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TGF-β regulates a wide range of biological functions including embryonic development,
wound healing, organogenesis, immune modulation, and cancer progression. Interestingly,
TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells;
this phenomenon is known as TGF-β paradox. To date, the mechanism of this paradox still
remains a scientific mystery. In this review, we present our experience, along with the liter-
ature, in an attempt to answer this mystery. First, we observed that, onTGF-β engagement,
there is a differential activation of Erk between benign and cancer cells. Since activated
Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk
represents the answer to this mystery. Second, we identified a key player, PP2A-B56α,
which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and
tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to sup-
pressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs
triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The
above three events explain the mysteries ofTGF-β paradox. Understanding the mechanism
ofTGF-β paradox will help us to predict indolent from aggressive cancers and develop novel
anti-cancer strategies.

Keywords:TGF-β paradox,TGF-β receptors, Erk activation, Smad activation, PP2A recruitment,TGF-β auto-induction,
negative feedback, positive feedback

INTRODUCTION
TGF-β was initially described in 1982 (1). It was already known to
have bi-functional effects, as it can stimulate or inhibit growth of
the same cell, depending on conditions (2). These initial reports
have demonstrated the mysterious and important nature of TGF-β
in physiology and pathology. More than 40 years later, our under-
standing of TGF-β signaling has greatly expanded and TGF-β is
known as an important mediator in cancer progression. In this
review, we provide insights into the mystery of the well-known
phenomenon of “TGF-β paradox,” mainly based on our own expe-
rience, along with the literature information. It should be pointed
out that this report is limited to few salient aspects of TGF-β
signaling relevant to the present discussion. For a more compre-
hensive description of TGF-β signaling, please refer to our recent
review (3).

BIOLOGY OF TGF-β SIGNALING
There are three known mammalian isoforms of TGF-β (TGF-β1,
-β2, and -β3) with significant structural and functional similar-
ity (4). The biological effect of TGF-β is mediated through type I
and type II receptors (TBRI and TBRII) (5). The canonical down-
stream events involve the activation of Smad pathways (6). TGF-β
first binds to TBRII, which recruits and activates TBRI (5, 7). The
latter then activates Smad2/3. The activated Smad2/3 combines
with Smad4 and migrates to the nucleus to regulate transcription
(8). In addition to the Smad pathway, TGF-β also signals through
a number of non-canonical pathways, including m-TOR, RhoA,

Ras, MAPK, PI3K/AKT, PP2A/p70s6K, and JNK (9). The relative
importance and interplay of these pathways of TGF-β signaling is
still under investigation (10, 11). In this review, we will limit our
discussion to TGF-β-mediated Smad and Erk activation.

TGF-β PARADOX
TGF-β is known to inhibit cell cycle in benign cells but promote
progression and metastasis in cancer cells (3, 12), a phenome-
non known as TGF-β paradox (13). Although there are numerous
articles with different approaches tackling this topic, to date, a
logical explanation leading to TGF-β paradox remains elusive and
is accepted as a scientific mystery (3, 13–15). In this study, we
searched the recent literature, along with our own experience, in
an attempt to explain this mystery.

MYSTERY OF TGF-β PARADOX 1
DIFFERENTIAL ACTIVATION OF ErK BETWEEN BENIGN AND CANCER
CELLS
It is well-known that TGF-β is able to activate Erk in cancer
cells (16–18) and inactivate Erk in non-cancer cells (19). How-
ever, a direct link of TGF-β-mediated differential activation of Erk
between cancer and non-cancer cells in the same cell system has
not been reported until our recent report (20), where we treated
benign cells with a low concentration of TGF-β (0.1 ηg/ml), which
led to Erk activation; while the treatment of the same cells with
a high concentration of TGF-β (10 ηg/ml) resulted in Erk inac-
tivation. Activated Erk is a key regulator for cell proliferation.
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FIGURE 1 | A proposed mechanism to explain theTGF-β paradox
between benign and tumor cells. First, in benign cells, a low dose of
TGF-β in the microenvironment will result in Erk activation and cell
proliferation. At the same time, there will be an auto-induction of TGF-β,
which will create a high dose of TGF-β in the microenvironment and lead to
growth arrest. Therefore, the level of TGF-β is regulated via a negative

feedback loop. On the other hand, in cancer cells, Erk will be activated
regardless of the level of TGF-β in the microenvironment. The activated Erk
is a master regulator of tumor progression and metastasis. It will also
auto-induce more TGF-β, which will create a positive feedback of TGF-β
signaling in tumor progression. The level of TGF-β is regulated via a positive
feedback loop.

Consistent with this finding, we have observed cell proliferation
in benign cells with a low dose of TGF-β but growth arrest with a
high dose in benign stromal cells (21) as well as in benign epithelial
cells (17). The use of different dosages of TGF-β in these studies is
critical as they bring out the interesting phenomenon of differen-
tial responses to TGF-β stimulation. It should be pointed out that
cancer cells in the early stage of carcinogenesis retain some of the
features of benign cells in which they can be inhibited by TGF-β
(22, 23). However, in advanced cancer cells, treatment with TGF-β
would result in Erk activation and cell proliferation (16, 17, 21, 24).

The above explanation to TGF-β paradox is summarized in
Figure 1. An important point is that, in contrast to the traditional
concept of TGF-β paradox (13, 17), TGF-β treatment in benign
cells does not always result in growth arrest. Figure 1 indicates
that under normal physiological conditions, cellular activities are
carefully monitored by TGF-β. Differential Erk activation seems
to play a central role in this regulation. When TGF-β level in the
local environment is low, cells will activate Erk and induce TGF-β
expression (20). On the other hand, when the local concentration
of TGF-β is more than sufficient, cells have a mechanism to shut
off Erk activation, thus, prevent further expression of TGF-β.

It is important to note that Erk activation or inactivation by
TGF-β in benign cells is not a case of all-or-none phenomenon.
In order to demonstrate the gradual changes in Erk or Smad acti-
vation in benign cells, multiple doses of TGF-β at different cell
density must be employed as described by Clarke et al. (25). Indeed,
they demonstrated a linear increment of Smad activation within a
wide range of available TGF-β per cell in mink lung epithelial cells
(25). In an attempt to validate the same linear relationship exists
between TGF-β dosage and Erk inactivation, we repeated the same
experiment performed by Clarke et al. (25) by using a different
set of benign epithelial cells (RWPE1 and BPH1). Indeed, a linear

Erk inactivation was demonstrated (Figure 2). This phenomenon
is applied only to benign cells or early-stage cancer cells, as in
advanced cancer cells, there will be no such linear relationship in
Smad activation and Erk inactivation upon TGF-β stimulation. In
advanced cancer cells, Erk is constantly in an activated state (17,
20) and Smad activation is suppressed, regardless of the level of
TGF-β employed. This finding has an important implication in
TGF-β paradox, that is, in benign cells or early stage cancer cells,
TGF-β offers a mechanism for homeostasis; whereas in advanced
cancer cells, it promotes tumor progression (Figure 1).

MYSTERY OF TGF-β PARADOX 2
DIFFERENTIAL RECRUITMENT OF PP2A-B56α BY ACTIVATED TBRI
The observation of a differentially activated Erk between benign
and cancer cells offers an explanation to the mystery of TGF-β
paradox (Figure 1). The question remains as how the differentially
activated Erk is regulated? Our recent observation has identified
a key player, PP2A-B56α (subunit B56α of protein phosphatase
2A), which plays a pivotal role in the regulation of differentially
activated Erk between benign and cancer cells upon TGF-β engage-
ment (20). PP2A is a known tumor suppressor (26, 27) and is
involved in a broad range of cellular processes, including signal
transduction, transcriptional regulation, and control of the cell
cycle. The PP2A holoenzyme is a heterotrimer that consists of a
core dimer, which has scaffold (A) and catalytic (C) subunits that
associate with a variety of regulatory (B) subunits. PP2A-A brings
the PP2A-B and -C subunits together. PP2A-C performs the enzy-
matic reaction, while PP2A-B is responsible to direct the cellular
localization and site specificity. The B subunits have been divided
into gene families named B (or PR55), B′ (or B56 or PR61), and B′′

(or PR72) (28). These B subunits determine the substrate speci-
ficity as well as the spatial and temporal functions of PP2A (28).
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FIGURE 2 | BPH1 and RWPE1 are immortalized benign prostate
epithelial cells. The cells were treated with 12 different doses of TGF-β1 for
5 min and probed for p-Erk and total Erk (T-Erk) by western blot analysis. A
linear relationship between the cellular response (relative value of p-Erk
corrected for GAPDH in natural logarithm) and the available level of TGF-β
molecules per cell (in natural logarithm) was plotted according to the
method described by Clarke et al. (25). In response to a low number of
TGF-β1 molecules, there is an increase in the level of Erk. As the number of
TGF-β1 molecules increases, there is a linear decline in the relative level of
p-Erk in BHP1 cells [(A–D); r =−0.86, p< 0.05]. A similar phenomenon was
observed on RWPE1 cells [(E–H); r =−0.77, p<0.05]. There is no change in
the amount of T-Erk. Unlike benign cells, malignant cells (DU145 and PC3)
always showed an activation of Erk regardless of the dosage of TGF-β1 used
in the experiment (data not shown).

The B56 family consists of B56α, β, γ, δ, and ε, generating at least
eight isoforms (28).

TGF-β is known to activate PP2A-Bα in benign cells (26). Only
recently, we and others have observed a differential recruitment of
PP2A-B56α (but not other PP2As) by the activated TBRI in benign
and cancer cells (20, 29). Upon TGF-β treatment in benign cells,
TBRII is able to recruit and activate TBRI (5, 7). We found that

PP2A-B56α was able to be co-precipitated with the activated TBRI
in benign cells in large quantities, leading to inactivation of Erk
(20). But in cancer cells, since there is a limited available amount
of activated TBRI (30), a limited or no PP2A-B56α was able to be
co-precipitated with TBRI, resulting in activation of Erk (20, 31).
PP2A is ubiquitously synthesized but is specifically recruited and
activated by the activated TBRI to function as an inhibitor to Erk
activation (20, 31). This observation was independently validated
by others using a different cell system (29).

A key event in TGF-β paradox is the recruitment of PP2A-
B56α by the activated TBRI (20, 29). In benign cells, PP2A-B56α is
recruited by the activated TBRI, which is dependent on the dosage
of TGF-β used to stimulate the target cells. At a high dose of TGF-
β, a sufficient quantity of PP2A-B56α is recruited by the activated
TBRI, resulting in an inhibition of Erk activation; while at a low
dose of TGF-β, due to a limited quantity of TBRI being activated,
there will be a limited quantity of PP2A-B56α to be recruited
resulting in Erk activation. In the context of advanced cancer cells,
due to a severely down-regulated TBRI (30), recruitment of PP2A-
B56α is always compromised regardless of the dosage of TGF-β
employed, resulting in an elevated activation of Erk (20). This
PP2A-B56α-mediated differential Erk activation between benign
and malignant cells offers an answer to the mystery of TGF-β
paradox.

MYSTERY OF TGF-β PARADOX 3
DIFFERENTIAL SUPPRESSION OF TBRs AND AUTO-INDUCTION OF
TGF-β
Finally, we ask what are the triggering factor and the consequence
of the observed differentiated Erk activation in TGF-β paradox.
We conclude that the downregulation of TBRs is the triggering
factor and the over expression of TGF-β is the consequence of the
TGF-β paradox (15). Both events have important implications.

It is well-known that, in advanced cancer cells, TGF-β mediates
downregulation of TBRs and auto-induction of TGF-β in cancer
cells but not in benign cells (31–34). Since the activated Erk is a
master regulator for tumor progression (16), it is responsible for
a host of oncogenic signaling events including NF-κB activation,
which up-regulates DNA methyltransferases (DNMTs) (35). Tar-
gets of DNMTs promoter methylation in many tumor suppressor
genes are TBRs (34, 35). A search of the literature has revealed that
downregulation of TBRs is an early event of carcinogenesis for
all types of cancer (36). The biological consequence of a down-
regulated TBR will be an attenuate Smad2/3 activation and an
elevated Erk1/2 activation in advanced cancer cells. The availability
of TBRs dictates the relative levels of activated Erk1/2 and inacti-
vated Smad2/3, thus determines the fate of the TGF-β paradox (25,
37, 38). It follows that any condition that results in downregulation
of functional TBRs, such as inflammation (39, 40), Ras activation
(41, 42), and loss-of-function mutations in TBRs (43–45), will be
predisposed to development and progression of cancer.

TGF-β overproduction is also an universal event in cancer cells
and is a poor prognostic marker (20, 35, 46–49). The mechanism,
although which TGF-β regulates its own production, is different
between benign and cancer cells. Under the normal physiologi-
cal conditions, the level of TGF-β is tightly regulated within the
microenvironment through a negative feedback loop (Figure 1) to
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maintain a relatively constant level of TGF-β. Too little or too much
TGF-β will have an unfavorable consequence (36,50,51). However,
this principle does not apply to cancer. Cancer cells, especially the
advanced cases, are capable of evading the immune surveillance
program due to the well-known phenomenon of auto-induction
of TGF-β by cancer cells (20), resulting in an elevated TGF-β in
the microenvironment through a positive feedback loop (52). As
a result, there is an accumulation of TGF-β in the microenviron-
ment, which further promotes tumor progression (20, 35, 48).
Therefore, with regard to TGF-β signaling, a characteristic feature
of cancer cells, as opposed to the benign cells, is suppressed TBRs
(the cause) and an elevated TGF-β (the effect). This feature applies
to all cancer cells and can be used as a biomarker for prediction of
aggressiveness of the cancer (17, 35).

CONCLUSION
POSITIVE FEEDBACK OF TGF-β SIGNALING IN TUMOR PROGRESSION
In summary, this review indicates that a differential Erk activa-
tion plays a central role in deciding whether the target cell will
undergo growth arrest or proliferation in response to TGF-β. In
addition, the description of the conventional concept of “TGF-
β Paradox” (12–15) may require a slight modification. First, the
term TGF-β paradox does not imply that TGF-β inhibits cell cycle
in benign cells. As indicated in this review, benign cells can also
be stimulated by TGF-β to undergo proliferation, if the dose of
TGF-β is low. Furthermore, cancer cells can be inhibited by TGF-
β, especially in the early stages of carcinogenesis, if a sufficient
level of TBRs can be activated (Figure 1). Therefore, we conclude
that a more appropriate interpretation for TGF-β paradox should
be that TGF-β mediates cellular homeostasis in benign cells but
promotes tumor progression and metastasis in advanced cancer
cells. Second, the term of TGF-β paradox does not imply an all-
or-none phenomenon (13, 17). In fact, the changes in target cells
in the level of Erk1/2 activation or Smad2/3 inactivation mediated
by TGF-β are gradual depending on the relative levels of TGF-β
present available per cell in the local microenvironment [Ref. (25),
Figure 2]. Also, TGF-β-mediated changes in cell proliferation or
growth arrest takes place in a gradual manner depending on the
dosage of TGF-β employed (20, 35).

The consequence of Erk activation in cancer cells can result in
a continuous TGF-β auto-induction via a positive feedback loop
(Figure 1). This continuous production of TGF-β in the tumor
microenvironment will further stimulate tumor progression and
metastasis resulting in the manifestation of the development of a
more aggressive tumor progression. The implications of this posi-
tive feedback of TGF-β signaling in tumor progression are at least
twofold. First, this knowledge can be used for the prediction of
cancer outcome in that TGF-β content in the tumor can be used
to predict whether or not the tumor in question is indolent or
aggressive (17, 35). Second, due to the knowledge that TGF-β in
the tumor microenvironment is highly immune-suppressive (53),
it will be important to render the cytotoxic cells insensitive to
TGF-β in cancer immunotherapy (54).
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