work on a novel methodology of identifying abnormal

behaviors at the underlying network monitor layer during runtime based on the execution pat-

terns of Web of Things (WoT) applications. An execution pattern of a WoT application is a

sequence of profiled time delays between the invocations of involved Web services, and it

can be obtained from WoT platforms. We convert the execution pattern to a time sequence of

network flows that are generated when the WoT applications are executed. We consider such

time sequences as a whitelist. This whitelist reflects the valid application execution patterns.

At the network monitor layer, our applied RETE algorithm examines whether any given run-

time sequence of network flow instances does not conform to the whitelist. Through this

approach, it is possible to interpret a sequence of network flows with regard to application

logic. Given such contextual information, we believe that the administrators can detect and

reason about any abnormal behaviors more effectively. Our empirical evaluation shows that

our RETE-based algorithm outperforms the baseline algorithm in terms of memory usage.

Introduction

In this paper, we aim to develop a novel technique for detecting abnormal situations proac-

tively at the network monitor layer during runtime, based on the execution patterns of Web-

based applications. However, gaining the awareness of the Web-based application behaviors at

the network layer has been a non-trivial task. Asking every single independent server for their

application execution patterns is not feasible.

Recently, new opportunities for gaining application awareness are arising, as Web of Things

(WoT) platforms such as IFTTT [1] and Zapier [2] are emerging. These platforms came into

service to support flexible composition of applications with various things connected to the

Web. A user can easily select an application component from a pool of building blocks such as

sensor information, actuation functions and data services to create and deploy personalized

applications. A growing number of independent vendors are onboarding the WoT platforms

in order to provide these building blocks [3]. We can reasonably expect more Web applica-

tions to be created through such WoT platforms because of the ease of development. We think

inquiring WoT platforms for the application behaviors is a more feasible approach compared

to the method of inquiring every individual Web server.

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Yoon Y, Jung H, Lee H (2018) Abnormal

network flow detection based on application

execution patterns from Web of Things (WoT)

platforms. PLoS ONE 13(1): e0191083. https://doi.

org/10.1371/journal.pone.0191083

Editor: Feng Xia, Dalian University of Technology,

CHINA

Received: April 18, 2017

Accepted: December 13, 2017

Published: January 19, 2018

Copyright: © 2018 Yoon et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All test data, scripts

and the executable files used in the experiment are

available from a public git repository at https://

bitbucket.org/catcurse/application-aware-

abnormal-network-flow-pattern-detection/src.

Funding: This research was supported by Hongik

University new faculty research support fund to YY.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0191083
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191083&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191083&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191083&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191083&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191083&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191083&domain=pdf&date_stamp=2018-01-19
https://doi.org/10.1371/journal.pone.0191083
https://doi.org/10.1371/journal.pone.0191083
http://creativecommons.org/licenses/by/4.0/
https://bitbucket.org/catcurse/application-aware-abnormal-network-flow-pattern-detection/src
https://bitbucket.org/catcurse/application-aware-abnormal-network-flow-pattern-detection/src
https://bitbucket.org/catcurse/application-aware-abnormal-network-flow-pattern-detection/src

Given the access to the application execution patterns on the WoT platforms and the

underlying network systems where those WoT platforms run on, we aim to identify abnormal

behaviors at the network monitor layer during runtime, as illustrated in Fig 1.

In this paper, we define an execution pattern of an application as a time sequence of Web

service invocations. Web service is categorized into either a trigger or an action in WoT. A

trigger is either a publication of some information or a signal that an action (actuation) took

place. An action is a task to be executed whenever a trigger is fired. For instance, suppose a

user wants to be notified when it rains. Using the composition tools of IFTTT or Zapier, the

user, for example, can select a weather forecast service as a trigger and a push alarm service as

an action. We assume that the WoT platforms log execution traces for every composed appli-

cation and profile the average behavior into a time sequence.

Our system translates the time sequence of trigger and action executions to a time sequence

of network flows. A network flow is a traffic information between two communicating end-

points [4]. Such information can be used for traffic engineering and security monitoring [5, 6].

Our system compiles a whitelist out of these time sequences of network flows. Our system col-

lects the time sequences of flow instances (i.e., network flow events) and checks if any of these

time sequences does not match a pattern in the whitelist. Flow instances that do not conform

to the whitelist are regarded as an abnormal events, and they are placed in a watchlist for fur-

ther review. The abnormal events may reflect performance disruptions at the WoT platform or

a security breach.

We believe that this new method is a significant enhancement to the previous approaches.

Abnormal changes can be detected through analysis of network packets [7]. However, these

techniques can report many false alarms, especially when they are not aware of the application

logic and behaviors. On the other hand, a stealth execution of a compromised application may

go unnoticed by both the monitoring agents at the network layer and the platform unless they

work in concert. For example, as shown in Fig 2, suppose a car driver composed and deployed

an application that can automatically start engine when he/she is in close proximity of the car.

A malicious user may compromise this application and start the engine even without being

close to the car. This malicious user may inject a flow instance to the network layer and pre-

tend that the engine start was a planned reaction to a valid trigger. With the whitelist of valid

execution patterns expressed in network flows and the cooperation between the monitoring

engines at both the network layer and the platform, the aforementioned problems can be

resolved.

In this paper, we dive into the details of the implementation of this system. We focus more

on the algorithms for matching real-time flow instances against the whitelist. The first algo-

rithm we refer to as Whiplash is a base-line, brute-force algorithm that matches every popu-

lated partial time sequence against an entire whitelist. The second algorithm we refer to as

TimedRETE matches a sequence of network flow instances against the whitelist stored in an

applied RETE data structure [8].

Our key contribution can be summarized as follows. We present a novel research work that

suggests to distinguish between normal and abnormal behaviors at the network layer based

on a whitelist compiled out of the application execution patterns from WoT platforms. The

detailed presentation of our contribution is structured as follows. First, we provide several defi-

nitions and assumptions necessary for expressing a whitelist. Second, given a whitelist, we

present how it is leveraged by two algorithms. Third, we show the results from comparative

experiments to reveal the pros and cons of our new algorithms. Fourth, we put our work in

the context of various related works. Finally, we list possible future research directions and

conclude.

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 2 / 29

https://doi.org/10.1371/journal.pone.0191083

Fig 1. An overall framework for application-aware abnormal network flow detection.

https://doi.org/10.1371/journal.pone.0191083.g001

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 3 / 29

https://doi.org/10.1371/journal.pone.0191083.g001
https://doi.org/10.1371/journal.pone.0191083

Definitions and assumptions

In this section, we design the overall system that processes real-time flow instances to deter-

mine whether they are abnormal according to the whitelist generated from the execution pat-

terns available on WoT platforms.

A whitelist is a list of valid application execution patterns. Each entry in a whitelist is

defined in terms of the network flows with the following pairs of information.

“Application ID”: Number,

Fig 2. An example of security breach that occurs without being noticed by the security monitoring agents at the WoT platform and at the network

layer.

https://doi.org/10.1371/journal.pone.0191083.g002

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 4 / 29

https://doi.org/10.1371/journal.pone.0191083.g002
https://doi.org/10.1371/journal.pone.0191083

“Network Flows”: [Numbers],

“Time delays”: [Numbers]

The attribute “Application ID” is an identifier of a WoT application. The attribute “Net-

work Flows” is an ordered list of network flow identifiers. As mentioned earlier, a network

flow is a network footprint that is generated when executing a WoT application. The flow

instance contains information such as IP addresses and ports of the endpoints, the volume of

the flow in terms of the number of packets, types of the application and the protocol used. The

attribute “Time delays” is an ordered list of time delays between the occurrence of network

flows listed under the “Network Flows” attribute. For instance, the following whitelist means

that an application with an ID of 1 causes network flows 5, 7, 4 and 8 to occur in order, and

the time delays between the occurrence of network flows will be commonly 1.

“Application ID”:1,

“Network Flows”:[5, 7, 4, 8],

“Time delays”:[1, 1, 1]

We refer to the occurrence of a specific network flow as a flow instance.

A WoT application is a combination of trigger and action services. A WoT platform main-

tains a REST endpoint that accepts a trigger from trigger services. The WoT platform invokes

the REST endpoint of an action service that is planned to be executed upon receipt of a trigger

event. Therefore, every application execution should generate a sequence of flow instances

between the involved trigger/action services and the WoT platform.

These flow instances can be detected in real-time by tapping into the network with deep

packet inspection (DPI) appliances, which can inspect up to 40 giga bits of packets and identify

40 million concurrent flows per second. [9, 10]. However, note that the packet inspection

devices cannot identify the exact application workflow that caused a detected flow instance. At

the network layer, multiple candidate applications match a detected flow instance, especially

when flow instances are interleaved. Therefore, we require the WoT application to confirm

which application corresponds to the detected flow instance, as it contains not only the com-

plete information about the individual application logic and also the execution logs. Despite the

complete application information available at the WoT platform, it is the flow instance monitor-

ing agent at the network layer that first detects the signs of abnormal behavior. As introduced

earlier, a user with malicious intent can inject fake flow instances to pretend that an action was

executed as planned. Such covert activity cannot be detected solely at the WoT platform level.

However, deploying the monitoring appliances to the network on which a real WoT plat-

form resides is not yet in the scope of this research work. Instead, we assume that a WoT plat-

form is given and we devise a simulator that can synthesize various whitelists and generate

simulated time sequences of flow instances.

Our system depends on the WoT platforms to profile the execution pattern of every appli-

cation. We assume that an error bound for the duration between any two flow instances

is given. The technique for profiling the performance of WoT applications precisely is an

orthogonal issue. However, it is an interesting subject for future research. As another line of

possible future work, we can account for the applications that implement more complicated

conditional statements and loops, as seen typically in enterprise workflows. However, accord-

ing to our investigation, major state-of-the-art WoT platforms such as IFTTT and Zapier just

support applications to be composed with up to 2 services.

In the following section, we present the algorithms for detecting abnormal situations given

a whitelist.

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 5 / 29

https://doi.org/10.1371/journal.pone.0191083

Design of the flow instance matching algorithms

The Whiplash algorithm

Whiplash is a simple algorithm that searches through an entire whitelist. Whenever a new

network flow instance appears, Whiplash iterates through the whitelist to detect a normal

sequence of flow instances.

Whiplash utilizes a PatternQueue which is a queue containing network flow instances.

Whenever a flow instance is detected, Whiplash adds it to the end of the PatternQueue.

As soon as the flow instance gets added to the PatternQueue, matching the current flow

instances against the entries in the whitelist takes place. For every entry of the whitelist, Whiplash

searches for a matching sequence of flow instances in the PatternQueue, as shown in Fig 3(a) and

3(b). Note that Whiplash may return multiple candidates that match a whitelist entry. In such a

case, Whiplash forwards the application ID of the matched whitelist entry and the actual time

sequence of flow instances to the WoT platform. In return, the WoT platform confirms whether

the services involved in the application were actually executed as specified in the time sequence,

as shown in Fig 3(c). If a candidate match is confirmed, Whiplash moves on to the next whitelist

entry. If the flow instances are confirmed to be valid footprints of an application, they are imme-

diately removed from the PatternQueue. The normal time sequence of network flow instances

found by the Pattern Search method is removed from the PatternQueue, as shown in Fig 4.

None of the candidate matches may be confirmed to be normal by the WoT platform. This

does not necessarily mean that these candidate matches potentially reflect an abnormal situa-

tion. This is because, these candidate matches can be related to other whitelist entries. Here is

how Whiplash collects potentially abnormal flow instances. For every network flow F, Whip-

lash first finds the maximum duration of a full time sequence that starts with F. Then Whiplash

periodically sweeps through the PatternQueue to identify any flow instance that resided in the

PatternQueue for more than maximum duration. These flow instances are removed from the

PatternQueue and placed into the watchlist for further review, since we can suspect these to be

abnormal.

Whiplash may easily suffer a premature eviction of perfectly normal flow instances, espe-

cially when the next PatternQueue sweeping cycle starts even before the entire whitelist is

checked. We can let Whiplash wait until the entire whitelist entries are checked. However, this

may overload PatternQueue. Apparently, we should employ a better approach to match time

sequences against a whitelist. In the following section, we present the RETE-based algorithm.

The TimedRETE algorithm

In this section, we design TimedRETE algorithm. This algorithm addresses the issue of Whip-

lash checking the entire whitelist for every possible time sequence in the PatternQueue. We

extend RETE [8], a graph-based algorithm for matching real-time events against specific pat-

terns. A number of modern complex event processing (CEP) systems are based on the RETE

algorithm [11–13]. However, these CEP systems come short in providing the means to express

the interest in detecting all patterns that are different from a set of normal patterns. Moreover,

storing whitelist of application execution patterns in a RETE network has not been studied in

depth. This prompts us to design a new RETE-based algorithm.

In the following, we present TimedRETE. We explain how it stores a whitelist of network

flow execution patterns into a RETE network. We show how TimedRETE traverses through

the RETE network to identify normal and abnormal patterns.

Construction of a RETE network. TimedRETE stores a whitelist obtained from a WoT

platform into a network of alpha, aggregate and leaf nodes. Alpha node stores a single network

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 6 / 29

https://doi.org/10.1371/journal.pone.0191083

flow and matches incoming flow instance. Aggregate node correlates flow instances from

alpha nodes. Leaf node stores the last network flow in the whitelist entry. We denote the alpha,

the aggregate and the leaf node as A, B and L, respectively. Given a whitelist entry, TimedRETE

iterates through the sequence of network flows and associates them with alpha, aggregate and/

or leaf nodes. If an alpha node does not exist for a given network flow, TimedRETE creates a

new one (A1). For instance, as shown in Fig 5(a), an alpha node for the network flow with ID

of 1 is newly created (F1), which is added to the root of the TimedRETE network. TimedRETE

allocates an aggregate node for a subsequent network flow in the sequence and then correlates

it with the previous network flow. For example, as shown in Fig 5(b), TimedRETE adds a new

alpha node (A2) for the network flow with ID of 2 in the sequence (F2). Then TimedRETE cre-

ates the aggregate node (B1) that is connected to alpha nodes A1 and A2. This aggregate node

stores the information about the time delay between F1 and F2. In this example, TimedRETE

Fig 3. An example of sequentially updating PatternQueue with network flow instances being generated in real-time.

https://doi.org/10.1371/journal.pone.0191083.g003

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 7 / 29

https://doi.org/10.1371/journal.pone.0191083.g003
https://doi.org/10.1371/journal.pone.0191083

continues to create the alpha node (A3) and an aggregate node (B2) for the subsequent network

flow (F3), as shown in Fig 6(c). In this case, the new aggregate node is connected to A3 and B1.

B2 stores the information about the time delay between F2 and F3. TimedRETE repeats this

process until it encounters the last element in the sequence of network flows. TimedRETE cre-

ates a leaf node for the last network flow. For example, as shown in Fig 6(d), the alpha node

(A4) for the network flow (F4) is created. This alpha node is followed by the leaf node (L1),

which is connected to the previously created aggregate node B2 and A4. Finally, L1 keeps the

information about the time delay between F3 and F4.

An aggregate node has two parents: a trigger parent and an action parent. A parent node is a

trigger parent, if it is to forward an instance of a flow that precedes the flow of the action par-

ent. For instance, as shown in Fig 5(c), A1 and A2 are a trigger parent and an action parent of

B1, respectively. We call flow instances forwarded by a trigger parent and an action parent as a
trigger instance and an action instance, respectively.

Nodes other than the alpha nodes keep a list of trigger instances waiting to be matched with

a subsequent action instance within the duration bounds as specified in the whitelist. We refer

to this list as WaitList (WL). Note that the WaitList for the action instance is maintained only

Fig 4. An example of matching time sequence pattern and clearing it from PatternQueue.

https://doi.org/10.1371/journal.pone.0191083.g004

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 8 / 29

https://doi.org/10.1371/journal.pone.0191083.g004
https://doi.org/10.1371/journal.pone.0191083

Fig 5. The process of RETE network construction.

https://doi.org/10.1371/journal.pone.0191083.g005

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 9 / 29

https://doi.org/10.1371/journal.pone.0191083.g005
https://doi.org/10.1371/journal.pone.0191083

Fig 6. The process of RETE network construction.

https://doi.org/10.1371/journal.pone.0191083.g006

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 10 / 29

https://doi.org/10.1371/journal.pone.0191083.g006
https://doi.org/10.1371/journal.pone.0191083

in the aggregate and the leaf nodes. Every node except the leaf nodes keeps the match states of

every flow instance it sent to the immediate child node. This match state is put in a table we

refer to as MatchStates (MS). Each MatchStates entry is a 4-tuple, (f i
x , C, State, count). f i

x

denotes a flow instance i of the network flow fx, C denotes an immediate child node. State
is one of following four match states of f i

x at C, INIT, PARTIAL_MATCH (P_M), FULL_

MATCH (F_M) and NO_MATCH (N_M). count is the total number of responses from the

child nodes about the match state of f i
x .

Given the aforementioned notions, we explain how incoming flow instances are matched

against the constructed RETE network containing the whitelist information, in the following

section.

Pattern matching procedure. A flow instance traverses the RETE network as specified in

Algorithm 1. TimedRETE computes the match states of the flow instance during the traversal.

This algorithm can be explained best with a series of detailed examples illustrated in Figs 7, 8,

9, 10, 11, 12, 13 and 14.

Algorithm 1: RETE Network Traversal
Input: Flow instance f
1 if Alpha node A receives f then
2 Relay f to child nodes C;
3 for child node c 2 C do
4 Add (f, c, INIT, count = |C|) to MatchState MS;
5 if Aggregate node B receives f then
6 if f is trigger instance from parent Pt then
7 Add f to WaitList WL;
8 Relay f to child nodes C;
9 if f is action instance from parent Pa then
10 for trigger instance f0 2 WL do
11 if f0 matches f within duration bound then
12 Relay instance f0 ! f to child nodes CS;
13 for child node c 2 C do
14 Add (f0 ! f, c, INIT, count = |C|) to MatchState MS;
15 Change the state of f at B to PARTIAL_MATCH in MS of Pt and Pa;
16 if not the first match then
17 Increment the count of f by 1 in MS of Pt and Pa;
18 Break out of the loop;
19 if no matching trigger instance found then
20 Change the state of f at B to NO_MATCH in MS of Pt and Pa;
21 Decrement the count of f by 1 in MS of Pt and Pa;
22 for every flow instance f_ 2 MS whose count is 0 do
23 Change the state of f_ at B to NO_MATCH in MS of Pt and Pa;
24 if Leaf node L receives f then
25 if f is trigger instance from parent Pt then
26 Add f to WaitList WL;
27 if f is action instance from parent Pa then
28 for trigger instance f0 2 WL do
29 if f0 matches f within duration bound then
30 Change the state of f at B to FULL_MATCH in MS of Pt and Pa;
31 Decrement the count of f by 1 in MS of Pt and Pa;
32 Break out of the loop;
33 if no matching trigger instance found then
34 Change the state of f at B to NO_MATCH in MS of Pt and Pa;
35 Decrement the count of f by 1 in MS of Pt and Pa;

Whenever a flow instance enters the RETE network for the first time, TimedRETE locates a

corresponding alpha node. The located alpha node sets the match states of this flow instance at

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 11 / 29

https://doi.org/10.1371/journal.pone.0191083

Fig 7. An example of locating alpha node and initializing its MatchStates upon receipt of a flow instance.

https://doi.org/10.1371/journal.pone.0191083.g007

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 12 / 29

https://doi.org/10.1371/journal.pone.0191083.g007
https://doi.org/10.1371/journal.pone.0191083

Fig 8. An example of detecting a partially-matched time sequence of flow instances.

https://doi.org/10.1371/journal.pone.0191083.g008

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 13 / 29

https://doi.org/10.1371/journal.pone.0191083.g008
https://doi.org/10.1371/journal.pone.0191083

the child nodes to INIT. This alpha node adds the match state information to the MatchStates

along with the count of the flow instance that is initialized to |C| which is the number of child

nodes immediately succeeding A1. Suppose that the initial state of RETE Network is as shown

in Fig 7(a). When a flow instance, f 1
1

enters this network, TimedRETE finds the alpha node A1

and sets the state of f 1
1

at the immediate child node B1 to INIT. Count of f 1
1

is initialized to 1 as

there is only one immediate child node for A1. The state value of INIT indicates that the flow

instance newly entered the system, and the process of the waiting for the matching subsequent

instances has started. This match state information and the initial count value is added to

MatchStates (MS) of A1. Subsequently, A1 forwards the f 1
1

to its immediate child node. If

the child node receives the flow instance as a trigger instance, it adds the instance to the Wait-

List (WL) and waits for an action instance to be forwarded by the action parent, as shown in

Fig 7(b).

When another flow instance f 1
2

enters the RETE network, TimedRETE finds alpha node

A2 and repeats the MatchStates update procedure and forwards f 1
2

to its immediate aggregate

node B1. B1 takes f 1
2

as an action instance as it was sent by A2, the action parent. Upon receipt

of f 1
2

, B1 iterates through the WaitList to see if there is any previous trigger instance that

occurred prior to F2 within the duration bounds, as shown in Fig 8(c-1). If the trigger instances

meeting the duration requirement are found, then B1 reports to its parent nodes that the

match state for these trigger instances and the action instance should be PARTIAL_MATCH,

as shown in Fig 8(c-2). Note that the count of f 1
2

is not updated if the PARTIAL_MATCH is

Fig 9. An example of finding no match when action instance enters an aggregate node.

https://doi.org/10.1371/journal.pone.0191083.g009

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 14 / 29

https://doi.org/10.1371/journal.pone.0191083.g009
https://doi.org/10.1371/journal.pone.0191083

Fig 10. An example of repeated traversing until a leaf node is reached.

https://doi.org/10.1371/journal.pone.0191083.g010

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 15 / 29

https://doi.org/10.1371/journal.pone.0191083.g010
https://doi.org/10.1371/journal.pone.0191083

Fig 11. An example of a full match at the leaf node.

https://doi.org/10.1371/journal.pone.0191083.g011

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 16 / 29

https://doi.org/10.1371/journal.pone.0191083.g011
https://doi.org/10.1371/journal.pone.0191083

Fig 12. An example of identifying normal flow instances.

https://doi.org/10.1371/journal.pone.0191083.g012

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 17 / 29

https://doi.org/10.1371/journal.pone.0191083.g012
https://doi.org/10.1371/journal.pone.0191083

Fig 13. An example of utilizing count information for the retrieval of normal and abnormal flow instances.

https://doi.org/10.1371/journal.pone.0191083.g013

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 18 / 29

https://doi.org/10.1371/journal.pone.0191083.g013
https://doi.org/10.1371/journal.pone.0191083

Fig 14. An example of utilizing count information for the retrieval of normal and abnormal flow instances.

https://doi.org/10.1371/journal.pone.0191083.g014

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 19 / 29

https://doi.org/10.1371/journal.pone.0191083.g014
https://doi.org/10.1371/journal.pone.0191083

the very first match found for f 1
2

. If no trigger action satisfies the duration bounds, then we can

regard the action instance to be unrelated with the trigger instances. The node reports to the

trigger and action parent that the state of the action instance has to be NO_MATCH. This

indicates that there is no relationship between the trigger instances and the action instance,

as shown in Fig 9(c-3). Subsequently the count of f 1
2

is decremented by 1. The node that found

a PARTIAL_MATCH state must forward the partially-matching time sequence to its immedi-

ate child node as a subsequent flow instance. For example, f 1
B1

is forwarded to B2, as shown in

Fig 8(c-2).

Such matching and relay operation is repeated until a flow instance reaches a leaf node,

as shown in Fig 10. When the flow instance f 1
3

enters the network as shown in Fig 10(d-1),

MatchState information is initialized to INIT at A3. If a PARTIAL_MATCH is found at B2, the

partially-matched time sequence is forwarded to the leaf node L1 as a trigger instance f 1
B2

, as

shown in Fig 10(d-2). f 1
B2

is placed in the WaitList of L1 waiting to be fully matched with the

last flow instance, as shown in Fig 11(e-1). For example, if f 1
4

enters the network and traverses

up to L1 it fully matches the partial time sequence f 1
1
! f 1

2
! f 1

3
. Note that we cannot prema-

turely judge that the fully-matched time sequence to be normal, because the flow instances

could have been invoked as a part of other applications. Therefore, along with the application

ID, TimedRETE transfers the fully-matched time sequence to the WoT platform in order to

get a final confirmation that the time sequence actually occurred according to application exe-

cution log as shown in Fig 11(e-2). If the time sequence is confirmed to be normal, L1 removes

the flow instances from its WaitList and sends the state information FULL_MATCH to the

parents, as shown in Fig 12(e-3). When the parent nodes receive either FULL_MATCH or

NO_MATCH of a flow instance, f, these nodes decrement the count of f by 1. Immediately

after the count value becomes zero, the node relays the state information to its parents along

with the final match state information, as shown in Fig 12(e-4).

In the following section, we show how TimedRETE sweeps through the set of alpha nodes

to retrieve normal and abnormal time sequence of flow instances.

Identifying normal and abnormal flow instances. The periodic process of identifying

normal and abnormal flow instances is specified in Algorithm 2.

Algorithm 2: Retrieval of normal and abnormal flow instances
Input: A set of alpha nodes Δ
1 for every t time do
2 for A 2 Δ do
3 foreach flow instance f 2 MatchStates of A do
4 if f.count = = 0 then
5 if there is a FULL_MATCH for f then
6 f is a normal flow instance;
7 else
8 f is an abnormal flow instance;
9 Move f to the watchlist;

Algorithm 2 simply states that if the count value of a flow instance in the MatchStates of an

alpha node is zero, and FULL_MATCH state is detected, then the flow instance is regarded

to be a normal one. If there is no FULL_MATCH state while the count is zero, then the flow

instance is considered to be an abnormal one, as shown in the example illustrated in Fig 14(f-4).

Note that this checking procedure is based on the following theorem.

Theorem 1: If the count value is zero for a flow instance f in the MatchStates of an alpha

node, than the possible state value of f has to be either FULL_MATCH or NO_MATCH.

Proof: We prove Theorem 1 by contradiction. Suppose that there can be a state value of

INIT for f in the MatchStates of an alpha node while the count value is zero. count cannot be

zero in this case as count is initialized to the number of immediate child nodes. Whenever

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 20 / 29

https://doi.org/10.1371/journal.pone.0191083

PARTIAL_MATCH is found at the succeeding child nodes, count of f should be incremented.

Therefore, the initial count of f can never become zero. Also, suppose there can be a state value

of PARTIAL_MATCH for f in the MatchStates of an alpha node while the count value is zero.

count of f should be incremented whenever PARTIAL_MATCH is found at the succeeding

child nodes. Therefore, count cannot become zero unless all child nodes decrement count to

zero by reporting either FULL_MATCH or NO_MATCH■
Additionally, there should be only one FULL_MATCH for a flow instance across all alpha

nodes, because of the initial assumption that a flow instance must be part of just one applica-

tion execution. We guarantee this by getting the confirmation from the WoT platform base on

its application execution log.

The count value of a flow instance plays a critical role of preventing TimedRETE from mak-

ing a haste judgment on a flow instance. Suppose multiple trigger and action instances (e.g.,

f 1
B1

, f 1
3

and f 2
3

) arrive at the aggregate node B2, as shown in Fig 13(f-1) and 13(f-2). If f 1
3

does not

match f 1
B1

within the duration bound, then B2 reports to B1 that no match is found for f 1
B1

, as

shown in Fig 14(f-3) and 14(f-4). Suppose, we change Algorithm 1 to relay the NO_MATCH

state of f 1
B1

to the alpha node A1 and A2, without checking the count value. Then, at the next

polling cycle to retrieve normal and abnormal time sequences according to Algorithm 2, some

flow instances that turned out to be normal may be falsely identified as abnormal instances.

As shown in Fig 15(f-5) and 15(f-6), the flow instances f 1
1

and f 1
2

turns out to match f 2
3

and

f 1
4

. Therefore, count can be seen as the number of pending PARTIAL_MATCH and FULL_

MATCH to check for a flow instance.

Discussion. In this section, we mainly discuss the qualitative assessment of the perfor-

mance of the two algorithms we presented.

Firstly, in case of Whiplash, it takes at most f Pw ¼
w!

ðw� f Þ!f !
operations to find partial matches,

where f is the number of flow instances currently in PatternQueue and w is the number of

entries in the whitelist. The worst case is when there are only abnormal time instances. How-

ever, if WoT applications behave correctly, then the number of flow instances should stay

constant as long as Whiplash can quickly scan through the Whitelist. However, if there are

excessive number of application patterns in the whitelist and flow instances are generated at an

overwhelming rate, then Whiplash may not be able to find a match for a flow instance at all.

For every flow instance in the PatternQueue, we can wait until the whitelist is scanned entirely

for all other pending flow instances in the queue. However, this can further delay the pattern

match procedure. Moreover, PatternQueue may crash with out-of-memory errors. Instead, we

let Whiplash wait for maximum possible delay for a flow instance to find the fully matching

subsequent flow instances. This however may yield many false negatives as the whitelist scan-

ning may not complete before this wait time expires.

In case of TimedRETE it takes at most
Qd

i¼1
jCijjWLCi

j operations to check a full match for a

flow instance, where |Ci| is the number of child nodes at depth i, and jWLCi
j is the total number

of entries in the whitelist of Ci. It takes |A||MS| operations to retrieve the set of normal and

abnormal time sequences, where |A| is the number of alpha nodes, and |MS| is the number of

MatchStates entries in the alpha node. Similar to Whiplash, the number of flow instances waiting

in the RETE network will be small as long as the WoT application behaves normally. However,

TimedRETE is expected to perform better in case of excessive number of flow instances entering

the system, as only the subset of the whitelist has to be checked through the RETE network.

Evaluation

In this section we compare the performance of Whiplash and TimedRETE.

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 21 / 29

https://doi.org/10.1371/journal.pone.0191083

Fig 15. An example of utilizing count information for the retrieval of normal and abnormal flow instances.

https://doi.org/10.1371/journal.pone.0191083.g015

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 22 / 29

https://doi.org/10.1371/journal.pone.0191083.g015
https://doi.org/10.1371/journal.pone.0191083

Test environment

The test environment is set as shown in Fig 16.

The WoT Application Simulator (WAS) generates network flow instances. These flow

instances are generated based on the randomly synthesized whitelist. WAS publishes the flow

instances through Kafka which is a message queue that follows publish/subscribe communica-

tion paradigm [14]. The Matching Engine on the other end receives those flow instances

through Kafka consumer. WAS logs the occurrence timestamp of every generated network

flow instance into Application Execution Log. With this log, WAS can confirm the validity of a

time sequence of flow instances that are identified by the Matching Engine.

Note that the executions of the randomly picked time sequence of network flows are inter-

leaved, i.e., the flow instances can run concurrently. WAS randomly picks time delays between

two flow instances from uniform distribution of time values ranging from 1 to 10 seconds. We

also tried skewed distribution to time delays. However, the degree of skewness had no effect

on the performance result.

Whiplash and TimedRETE running inside the Matching Engine are implemented in Java.

We ran the test environment on a machine running Ubuntu 14.04 on Intel dual-core CPU @

3.20 GHz with 4GB of RAM.

We measured the performance in terms of the memory usage and the point when an algo-

rithm starts to see false negatives. False negatives are the cases when the Matching Engine

falsely identifies a normal time sequence as an abnormal one. We also measured the average

number of inquiries per flow instance that are issued to the WoT platform. This inquiry is to

confirm whether a time sequence fully matching a whitelist entry is indeed valid according the

Application Execution Log.

Fig 16. The testbed for performance measurement.

https://doi.org/10.1371/journal.pone.0191083.g016

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 23 / 29

https://doi.org/10.1371/journal.pone.0191083.g016
https://doi.org/10.1371/journal.pone.0191083

Varying degree of flow overlap between applications

In this experiment, we vary the degree of network flow overlap among time sequences of net-

work flows. We vary the degree by increasing the range of network flows to choose from 100

to 10,000, while the number of whitelist entries is fixed to 500. The inter-execution time

between applications is fixed to 10 seconds. The inter-arrival time between abnormal flows is

fixed to 1 second. The more network flows to choose from, the lower the degree of flow overlap

gets. The less network flows to choose from, the higher the degree of flow overlap gets.

Table 1 shows the memory usage and the average number of inquiries (I) issued to the

WoT platform whenever a fully-matching time sequence of flow instances is found by both

algorithms under varying degree of flow overlap.

With a high degree of flow overlap (a low flow range), TimedRETE exhibits less usage of

memory because many whitelist entries share the smaller set of aggregate nodes. With a low

degree of flow overlap (a high flow range), TimedRETE exhibits higher usage of memory

because it has to create more non-overlapping aggregate nodes. Whiplash consumes more

memory than TimedRETE regardless of the varying degree value. Whiplash can consume up

to 26% more memory with flow range of 100. This is because Whiplash has to unnecessarily

populate a significant number of partial time sequences during the matching process.

In case of TimedRETE, I increases as the degree of overlap gets higher, i.e., flow range gets

lower. With a smaller number of network flows to choose from, many whitelist entries overlap

on a small number of aggregate nodes in the RETE network. In such a circumstance, Time-

dRETE issues more redundant inquiries to the WoT platform. In case of Whiplash, all of I are

around 0.239. In Whiplash, I value does not change with the degree of flow overlap. This is

because Whiplash does not store duplicate flows in a single node as in TimedRETE. Regardless

of the redundancy, Whiplash always match a flow against the entire whitelist. The I value for

Whiplash is relatively smaller at flow range of 100. This is because Whiplash asks the WoT

platform once per whitelist entry when it finds the first matching full time sequence in

PatternQueue.

Varying size of whitelist

In this experiment, we vary the number of entries in the whitelist from 100 to 10,000. The

range of network flows to choose from is fixed to 1,000. The inter-execution time between

applications is fixed to 10 seconds and the inter-arrival time between abnormal flows is fixed

to 1 second.

Table 2 shows the memory usage and the average number of inquiries (I) issued to WoT

platform whenever a fully-matching time sequence of flow instances is found by both algo-

rithms under varying size of whitelist.

TimedRETE tends to issue relatively more inquiries when the size of the whitelist is smaller.

This is because there is a higher change of encountering a matched time sequence for most of

Table 1. The average number of inquiries to WoT platform and memory usage with varying range of network flows.

Algorithm Whiplash TimedRETE

Parameter Value Memory Usage(MB) I Memory Usage(MB) I
Range of network flows 100 32.51 0.2387 25.74 0.6543

500 32.22 0.2389 28.74 0.3464

1000 33.33 0.2391 29.78 0.3176

5000 32.97 0.2392 30.63 0.3236

10000 33.60 0.2389 31.24 0.3081

https://doi.org/10.1371/journal.pone.0191083.t001

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 24 / 29

https://doi.org/10.1371/journal.pone.0191083.t001
https://doi.org/10.1371/journal.pone.0191083

the entries in the whitelist, as long as most application behave normally. Whiplash exhibits less

number of inquires compared to TimedRETE, since many unrelated partial time sequences

reside in PatternQueue. Also Whiplash is less scalable than TimedRETE as it fails to handle

time sequence matching with the whitelist entries more than 1,000. With the same workload,

TimedRETE can handles as many as 10,000 whitelist entries.

Whiplash starts to encounter excessive number of false negatives when the number of

whitelist entries increases beyond 1,000. That is, Whiplash falsely identifies legitimate time

sequences as abnormal patterns. TimedRETE on the other hand does not exhibit false nega-

tives for the experiment with up to 10,000 whitelist entries. However, TimedRETE shows sig-

nificant increase in memory when the number of whitelist entries is increased from 1,000 to

10,000. However, this result is a clear indication that TimedRETE is more scalable than

Whiplash.

Varying inter-execution time between applications

In this experiment, we vary the inter-execution time between applications from 1 second to

100 seconds. The range of flows to choose for composing an application is fixed to 1,000. The

number of whitelist entries is fixed to 500. The inter-arrival time between abnormal flows is

fixed to 1 second. As the interval of application execution increases, the number of generated

flows decreases.

Table 3 shows the memory usage and the average number of inquiries (I) issued to WoT

platform whenever a fully-matching time sequence of flow instances is found by both algo-

rithms under varying inter-execution time between applications.

In terms of the average inquiries (I) made to the WoT Platform per flow instance, Time-

dRETE issues more inquiries than Whiplash in all case similar to the previous experiments.

The I value increases as the interval of application execution decreases. This is because the

number of generated flows and matching throughput increase.

Beyond the inter-execution time of 5 seconds, Whiplash cannot handle any flow instances

due to the excessive number of false negatives. TimedRETE uses less memory and can sustain

Table 2. The average number of inquiries to WoT platform and memory usage with varying whitelist size.

Algorithm Whiplash TimedRETE

Parameter Value Memory Usage(MB) I Memory Usage(MB) I
Whitelist size 100 32.30 0.2435 27.17 1.6845

500 33.33 0.2391 29.78 0.3176

1000 35.32 0.2441 28.72 0.3315

5000 Out of Memory - 86.88 0.2781

10000 Out of Memory - 112.16 0.2545

https://doi.org/10.1371/journal.pone.0191083.t002

Table 3. The average number of inquiries to WoT platform and memory usage with varying inter-execution time between applications.

Algorithm Whiplash TimedRETE

Parameter Value Memory Usage(MB) I Memory Usage(MB) I
Inter-execution time between applications 1 Out of Memory - 28.19 0.3213

5 Out of Memory - 29.98 0.3246

10 33.33 0.2391 29.78 0.3176

50 33.41 0.2393 28.83 0.3178

100 30.22 0.1999 20.12 0.2668

https://doi.org/10.1371/journal.pone.0191083.t003

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 25 / 29

https://doi.org/10.1371/journal.pone.0191083.t002
https://doi.org/10.1371/journal.pone.0191083.t003
https://doi.org/10.1371/journal.pone.0191083

up to the inter-execution time of 1 second i.e., around 75 incoming flow instances per minute.

The stationary memory usage beyond the inter-execution time of 10 seconds is due to the

fact that residence time of the flow instances in the RETE network is long. When more flow

instances arrive at a faster rate (a low inter-execution time), they leave the RETE network

quicker as the matching throughput increases as well. Our experiment shows that TimedRETE

uses less than 30 MB of memory.

Varying inter-arrival time between abnormal flows

In this experiment, we vary the proportion of abnormal patterns in the workload by changing

the inter-arrival time between abnormal flows from 0.1 (0.38%) second to 10 seconds (27.6%).

We also consider the case that abnormal flow instance is not generated at all (inter-arrival time

of 0). The range of flows to choose for composing an application is fixed to 1,000, and the

number of whitelist entries is fixed to 500. The inter-execution time between applications is

fixed to 10 seconds. As the inter-arrival time between abnormal flows increases, the number of

generated abnormal flows decreases.

Table 4 shows the memory usage and the average number of inquiries (I) issued to WoT

platform whenever a fully-matching time sequence of flow instances is found by both algo-

rithms under varying the inter-arrival time between abnormal flows.

In terms of the average inquiries (I) made to the Platform per flow instance, TimedRETE

issues more inquiries than Whiplash in all case similar to the previous experiments. The I
value increase as the inter-arrival time between abnormal flows increases. This is because

when the number of abnormal flows decreases, the proportion of normal flows increases, and

the matching throughput increases as well.

TimedRETE uses less than 30 MB of memory regardless of the rate of abnormal flows.

Whiplash periodically polls the WaitList of every alpha nodes to clear up flow instances whose

validity is confirmed. Whiplash experiences increase in memory as the inter-arrival time

decreases, i.e., the proportion of abnormal flow increases. In case of Whiplash, abnormal flow

instances reside in the PatternQueue longer than the profiled delays of normal flow instances.

In other words, Whiplash has to keep the abnormal flow instance in the PatternQueue until a

full sequence of normal flows is detected. This leads to more memory usage by Whiplash than

TimedRETE. In case of TimedRETE, every flow instance waiting in the WaitList is immedi-

ately removed whenever its count value decreases to 0. Therefore, TimedRETE does not wait

until a full match is found.

Related works

In this section, we put our work in the context of various related works.

Butun et al. presents the challenges and opportunities in anomaly detection for Cloud

based IoT systems given the large number of heterogeneous connectivity and traffic patterns

Table 4. The average number of inquiries to WoT platform and memory usage with varying inter-arrival time between abnormal flows.

Algorithm Whiplash TimedRETE

Parameter Value Memory Usage(MB) I Memory Usage(MB) I
Inter-arrival time between abnormal flows 0 33.25 0.2483 29.61 0.3263

10 32.62 0.2474 29.43 0.3275

5 33.16 0.2464 29.12 0.3246

1 33.33 0.2391 29.78 0.3176

0.1 37.25 0.1796 29.26 0.2384

https://doi.org/10.1371/journal.pone.0191083.t004

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 26 / 29

https://doi.org/10.1371/journal.pone.0191083.t004
https://doi.org/10.1371/journal.pone.0191083

of IoT devices [15]. One of the challenges identified by this work is the identification of appli-

cation-dependent behaviors in IoT data. In this paper, we point to the recent movement that

several Web-based platforms such as IFTTT and Zapier provide means to mash up WoT (Web

of Things) applications from a pool of heterogeneous Web services including sensors, actua-

tors and data sources. Hence, we believe these WoT platforms are the source for gaining appli-

cation awareness that can be utilized at the network monitor layer for detecting anomalies.

Our cooperative framework between the WoT platforms and the network-layer anomaly

detector can address the shortcomings of the existing works that do not leverage the applica-

tion awareness as surveyed in [15, 16]. In [17], statistical wavelet analysis is conducted on

Internet traffic data. Thottan and Ji focused more on analyzing IP network data [18]. More

economical way of inferring sudden spikes in network traffic can be done with the summa-

rized traffic data in Sketch [19]. Machine learning techniques can be also be used for detecting

network intrusions [20, 21]. However, these statistical and AI-based approaches rely on the

analysis based on the fragmented view of the network. None of these work attempted to take

advantage of the mapping between between the network information and the application exe-

cution patterns. Therefore these works yield a significant number of false alarms in practice.

A few existing works use network flow information to detect intrusions [22–24]. Choi et al.

devised a multi-pattern string matching on the packet payload to detect network intrusions

[10]. These works only observe network-centric information. In contrast, we construct a

whitelist of network flows out of the profiled behavior of WoT applications. Therefore, our

work can monitor suspicious application activities at the network layer.

Kasinathan et al. studied intrusion detection techniques in the context of 6LoWPAN-based

Internet of Things (IoT) [25]. This work focuses on the presentation of the reference architecture

for detecting denial of service attacks on the IoT system. However, this work does not address

the concern of faking an interaction between heterogeneous things on IoT/WoT application

platforms. In this paper, we introduced a potential security breach by injecting false network

flow instances to pretend that an application was executed as planned. Such security breach can-

not be detected by either the application platform or the network monitoring agent indepen-

dently. Our work presents a framework that facilitates the cooperation between both entities to

detect such stealthy security threats by sharing detailed application execution patterns.

As we stated earlier in this paper, a study of the instrumentation of WoT applications is an

orthogonal issue. However, we can consider employing profiling systems such as Magpie [26].

Magpie computes the performance of applications in terms of their usage of distributed com-

puting resources at every stage in the application workflows. We can apply this technique to

WoT platforms that manage applications composed of independently developed heteroge-

neous web services. We can focus more on adapting the system to generate network footprints

(network flow instances), so that the footprints can be used as the whitelist for detecting anom-

alies at the network layer.

Lastly, there are a few off-the-shelve systems to process complex events based on RETE algo-

rithms [11–13]. However, these systems are focused on matching events against a specific pat-

tern. In our case, we have to retrieve all events that do not match a well-known event patterns

for detecting anomalies. Doing so is more challenging especially when we have to consider the

temporal information such as the known time delays between invocation of Web services in the

WoT applications. In this paper, we implemented TimedRETE to tackle this issue.

Conclusion

In this paper we presented a novel system that leverages the profiled application behavior from

WoT platform in order to detect anomalies at the network layer. In the core of this framework

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 27 / 29

https://doi.org/10.1371/journal.pone.0191083

lies an applied RETE-based matching engine that can detect abnormal network flow instances

based on the application execution patterns made available by the WoT platforms. With this

approach, administrators can interpret network flow information with regard to application

logic. The administrators can use such contextual informations to detect and reason about

abnormal behaviors more effectively. The experimental analyses show that our algorithm is

tolerant to false detection and exhibits high scalability under reasonably configured application

workloads. As a future work, we plan to study effective techniques for precisely profiling the

behavior of the WoT platforms and deploy our network-layer anomaly detection system in the

real-world setting.

Acknowledgments

This work was supported by the Hongik University new faculty research support fund.

Author Contributions

Conceptualization: Young Yoon.

Data curation: Young Yoon, Hyunwoo Jung.

Formal analysis: Young Yoon.

Funding acquisition: Young Yoon.

Investigation: Young Yoon.

Methodology: Young Yoon.

Project administration: Young Yoon.

Resources: Young Yoon.

Software: Young Yoon, Hyunwoo Jung.

Supervision: Young Yoon, Hana Lee.

Validation: Young Yoon, Hyunwoo Jung.

Visualization: Young Yoon, Hyunwoo Jung.

Writing – original draft: Young Yoon, Hyunwoo Jung, Hana Lee.

Writing – review & editing: Young Yoon, Hyunwoo Jung, Hana Lee.

References

1. Ovadia S. Automate the internet with “if this then that”(IFTTT). Behavioral & Social Sciences Librarian.

2014; 33(4):208–211. https://doi.org/10.1080/01639269.2014.964593

2. Finch M. Using Zapier with Trello for electronic resources troubleshooting Workflow. The Code4Lib

Journal. 2014; 26.

3. Yoon Y. Per-service supervised learning for identifying desired WoT apps from user requests in natural

language. PLOS ONE. 2017; 12(11):1–19. https://doi.org/10.1371/journal.pone.0187955

4. Estan C, Keys K, Moore D, Varghese G. Building a better NetFlow. In: ACM SIGCOMM Computer

Communication Review. vol. 34. ACM; 2004. p. 245–256.

5. Feldmann A, Greenberg A, Lund C, Reingold N, Rexford J. NetScope: Traffic engineering for IP net-

works. IEEE Network. 2000; 14(2):11–19. https://doi.org/10.1109/65.826367

6. Lakkaraju K, Yurcik W, Lee AJ. NVisionIP: netflow visualizations of system state for security situational

awareness. In: Proceedings of the 2004 ACM workshop on Visualization and data mining for computer

security. ACM; 2004. p. 65–72.

7. Lu D, Mausel P, Brondizio E, Moran E. Change detection techniques. International journal of remote

sensing. 2004; 25(12):2365–2401. https://doi.org/10.1080/0143116031000139863

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 28 / 29

https://doi.org/10.1080/01639269.2014.964593
https://doi.org/10.1371/journal.pone.0187955
https://doi.org/10.1109/65.826367
https://doi.org/10.1080/0143116031000139863
https://doi.org/10.1371/journal.pone.0191083

8. Forgy CL. Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial intel-

ligence. 1982; 19(1):17–37. https://doi.org/10.1016/0004-3702(82)90020-0

9. Dubrawsky I. Firewall evolution-deep packet inspection. Security Focus. 2003; 29.

10. Choi B, Chae J, Jamshed M, Park K, Han D. DFC: Accelerating string pattern matching for network

applications. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI

16). USENIX Association; 2016. p. 551–565.

11. Friedman-Hill E. JESS in Action. vol. 46. Manning Greenwich, CT; 2003.

12. Bali M. Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing Ltd; 2009.

13. Jacobsen HA, Mokhtarian K, Rabl T, Sadoghi M, Sherafat Kazemzadeh R, Yoon Y, et al. Grand chal-

lenge: the bluebay soccer monitoring engine. In: Proceedings of the 7th ACM international conference

on Distributed event-based systems. ACM; 2013. p. 295–300.

14. Kreps J, Narkhede N, Rao J, et al. Kafka: A distributed messaging system for log processing. In: Pro-

ceedings of the NetDB; 2011. p. 1–7.

15. Butun I, Kantarci B, Erol-Kantarci M. Anomaly detection and privacy preservation in cloud-centric Inter-

net of Things. In: Communication Workshop (ICCW), 2015 IEEE International Conference on. IEEE;

2015. p. 2610–2615.

16. Mitchell R, Chen R. A survey of intrusion detection in wireless network applications. Computer Commu-

nications. 2014; 42:1–23. https://doi.org/10.1016/j.comcom.2014.01.012

17. Barford P, Kline J, Plonka D, Ron A. A signal analysis of network traffic anomalies. In: Proceedings of

the 2nd ACM SIGCOMM Workshop on Internet measurment. ACM; 2002. p. 71–82.

18. Thottan M, Ji C. Anomaly detection in IP networks. IEEE Transactions on signal processing. 2003; 51

(8):2191–2204. https://doi.org/10.1109/TSP.2003.814797

19. Lee GM, Liu H, Yoon Y, Zhang Y. Improving sketch reconstruction accuracy using linear least squares

method. In: Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement. USENIX

Association; 2005. p. 24–24.

20. Sommer R, Paxson V. Outside the closed world: On using machine learning for network intrusion detec-

tion. In: Security and Privacy (SP), 2010 IEEE Symposium on. IEEE; 2010. p. 305–316.

21. Lakhina A, Crovella M, Diot C. Mining anomalies using traffic feature distributions. In: ACM SIGCOMM

Computer Communication Review. vol. 35. ACM; 2005. p. 217–228.

22. Kim MS, Kong HJ, Hong SC, Chung SH, Hong JW. A flow-based method for abnormal network traffic

detection. In: Network operations and management symposium, 2004. NOMS 2004. IEEE/IFIP. vol. 1.

IEEE; 2004. p. 599–612.

23. Sperotto A, Schaffrath G, Sadre R, Morariu C, Pras A, Stiller B. An overview of ip flow-based intrusion

detection. IEEE Communications Surveys and Tutorials. 2010; 12(3):343–356. https://doi.org/10.1109/

SURV.2010.032210.00054

24. John III CA. Flow-based detection of network intrusions; 2003.

25. Kasinathan P, Pastrone C, Spirito MA, Vinkovits M. Denial-of-Service detection in 6LoWPAN based

Internet of Things. In: Wireless and Mobile Computing, Networking and Communications (WiMob),

2013 IEEE 9th International Conference on. IEEE; 2013. p. 600–607.

26. Barham P, Isaacs R, Mortier R, Narayanan D. Magpie: Online Modelling and Performance-aware Sys-

tems. In: HotOS; 2003. p. 85–90.

WoT application awareness in network flow matching

PLOS ONE | https://doi.org/10.1371/journal.pone.0191083 January 19, 2018 29 / 29

https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1016/j.comcom.2014.01.012
https://doi.org/10.1109/TSP.2003.814797
https://doi.org/10.1109/SURV.2010.032210.00054
https://doi.org/10.1109/SURV.2010.032210.00054
https://doi.org/10.1371/journal.pone.0191083

