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Abstract: Manual wheelchair dance is an artistic recreational and sport activity for people with
disabilities that is becoming more and more popular. It has been reported that a significant part of
the dance is dedicated to propulsion. Furthermore, wheelchair dance professionals such as Gladys
Foggea highlight the need for monitoring the quantity and timing of propulsions for assessment
and learning. This study addresses these needs by proposing a wearable system based on inertial
sensors capable of detecting and characterizing propulsion gestures. We called the system WISP.
Within our initial configuration, three inertial sensors were placed on the hands and the back. Two
machine learning classifiers were used for online bilateral recognition of basic propulsion gestures
(forward, backward, and dance). Then, a conditional block was implemented to rebuild eight specific
propulsion gestures. Online paradigm is intended for real-time assessment applications using sliding
window method. Thus, we evaluate the accuracy of the classifiers in two configurations: “three-
sensor” and “two-sensor”. Results showed that when using “two-sensor” configuration, it was
possible to recognize the propulsion gestures with an accuracy of 90.28%. Finally, the system allows
to quantify the propulsions and measure their timing in a manual wheelchair dance choreography,
showing its possible applications in the teaching of dance.

Keywords: propulsion gesture; gesture recognition; inertial sensors; manual wheelchair dance;
activity assessment

1. Introduction

The contribution of disabled performers to dance has recently been recognized and
celebrated [1]. This has given legitimacy to disabled dancers and opened a door to artistic
physical activity (PA) for more wheelchair users. Wheelchair users have very scanty access
to sports, especially due to the limitations set by the intensity and effort required. Manual
wheelchair dance (MWD) is a potential artistic activity and sport option, as it is considered
a moderate and low-intensity exercise [2,3]. In addition, participation in dance programs is
associated with improvements in physical, emotional, and social capacity [4]. However,
a significant part of MWD is dedicated to the propulsion. In [2], it was shown that the
propulsion movements require up to 30% more time than movements such as raising
hands or clapping. In addition, the questionnaires in the study yielded results of fatigue
and physical demand during a dance game session, which were almost twice as high in
wheelchair users compared to able-bodied players. Gladys Foggea, a French professional
dancer and MWD teacher, comments on the need for monitoring in wheelchair propulsion
in choreography, “Because the propulsion in the wheelchair, in analogy to the steps of able-bodied
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people, must be coordinated with the dance gestures. It is therefore essential to know that propulsions
are carried out at the required time.” Measuring propulsion times is also essential, as Gladys
denotes that “Moving forward, turning and moving on a specific surface in a given time, is a
difficult skill to develop during dance training. The number of propulsions must also be quantified,
because just like the number of steps taken by a valid dancer, in an established dance choreography
there must be a certain number of propulsions in a defined time.” This leads to the need to
monitor MWD for optimization in quantity, timing, and choreographic assessment.

In MWD, propulsion monitoring (PM) is a suitable tool to evaluate time dedicated
to propulsion, non-artistic efforts, and meaningful expressions [5]. PM provides impor-
tant information for the study of an athlete’s performance in sports and rehabilitation
progress [6,7]. Roy ]. Shephard studied the efficiency of propulsion and the cost of energy
compared to gait [8], whereas other biomechanical studies reveal the importance of optimiz-
ing propulsion for injury prevention [9-11]. Conducting wheelchair dance assessment by
mobility and PM also allows the study of capacity improvement [4], mobility, and cognitive
learning of wheelchair dancers [1]. In addition, detection of specific gestures in wheelchair
dance can define how expressive the dance choreography is [5].

Wearable IMU-based systems are widely used for wheelchair physical activity moni-
toring (WPAM) [12-15], gesture recognition [16-19], and performance evaluation of athletes
during sports activities and training [20-23]. Since they are worn for long periods of time,
invasiveness and weight influence the user comfort during monitoring. Small, stable, and
long-running-time devices are more suitable for users and researchers [24,25]. It has been
reported that the attachment of inertial sensors on the upper extremes of the user and on the
wheel of the wheelchair allows for estimation of the number of revolutions and the distance
traveled by the wheel [26], and authors in [12] also used accelerometers to detect wheelchair
propulsion in daily life. In [6], the authors detect self or assisted propulsion by means of
inertial sensors during daily life. Another technique for WPAM used in the literature is the
self-reported monitoring, which is based on questionnaires and user interviews; however,
subjective measures are susceptible to overestimation of data since they must rely on the
user’s statements [27,28]. These kinds of assessments do not provide objective data about
the user’s activity, such as specific propulsion time or number of propulsions per time. Peter
Schantz et al. [29] used electromyography (EMG) to detect upper limb muscle activation
in patients with paraplegia and tetraplegia during WP. This method has the advantage of
obtaining muscle activity to show importance of trunk movement and technique during
propulsion in rehabilitation phases. However, when using EMG, the number of sensors
to obtain good accuracy varies with the movement or gesture to be studied, which could
lead to a large amount of sensors. Several works investigated the simulated manual WP
and session recording for visual feedback [11,30,31]. WP simulations address the aspects
of performance improvement, overall experience, and satisfaction [32,33]. While these
subjects are relevant to the lifestyles of wheelchair users, and are of great use in PM, a
virtual environment simulation station is not always affordable and wheelchair sports,
especially dance, tend to be dynamic and require considerably large rooms.

Visual feedback and annotations by session recording is well explored in [10] by using
software to display parameters such as push angle, cadence, and velocity on a screen.
However, visual feedback normally provides only parameters related to wheel speed and
displacement, and specific propulsion gestures (PGs) were not explored. Other methods
are limited to detecting the rotation of the wheel by instruments attached to wheelchair
structure and logging the daily number of turns [34,35]. Hiremath et al. developed and
evaluated a multi-sensor system to detect rest, wheelchair propulsion, arm ergonomics, and
desk work. The accuracy of the classifiers reaches 94%. Unfortunately, the system cannot
be used in real time because it uses accelerometers, skin conductance sensors, temperature
sensors, and a metabolic cart synchronized to the system. In other words, it is a very
invasive and complex system [36].

Most of the current PM solutions in wheelchairs do not provide specific information
about PGs and the execution time. Furthermore, they are not used in MWD applications. As
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MWD is currently gaining momentum, it is imperative that monitoring by specific gesture
recognition is carried out for assessment in performance and learning. Consequently,
this work proposes the utilization of a wearable inertial sensor system for wheelchair
propulsion recognition (we named it WISP). Eight PGs, named left-forward, left-backward,
right-forward, right-backward, forward, backward, clockwise rotation, and anti-clockwise
rotation, and one random movement named dance, are recognized. IMU sensors are
attached to the user and linear acceleration and angular velocity are extracted from all
axes «X, Y, and Z». Sensor readings are classified by a machine learning algorithm to
differentiate between wheelchair propulsion and dance movements when performing
dance choreography. Our proposed system can recognize predefined user actions using
a wearable system based on inertial sensors associated with a classification algorithm. It
quantifies specific PGs and it is also able to measure the initial time and duration time of
PGs performed by a manual wheelchair dancer during a choreography.

In the following sections of this paper, Section 2 is a description of the proposed
system and its design. In Section 3 we explain the data acquisition process. Following this,
Section 4 describes the data processing and training of the algorithm. Then, in Section 5,
the application case of the system is presented, and, finally, Section 6 presents a discussion
of the results which is carried out in order to evaluate the performance of the system.

2. WISP
2.1. Proposition

WISP is a new device intended for MWD assessment. The system is based on inertial
sensors and it is formulated on two configurations: three-sensor and two-sensor mode.
We have considered the possibility that three sensors could better serve gesture detection
due to the fact that a sensor on the back could measure the displacement of the person.
The configurations using two or three sensors are evaluated in the next sections. Figure 1
shows the scheme for PG recognition. The dancer performs propulsion and dance gestures
and these are captured using the inertial sensors. The sensors form a wearable system,
as shown in Figure 3. The signals are processed and classified. Subsequently, they are
analyzed to obtain the number, duration, and onset time of specific PGs. Anything that
is not recognized as PG is considered to be DG. Additionally, the system is developed to
work online by means of sliding window process (Section 4.1).

Propulsion
Analyzed
Gesture (PG) PG
//4 P T TTETEEE ST ST ST ST EE TSI T T E T B Quantity
— WISP X
| 1 Starting time
1
1
: I Duration time
| IMU Sensors and Classifiers and ’ ‘Qua.mitv and :
1 i, : o
/ /\ ™| Data acquisition congliticnal blod Umeanalysis :
1
| ! :
1 i DG
\ 7 (not specified)
— S e -
— —

Gesture (DG)

Figure 1. Raw acceleration and angular velocity are read from IMU sensors during propulsion and
dance gesture performance. The data extracted are treated and classified by the machine learning
classifier algorithm and it provides analyzed data for manual wheelchair dance assessment.

2.2. Hardware Design

The system consists of three low-cost six-axes (three-axes accelerometer and three-
axes gyroscope), IMU (MPU-6050), so that angular velocity and linear acceleration can
be extracted on the three axes X, Y, and Z. Within three-sensor mode, IMU S1 is fixed
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on the back, and IMU S2 and S3 are positioned on the back of the left and right hands
respectively, as can be seen in Figure 2. In two-sensor mode, only sensors S2 and S3
are used. The communication between the sensors and the data extractor uses the 12C
communication protocol. To read the data from all the IMUs using only one port, an
I2C multiplexer (TCA9548A) is added, so that the sensors communicate sequentially one
by one with the data extractor. As previously mentioned, WISP will be evaluated in its
two modes, so the MUX facilitates the selection between three-sensor (back and hands)
and two-sensor (only hands) mode. A second double-mode port of the data extractor is
used to send data through a Bluetooth module (HC-05) or through a physical connection.
Bluetooth communication is an advantage that allows monitoring from a distance of 15 m
without walls in between, which is suitable for the minimum room sizes (10 m x 10 m)
according to the National Dance Center in France (CND). This modality facilitates dance
assessment because it allows to proceed remotely in the scenario, unlike solutions such as
WP simulation platforms [34,35]. In addition it is possible to communicate with devices
that display system information and gesture recognition in various ways, such as real-time
graphs, performance indicators, scores, etc.
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Figure 2. WISP: The left side shows the IMUs placements, the MUX for mode switching, and the data
extractor used to extract the raw data. All components on the left side are contained in the wearable
part of the system. The right side shows that the wearable part of the system is linked to a processing
hardware that uses a classifier to recognize the gestures.

Sensor 51 is fixed on the back, the data acquisition hardware and the MUX are fixed
together with it, and the attachment was made by means of a back-posture corrector. To
attach the IMUs on the hands, they are fixed inside gloves and they are wired along the
arms to the back where sensor S1 is located. The fastening of the sensors is illustrated
in Figure 3.

Sensors 52 and 53 inside the gloves

Sensor 51, data reader and mux

Figure 3. Sensor system and attachment instruments.

2.3. Algorithm Structure

Raw data from the inertial sensors are acquired and stored by a data processing device.
These data were processed using the window sliding method, so that, WISP could be
used in online dance assessment. The window sliding method was tuned by iterating
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the window size and the step. Subsequently, a filtering step was applied, as well as a
feature selection block, in order to reduce the number of features used and to avoid a long
processing time. Then, data are treated by two bilateral classifiers, assigned to the left and
right side of the user. Each of these classifiers recognizes three basic gestures (forward,
backward, and dance), each corresponding to its respective side. Subsequently, the outputs
of these classifiers are analyzed and fused in order to obtain eight specific PGs in total.
Finally, each detected PG was evaluated in order to obtain the number of times it was
performed, the start time, and duration of each propulsion. These data provide objective
information on MWD performance and will be used by dance teachers. The algorithm
structure is shown in Figure 4.
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Figure 4. Algorithm structure of WISP.

3. Data Acquisition

Eight valid subjects were recruited to voluntarily perform MWD choreographies
defined by Gladys Foggea. The choreography includes eight defined PGs and DGs. It was
repeated 10 times by the subject and the data obtained were logged for further analysis. A
data logger was adapted to WISP and it includes an FSR sensor that will be used for hand-
rim contact detection only during labeling (Section 3.3). The force sensor (FSR) is attached
to the palm of each hand inside the gloves, so that when the palm of the hand touches the
rim of the wheel, a signal is received in the data logger from the FSR sensor, indicating such
contact. The data logger and FSR were necessary only for data acquisition and labeling
work. Once the system is working online, the Bluetooth option will be used and no extra
device will be needed. Works on hand gesture reported gesture signal frequencies from
10 Hz to 100 Hz [16,37,38]. Thus, in this study, due to the number of signals extracted, the
sensor sampling frequency was set at 30 Hz.
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3.1. Detected Gestures

The gestures performed during MWD choreography can be classified into two types,
propulsion (PG) and dance (DG), according to Gladys Foggea. Hence, all those movements
within the choreography that are not recognized as PGs are considered DGs. In this study,
importance of being able to distinguish between propulsion and dance lies in quantifying
the PGs and the time spent in both types of gestures. Additionally, DGs that can be similar
to GP in terms of the movement of the user’s body and arms are being considered. We call
this movement fake propulsion gesture (FPG).

3.1.1. Propulsion Gestures

During wheelchair dance choreography, eight specific PGs will be detected for as-
sessment: left-forward, left-backward, right-forward, right-backward, forward, backward,
clockwise rotation, and anti-clockwise rotation. All of them are composed of two basic
PGs on each arm. Right hand basic PGs are shown in Figure 5; forward (a) and backward
(b). The recognition of PGs will be based on these two movements in both arms, and
the remaining PGs are recognized as a composition of them. The ninth gesture shown in
Figure 5d will be any of the different DGs addressed in the next section.

@) (b) ()
(" Left-forward \ [ Left-backward ﬁ{ight—forward\

CEIEE

ﬁ?lght-backwarcm [ Forward [ Backward )

/ Clock wise \ [ Anti-clock wise\ Dance \

Any dance gesture

_®

(d)

Figure 5. Propulsion and dance gestures: (a) “right- forward” gesture, (b) “right- backward” gesture,
(c) dance gesture, and (d) all gestures to be recognized.
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3.1.2. Dance Gestures

Examples of contemporary dance gestures to be performed during choreography were
provided by Gladys Foggea. Figure 6 shows five common wheelchair contemporary dance
gestures. Contemporary dance gestures can be enormously varied, however, according to
Gladys Foggea; the movements suggested for this work can be taken as a basis for MWD.
DGs will not be specifically recognized as in the case of PGs.

(d) (e)

Figure 6. Wheelchair contemporary dance gestures (Gladys Foggea). The gestures are named
as follows: (a) left/right hand forward, (b) left/right arm in curve, (c) throwing left/right hand,
(d) opening and closing, and (e) rotation of trunk.

3.1.3. Fake Propulsion Gestures

Given the variety of movements that are performed in MWD, it is common to find
movements that are similar to each other. PGs are not exempt from such similarities. It
is possible that there are DGs with movements similar to those of propulsion, hence, PG
over-detection may occur, which would indicate a poor accuracy of WISP. Thus, for training
the recognition algorithm, eight FPGs whose movements are practically the same as the
eight PGs studied were considered. As can be seen in Figure 7, the difference between
FPGs and actual PGs is that the hands do not propel the wheel when performing FPGs.
Thus, FPGs should be classified outside the eight specific PGs, because they are DGs.

(@) (b)

Figure 7. Examples of fake propulsion gestures: (a) left-forward, (b) left-backward, (c) forward.
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3.2. Wheelchair Dance Choreography

Each choreography proposed for the experiment is composed of the eight PGs pre-
sented in Section 3.1.1 and an FPG taken from those described in Section 3.1.3 (See Figure 8).
A different choreography was established for each subject with the nine gestures in random
order, and the FPG was also different for each subject. During the choreography, before and
after each PG, the users realized the DG mentioned in Section 3.1.2, and even some other
DG improvised by the subject. There was no limited number of DG performed between
PGs, they ceased once the next PG was due to be performed.

&

2
1-F

»
3

A

P —
I ————

Figure 8. Example of MWD choreography for data acquisition. Propulsion images were presented to
the subjects to show what propulsion gesture they must perform. The arrows indicate the arm that
will propel and the sense, the hand draw indicates doing a dance movement when only one hand is
propelling, and the dot-lined arrow indicates a fake propulsion gesture. Red numbers are the order
of the gestures in the choreography.

3.3. Semi-Automatic Labelization

During data acquisition we used the wearable part of WISP (the left part in Figure 2)
and a complementary system to log data. In addition, for the semi-automatic labeling, it
was necessary to detect when the person had handled the rim to perform the propulsion.
Thus, the data logger included one FSR sensor that was temporary placed on each hand,
in the area of the palm that has contact with the rim when propelling, as can be seen in
Figure 9. In this way, each hand-rim contact was sensed and logged. Then, the signals from
the inertial sensors and the hand-rim contact times from the FSR sensor were synchronized.
The data collected for each choreography were segmented according to the propulsion
times provided by the FSR sensor signal boundaries (Figure 10) and the choreography of
each participant. As a final step in the labeling, the sliding windows procedure described
in Section 4.1 was used.
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Sensor system

(WISP)

Figure 9. Sensors of WISP are temporary connected to a data logger system. The FSR is added for
hand-rim contact detection and only for semi-automatic labeling. FSR serves as reference of PG.

Propulsion
detection

Dance Propulsion Dance

< : : samples >

FSR

Threshold : 30%
of maximum

Manual labeling in
accordance to the
choreography —> | Forward / Backward

Dance propulsion Dance

< samples >

Figure 10. Semi-automatic labeling.

4. Algorithm Development

The data acquired using our WISP device were saved in an SD card. Thus, one data file
was obtained for each trial performed, in which 17 variables were recorded at a frequency
f =30 Hz. The data recorded for each sampling are shown in Table 1.

Table 1. Total variables recorded in each trial.

Variables

Device Axis

Trunk accelerometer
Trunk gyroscope

Left-hand accelerometer

Left-hand gyroscope

Right-hand accelerometer

Right-hand gyroscope

NRKXINKX|INKX|NKX|<N

Sampling time

Left-hand force sensor ! -

1

Right-hand force sensor

1 Data from hand force sensors are extracted and used just for labeling. They are not used to train our machine
learning models.
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Ten trials were performed with each of the eight participants. A total of eighty data
files were obtained for later processing. The structure of our algorithm proposes the use of
two machine learning algorithms: “left classifier” and “right classifier”. The data logger
recorded the gesture signals on three-sensor mode (for training phase in two-sensor mode,
Sensor S1 can be neglected by programming), so that data inputs for each classifier are
going to be from the back and the respective hand, according to the classifier side. Thus,
each algorithm will be focused on one side detecting if the person is performing a forward
PG, backward PG, or DG. Therefore, from these gestures on each side of the person, it will
be possible to detect and know if the person performed any of the eight PGs presented in
Section 3.1.1. Consequently, the acquired data will be divided into two datasets, denoted
AD (left) and AD (right), which can be expressed as

P T
ADside = U U {dp,tr,i ‘ dp,tr,i S RN ’ i= 1,2,... np,tr} (1)
p=1tr=1

where side indicates the side of the classifier algorithm side = {left, right/, and N is the number
of variables, which depends on the side according to Table 2. 1y, s is the number of extracted
samples for each participant p in each of the trial tr and in a trial time t; np, 1 = f X t.

Table 2. Input variables for each classifier in both modes: three-sensor and two-sensor.

Three-Sensor Mode Two-Sensor Mode

Classifier Side
Device Axis Device Axis

Trunk accelerometer z - -

Trunk gyroscope X - -

X X

Left-hand accelerometer Y Left-hand accelerometer Y

p 4 V4

Left Classifier X X
Left-hand gyroscope Y Left-hand gyroscope Y

Z Z
Left-hand accelerometer norm |a] Left-hand accelerometer norm |a|
Left-hand gyroscope norm || Left-hand gyroscope norm |ew]

Trunk accelerometer z - -

Trunk gyroscope X - -

X X

Right-hand accelerometer Y Right-hand accelerometer Y

Right Classifier z z
X X

Right-hand gyroscope Y Right-hand gyroscope Y

Z Z
Right-hand accelerometer norm |a| Right-hand accelerometer norm |a]
Right-hand gyroscope norm |w] Right-hand gyroscope norm |w]

4.1. Sliding Window Processing

In the previous section it was presented that the data from each trial were divided
into two groups of data, so that each classifier could be trained with its corresponding
data set. In this way a single classifier should only detect three basic gestures, “right-
forward”, “right-backward”, and “dance” for the «right classifier», and “left-forward”,
“left-backward”, and “dance” for the «left classifier». In the example of choreography in
Figure 11, it can be seen that it is only necessary to recognize the three mentioned gestures
with each classifier, since the remaining gestures can be obtained by combining the results
of both classifiers. The choreography includes the eight PGs and an FPG, and we remark
that non-propulsion gestures and FPGs are considered as a DG. It can be observed that
each arm performs three forward propulsions and three backward propulsions.
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Figure 11. Example of choreography performed by a subject. Left and right classifiers only recognize
three gestures for each one, and the rest of choreography are gestures composed of the gestures of
both arms. FPGs are recognized as dance gesture. Dance (D), forward (F), and backward (B).

The signals from the sensors during the propulsion and dance gestures were sectioned
with the signals from the FSR sensors in order to perform labeling. To train the classifiers,
three forward propulsion movements and three backward propulsion movements from
right and left arm present in all the choreographies were extracted as labels. Six random
segments of signals of non-propulsion (what we consider as DGs) were also extracted (they
include FPGs). In this way, the algorithm was trained to detect gestures with different
duration times (between 600 ms and 1500 ms) but strictly delimited. However, this could
generate a considerable reduction in accuracy if used in online mode, since the sampling
times boundaries are fixed and the PG could be only partially contained in it. For this
reason, it was decided to extract the propulsion and dance gestures through the sliding
windows process, and the labeling was performed once again with the FSR signal boundary,
so that our classifier algorithm can be trained with extracted data in the same way as it
would be in an online process.

The sliding window process is frequently used for online data processing and is mainly
defined by two parameters: the size of the window and the step. Window size can be
understood as the last w samples taken. In addition, the windows are not necessarily
consecutive to their borders, but they can overlap. Thus, the next window could start
encompassing a certain number of samples before the posterior limit of the predecessor
window; this number of samples is known as the sliding step s. Thus, an online system
will continuously take groups of data of size w every s samples, and they will be saved for
later processing. All of this can be seen exemplified in Figure 12 below.

< DATA

eee | Wn+1 |

time

Wn+2 |

| Wn+3 | ooe

| step (s) | window size (w) |

Figure 12. Sliding windows processing.

The data extracted for each test carried out were ordered as shown in Equation (1).
Despite the fact that the data were initially saved in their entirety, the sliding windows
method will be used to divide each trial into sub-trials that would correspond to each
window obtained in a classic online process. Thus, a performed test can be expressed
as follows:

T={d;|di € RN,i=1,2,...n} )
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where T is one of the tests carried out, d; is a data sample of dimension N, and # is the
number of samples taken in the test. Then, the number of windows that would be obtained
from each test was initially extracted according to the following formula:

m= integer<n_3w> +1 3)

where m is the number windows per trial, n the number of test samples, w is the predefined
window size and expressed in samples, and s is the step chosen for taking the next window
expressed in samples.

Thus, each trial could be split into several windows, which had the following form:

Wi = {d(kxs) ’ d(kxs)Jrl RN d(k><5+w)fl ’ d(k><s+w) | di € T} 4)

where k is the window number which varies from 1 to m.

Subsequently, each window was evaluated according to its position with respect to
the closest propulsion movement, which was provided by the semi-automatic labeling
presented in Section 3.3. Thus, the window could receive, as a label, either «propulsion
forward», «propulsion backward», or «dance». In this case, the window obtained the label
of the nearby propulsion only if it fulfilled one of the three cases presented in Figure 13. In
case 1, the label will be set if the window is larger than the launch gesture and completely
contains it. In case 2, the window is smaller than the gesture and the gesture contains it
completely. In case 3, the window is partially overlapped with the PG. In this case, the label
will only be assigned if the PG represents at least 70% of the window size. Finally, in all
other cases, the window is labeled as dance.

Forward / Backward
propulsion

<} . ' samples :>

Dance Dance

Case 1: l | The window covers the

' window 1 ol entire propulsion gesture

The window is completely

Case 2: |W| covered by the propulsion
; | gesture

— ! At least 70% of the

Case 3: ;wmdow 3 | window is a propulsion
: |—,_| gesture.

window 4

Figure 13. Conditions in the labeling of each window.

After each window was labeled, they were grouped so that they could serve as a
dataset for the classifier algorithm of the corresponding side. It was observed that the
number of windows labeled as dance was much larger than the number of propulsion
movements. This was expected because the person performed more random dance move-
ments between each propulsion, and on many occasions the dance time between PGs
was up to three times the propulsion time. Likewise, it is necessary to consider that the
number of windows labeled as propulsion was greater than those counted by the FSR.
This is because each propulsion gesture was frequently covered by several windows at the
same time. However, this is beneficial for the algorithm since the input data will be much
larger and will be able to achieve better results. Thus, the dataset from a trial, which was
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processed according to sliding windows and labeled according to the criteria presented
above, can be expressed as

Dyper triat = {(Xe, Yi) | Xx € RN*® Y € {forward, backward, dance} , k=1, 2,... m} (5)

Finally, this same procedure was carried out for each trial of each participant, as well
as for each group of data provided for both classification algorithms. Therefore, the dataset
obtained for one of the sides can finally be expressed as

P T
Datasetsige = | J |J {(Xk, Yk)p,t |X, € RN*“nt | Y, € .. {forward, backward, dance} , k=1, 2,... mpi}  (6)

p=1tr=1

4.2. Classifiers and Features

On three-sensors mode, each classifier has ten signals as input, two from the sensor
51 on the back and eight signals from the corresponding sensor on the right or left hand
(S2 and S3), whereas on two-sensor mode, each classifier will receive eight inputs coming
only from sensors S2 and S3 of the respective hands. Input signal variables for three-sensor
and two-sensor are listed in Table 2. Subsequently, based on the yields above, 95% obtained
in [39], and those features proposed in the literature [40,41], we proceeded to select a
number of Ny statistical features for each gesture to be detected. Features in the time
domain and in the frequency domain for each of the input data mentioned in Table 2 are
shown in Table 3. It is also important to highlight that for the frequency domain features,
each datum was preprocessed by a second order Butterworth-type low-pass filter and with
a cutoff frequency of 4 Hz.

Table 3. Features computed for each data; N = 19.

Domain Feature

Mean
Rms
Variance
Standard deviation
Median
Maximum
Time Minimum
Zero crossing
Number of peaks
25th Percentile
75th Percentile
Kurtosis
Skew

Number of peaks
PSD Mean
Frequency PSD rms
PSD median
PSD standard deviation
PSD entropy

4.3. Parameters Selection and Training
4.3.1. Classifiers and Their Parameters

Several CNN algorithms have been extensively studied in order to increase their
accuracy [42,43]. However, due to the size of our dataset [44], we decided to use algorithms
that require reduced dataset sizes such as SVM, K-neighbors, and random forest [40]. In
addition, for each algorithm, it is recommended to search the hyperparameter space for the
best cross-validation score. From the two generic approaches provided by [44], Grid Search
was chosen as it considers all parameter combinations and gives the best-scoring parameter
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combination. Iterations were carried out with the K-folds cross validator tool as validator
and ten as number of folds. Table 4 shows the parameters values for tuning each algorithm.

Table 4. Parameters values for tuning ML classifiers.

Algorithm Parameter Grid Search Values
Kernel Linear, Rbf
SVM C 0.1,03,0.6,1.0,3,6,10
Number of neighbors 3,5, 10, 15, 20, 40
K-neighbors Weights Uniform, distance
Algorithm auto, ball tree, kd tree, brute
Number of estimators 50, 100,200
Criterion Gini, Entropy

Random Forest Max depth 5,8,11, 14

Max features Auto, Sqrt, Log2

4.3.2. Maximum Number of Features

Based on Table 3, the total number of features to analyze is N = 19, considering also
the total number of signals to be processed N, analyzing all the signals with each of the
features gives us N x Ny = 190 features for the three-sensor mode and N x Ny = 152
features for the two-sensor mode. A processing based on a large number of features
consumes a large amount of computational time; also, not all features influence the same
when classifying. In order to reduce the number and discard irrelevant features, a feature
selector was employed [44]. A maximum number of features Ny, = 30 kept the accuracy
of the left and right classifier above 93%.

4.3.3. Sliding Window Parameters Selection

We mentioned above in Section 4.1 that the data obtained for each choreography were
processed by the sliding windows method for online gesture recognition. Having already
searched for the optimal parameters for the different classifiers and the number of features,
we also proceed to evaluate the parameters of the sliding window process as further
optimization. This optimization takes place by selecting the appropriate value of window
size w and step s. Hence, three w values were evaluated (10, 20, and 30), considering that
30 samples are equivalent to one second, and values 3 and 5 were evaluated as s samples.

4.4. Algorithm and Parameters Selection Results

Considering the symmetry of the classifiers, the process provided in Section 4.3 was
performed for the right classifier, whose results are shown in Tables 5 and 6. In this case, the
maximum values obtained with the grid search iteration were written for each algorithm.

Table 5. Maximum values obtained for the right classifier in two-sensor mode.

Results with Hand Sensor

W=10 W=20 W =30
Algorithm
$=3 S=5 S=3 S=5 $=3 S=5
SVM 0.9393 0.9396 0.9499 0.9472 0.9600 0.9438
K-neighbors 0.9302 0.9259 0.9347 0.9254 0.9415 0.9138

Random forest 0.9518 0.9423 0.9537 0.9518 0.9572 0.9614
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Table 6. Maximum values obtained for the right classifier in three-sensor mode.
Results with Hand and Back Sensors
W=10 W=20 W =30

Algorithm

$=3 S=5 $=3 S=5 $=3 S=5

SVM 0.9457 0.9410 0.9558 0.9502 0.9652 0.9511

K-neighbors 0.9378 0.9165 0.9446 0.9376 0.9492 0.9354

Random forest 0.9515 0.9500 0.9614 0.9556 0.9743 0.9578

From the data analyzed on two-sensor mode, a maximum value of 96.14% was ob-
tained using the random forest algorithm with a window of 30 and a step of 5. On the other
hand, on three-sensor mode, a maximum value of 97.43% was obtained using random forest
with a window of 30 and a step of 3. This outcome leads us to prescind from three-sensor
mode, which means that we can omit the back sensor S1, making our device lighter and
more ergonomic. Thus, it was determined that the two-sensor mode would be used for
both classifiers. For the right classifier, we used random forest classifier as it provided the
highest accuracy for the two-sensor mode. The confusion matrix of the right classifier is
shown in Figure 14. In addition, the dataset used for the training of this classifier comes
from the sliding windows process and is composed of 749 samples for backward PG, 708
for forward PG, and 749 for DG (this quantity is the maximum between backward and
forward to balance the dataset. Samples were taken randomly).

backward 600

500

400
dance

Tue label

300

200

forward
100

backward -4
dance
forward

Predicted label

Figure 14. Confusion matrix of right classifier.

Finally, for the left classifier, a window of 30 and a step of 5 was set (the parameters
obtained in the iteration for the right hand). In addition, in order to find the most appropri-
ate classifier, the Grid Search tool was used again. Thus, we calculated that the left classifier
will have a maximum accuracy of 93.91% with the SVM algorithm (kernel = Rbf, C = 10).
The confusion matrix of the left classifier is shown in Figure 15. Performed the same way as
the right classifier, the dataset used to train this classifier comes from the sliding windows
process and is composed of 720 samples for backward PG, 688 for forward PG, and 720
for DG.



Sensors 2022, 22, 4221 16 of 22

700

600
backward 10 10

500

400
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300

200

forward 5
100

backward
dance
forward

Predicted label

Figure 15. Confusion matrix of left classifier.

4.5. Estimation of Propulsion Gestures

As a final step, the outputs of the left classifier and the right classifier were used to
reconstruct and estimate the eight performed PGs. This was performed by means of a
conditional block whose logic is shown in Table 7. It is important to highlight that a filter
was applied in order to eliminate those gestures that were detected for small time lapses
(less than 50 ms), which are understood as confusions by the classifiers. Finally, to evaluate
the overall accuracy will be the multiplication of the accuracies of left classifier and right
classifier in two-sensors mode, which is 90.28%.

Table 7. Propulsion gesture estimation from classifier predictions.

Detected Gesture by Classifiers
Left Classifier Right Classifier

Estimated Propulsion Gesture

Forward Dance #1 Left-forward (%22/
7
Backward Dance #2 Left-backward LS’ A
Dance Forward #3 Right-forward %2“0
¥
| LI
Dance Backward #4 Right-backward oY,

Forward Forward #5 Forward T;{HQQ{T

Backward Backward #6 Backward lﬁ@{l
Forward Backward #7 Clockwise ({é%.
)
Backward Forward #8 Anti-clockwise §G§A

Any dance gesture
Dance Dance #9 (including FPG) i
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Propulsion gesture code

5. Application of WISP in Wheelchair Dance Teaching
5.1. Issues Addressed in Wheelchair Dance Teaching

The propulsions of a wheelchair dancer in choreography have the same purpose as
the footsteps of an able-bodied dancer. As a wheelchair dance teacher, Gladys Foggea
emphasizes the precision of the steps or propulsions performed. The propulsions are also
linked to the rhythm and therefore also to the tempo of the melody. It is necessary that
they are carried out in a certain section of the melody. As a case of application of WISP,
in the following subsections we will address three essential factors for wheelchair dance
assessment according to Gladys Foggea.

5.1.1. Number of Propulsions

While the propulsion serves the movement of the dancer, such as the leg movements
of a valid dancer, propulsions synchronized with the music are considered dance steps.
Consequently, in order to execute a choreography, a specific number of steps (propulsions)
is required. As already discussed in Section 2, quantifying the propulsions on wheelchair
dance steps is the first feature of WISP. Figure 16 shows the prediction results of the system.
The predicted propulsions agree in time and quantity and these results can be used as
evaluation criteria since the specific gestures can also be displayed.

Estimated propulsion gestures

8 - -
'] - -
6 s
Fake propulsion
5 1 — detected as a
dance gesture
4 - a
34 -
2 -
| H
0 -
0 10 20 30 40 50
Time in seconds
: 7 RS T e i LI i S
Subiject 8 (‘ri 4 1% 54 (: \ T{,—',b o Bl Fake =
K = k) Kiy v-i? i 20 lrﬂ {i”’ -
Gesture 1 8 ¥ 4 5 4 6 0 3

Figure 16. Actual choreography and prediction comparison.

In Figure 16, it is possible to observe the estimation of the propulsion gestures provided
by WISP. Thus, as a first result, WISP is able to provide the number of propulsion gestures
performed. In addition, it is possible to see that WISP was able to classify the FPGs as
dance, which was envisaged in the training of the recognition algorithms.
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5.1.2. Propulsion Starting Time

Propulsion starting time is a key issue in wheelchair dance. Gladys expresses that
“Dance requires attuned movements, but it also requires precision, so propulsions that starts at
uncoordinated times with the music or with the planned choreography can make the choreography
unaesthetic, even if the correct number of propulsions is performed”. In addition, regarding the
teaching of the precision of the beginning of the propulsion, Gladys adds that “Precision
is a difficult skill to master, and showing students a small but significant difference in propulsion
starting time is tricky. Feedback based on propulsion time marks would make it possible to illustrate
correct and incorrect performances, thus it would be easier to explain errors of precision.”

Thus, one of the features added to the WISP algorithm was that it can provide the PG
starting time, so that it can be used in wheelchair dance teaching. In addition, in order to
corroborate the accuracy of this feature, a comparison was made between the propulsion
starting times provided by WISP and the propulsion starting times provided by the FSR
sensor in one of the choreographies performed, as can be seen in Figure 17.

Time comparison in propulsion estimation

10 A i | i 7= —— Propulsion estimation by classifiers
! ! Propulsion detection by FSR
i (Ref.)
8 . -
(8]
© -
o
(9]
(] H
S 6 h
) 1
] j( i
q') e
< | !
c
o
w4 -
=)
Q.
o
a
24 P
0 A ﬂ

0 10 20 30 40 50
Time in seconds

Figure 17. Actual choreography and prediction comparison.

Propulsion start values that were extracted by WISP and the FSR are presented in
Table 8. From these, we calculated the error in each propulsion performed and the mean
absolute error (MAE) of the eight propulsion gestures performed in the choreography
selected. The resulting MAE was 123.78 ms, which provides good expectations for the
evaluation of wheelchair dance considering that the mean propulsion time is one second.

Table 8. Propulsion starting time results from WISP and force sensors.

Propulsion Starting Time

Gesture FSR (ms) Classifiers (ms) Error (ms) MAE (ms)

1 4740 4680 —60

8 9600 9540 —60

2 15,030 15,390 360

7 21,270 21,330 60

5 27,210 27,270 60 123.75

4 33,390 33,390 0

6 39,120 39,330 210

3 46,350 46,530 180
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5.1.3. Propulsion Duration Time

One of the variables necessary for the evaluation of the dance is the duration of the
propulsion time. In this regard, Gladys expresses that “It is not only necessary to perform a
certain number of propulsions, but also that they can be of equal or different lengths as required.”

Thus, as the last data extracted from WISP we have the propulsion duration time.
Table 9 shows the propulsion duration data extracted from WISP and the FSR sensor in the
selected choreography. In this case, it can be seen that the calculated error has a mean of
47.84%, most likely due to the considerations used in the signal reconstruction (window
size, step, sampling rate, etc.).

Table 9. Propulsion duration time results from WISP and force sensors.

Propulsion Duration Time

Gesture FSR (ms) Classifiers (ms) Error (%) Mean Error (%)
1 1080 810 25.00
8 1200 540 55.00
2 1260 450 64.28
7 1260 540 57.14
5 1470 990 32.65 47.84
4 960 540 43.75
6 1320 630 52.27
3 1140 540 52.63

6. Discussion

This paper addresses the need for monitoring of MWD for assessment. Research has
been carried out on different methods of monitoring and assessing physical activity in
wheelchair users. However, existent solutions are not applicable to MWD and, as in other
physical activities monitoring, MWD real-time assessments can be carried out by means of
wearable sensors. The proposal of this paper is the design of a wearable inertial sensor for
online wheelchair propulsion detection (WISP). The device is intended to allow professional
MWD teachers such as Gladys Foggea to perform self-assessments and student evaluations
to improve performance. During an MWD choreography, basically two types of movement
are performed: propulsion gestures (PGs) and dance gestures (DGs). Based on the premise
of the mentioned duality of gestures, WISP was formulated to detect eight specific PGs
and, since the system will be used only during MWD choreographies, we have considered
all non-propulsion gestures as DGs. Even to improve the accuracy of WISP, DGs whose
movement is similar to PGs were considered. Such gestures were called fake propulsion
gestures (FPGs). Since the system is based on inertial sensors, two configurations were
considered in this work in order to evaluate the system using two or three sensors. In the
three-sensor configuration, one sensor is attached to the user’s upper back and one sensor
is attached to the back of each hand; in the two-sensor mode, sensors are only attached to
the hands. WISP uses two machine learning classifiers (left and right) to bilaterally detect
three basic gestures (forward, backward, and dance) performed with each arm.

From the combination of these gestures, eight specific PGs can be obtained. For
the detection of the eight PGs, a classifier fusion step must be carried out at the end of
the recognition process. The three-sensor mode only provided a 1% improvement to the
individual recognition of each classifier. For this reason, the two-sensor mode was chosen,
which has a simpler configuration, with fewer sensors and therefore fewer variables to
analyze. Therefore, the two-sensor configuration is a lighter version of WISP that offers a
free mobility and wireless data transmission. Such an option is better accepted by users
and researchers. However, the three-sensor mode could be useful for other body-motion
studies. The overall accuracy from the fusion of both classifiers in two-sensor mode was
90.28%. The reconstruction of PGs composed of both hands has several peaks that indicated
a confusing detected PG. However, these peaks were easily removed by filtering, leaving
the propulsion gestures with a time duration of more than 50 ms.
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The WISP algorithm provided data on the quantity and measures of beginning time
and duration time of the propulsions performed by one of the participants. In this first
analysis, it can be noted that the number of propulsions was correctly detected. This is due
to the spike filter previously mentioned. In addition, Figure 17 shows the comparison of
the propulsion gestures detected by WISP and those de-detected by the FSR. The results
corresponding to the start of propulsion are presented in Table 8, where it can be observed
that the mean absolute error is 123 ms. This error is acceptable if we take into consideration
that the mean propulsion time is approximately 1 s. In addition, Table 9 shows the results
of the propulsion duration time. In this case, the mean error was 47.84%. The high error
found in this measurement could be caused by considerations in the signal reconstruction.
Future improvements with respect to this measurement will be necessary to obtain reliable
data that can be used by the wheelchair dance teacher.

Finally, this paper presented WISP as a device for recognizing propulsion gestures
where special attention is paid to the classification algorithms. The calculation of the experi-
mental accuracy of WISP will be addressed in future research where the propulsion gestures
in choreographies designed by the professional dancer Gladys Foggea and performed by
MWD students will be evaluated. Another consideration for future research work is an
approach towards specific DG recognition by means of the currently proposed system.

7. Conclusions

In this study, research of physical wheelchair activity and MWD monitoring was
carried out. Current solutions contemplate approaches mostly based on traveled distances,
biomechanical efforts, and athletic performance. Gladys Foggea, professional dancer and
MWD teacher, stresses the need to monitor MWD for assessments, performance improve-
ment, and teaching, emphasizing the quantification of propulsions, instant of execution,
and duration time. Given the scarce applications of physical activity monitoring in MWD,
in this work we developed a wearable inertial sensor for online wheelchair propulsion
detection (WISP). This device uses two machine learning classifiers for bilateral detection
of propulsion gestures. Furthermore, the device was evaluated in its two configurations:
three-sensor and two-sensor. The two-sensor configuration was chosen since it had only
1% lower accuracy than the other configuration. The fusion of the classifiers gave results
showing an accuracy of 90.28%. Finally, we conclude that the algorithm of WISP allowed
to quantify the propulsions and identify the start instant with a mean absolute error (MAE)
of 123.75 ms, as well as the propulsion duration with a mean error of 47.84%.
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