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Abstract: Vagus nerve stimulation (VNS) causes the release of several neuromodulators, leading to
cortical activation and deactivation. The resulting preparatory cortical plasticity can be used to increase
learning and memory in both rats and humans. The effects of VNS on cognition have mostly been
studied either in animal models of different pathologies, and/or after extended VNS. Considerably
less is known about the effects of acute VNS. Here, we examined the effects of acute VNS on short-term
memory and cognitive flexibility in naïve rats, using three cognitive tasks that require comparatively
brief (single session) training periods. In all tasks, VNS was delivered immediately before or during
the testing phase. We used a rule-shifting task to test cognitive flexibility, a novel object recognition
task to measure short-term object memory, and a delayed spontaneous alternation task to measure
spatial short-term memory. We also analyzed exploratory behavior in an elevated plus maze to
determine the effects of acute VNS on anxiety. Our results indicate that acute VNS can improve
memory and cognitive flexibility relative to Sham-stimulation, and these effects are independent of
unspecific VNS-induced changes in locomotion or anxiety.

Keywords: vagus nerve stimulation; short term memory; cognitive flexibility

1. Introduction

Vagus nerve stimulation (VNS) is used for the treatment of several neurological disor-
ders [1–3]. Vagal afferents may function as an endogenous mediator of certain cognitive
functions [4,5]. Ascending fibers of the vagus nerve innervate the nucleus of the solitary
tract, which then relays signals to areas in the brain stem and the forebrain, including areas
in the thalamus, amygdala, and hippocampus that are involved in learning and memory [6].
VNS-induced activation of brainstem nuclei causes the release of several neuromodulators,
including norepinephrine (NE), acetylcholine, and serotonin [7–14], resulting in widespread
cortical and subcortical activation and deactivation [15–19]. A number of studies have shown
that pairing VNS with discrete stimuli or behaviors promotes cortical plasticity which can
facilitate learning and memory in both rats [17,20–25] and humans [26,27]. The majority of
previous studies that examined the effect of VNS on cognition have done so in the context
of animal models of various pathologies, and/or after chronic VNS. Here, we examined
the effects of acute VNS on short-term memory and cognitive flexibility in naïve rats. We
used a series of behavioral tasks that require little or no training, and we limited delivery of
VNS to the testing phase of each task in order to minimize the duration of VNS. These tasks
included a rule-shifting task that tests cognitive flexibility (as a measure of reasoning and
problem solving), a novel object recognition task, which measures (short-term) memory for
objects, and delayed spontaneous alternation in a T-maze to measure spatial short-term
memory. We found that acute VNS improved performance across all measures of memory
and cognitive flexibility compared to Sham-stimulation. These effects were independent
of potential VNS-induced reductions in anxiety, as acute VNS did not significantly affect
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exploratory behavior in an elevated plus maze. Our findings add to a growing body of liter-
ature that shows that even relatively brief VNS can affect cognitive functions [20–22,26–28].
In addition, our work identifies tasks covering multiple cognitive domains, that can be
learned by rats in one or few sessions, and which are modulated by VNS, thus facilitating
future studies into the effects of VNS on cognition.

2. Materials and Methods
2.1. Animals and Surgical Procedures

All procedures were carried out in accordance with the NIH Guide for the Care and
Use of Laboratory Animals, and were approved by the Institutional Animal Care and
Use Committee of The University of Texas at Dallas. A total of 65 male Sprague-Dawley
rats (Taconic, Rensselaer, NY, USA) was used in these experiments. Forty-seven rats were
used for the three cognitive tasks (Cross-maze Rule-shifting task, Delayed Spontaneous
Alternation, Novel Object Recognition, see below), with the majority of the rats partici-
pating in two of the three tasks. In order to avoid confounds of previous experiences with
behavioral tasks and/or VNS, a separate cohort of 18 rats was used to assess anxiety in the
Elevated-Plus Maze. All rats were socially housed on a 12 h reverse light/dark cycle (lights
off at 6:00 a.m.) with access to food and water ad libitum. The rats weighed 300–350 g
(~75 days postnatal) at the start of the experiments. Custom-made cuffs for vagus nerve
stimulation were implanted as described elsewhere [23,29,30]. In brief, rats were anes-
thetized with ketamine (85 mg/kg) and xylazine (5 mg/kg), and pre-treated with atropine
(1 mg/kg) and the local anesthetic Marcaine. For VNS delivery, a stimulation input site
was constructed using a head-fixed two-channel strip connector (Omnetics, Minneapolis,
MN, USA) connected to leads from a custom nerve cuff platinum-iridium wire electrode in
micro-renathane (0.04” ID, 0.08” OD, 4 mm long). The nerve cuff was placed around the left
vagus nerve by accessing the vagus nerve via an incision in the ventral midcervical region
of the neck. Cuff function was assessed during surgery by applying VNS (0.2 mA, 60 Hz,
10 s) and observing brief cessation of breathing due to recruitment of the Hering–Breuer
reflex in anesthetized rats [24,31]. In Sham-stimulated animals, cuffs were designed to short
at the level of the headstage. Sham-stimulated rats showed no evidence of the inflation
reflex. After surgery rats were allowed to recover for one week. Prior to all behavioral tasks
animals were handled each day for two weeks in their home cages. In addition, three days
before the experiments, rats were also handled in the room where the experiments were
performed and were habituated to the tether and the potential novel sensation of VNS by
tethering them to a stimulator and issuing a 30 s stimulation (0.4 mA, 30 Hz, 500 us pulse
width) every three minutes for 15 min. On the day of testing, animals were transferred to
the behavioral room at least 30 min before testing began. Experimenters were blind to the
treatment of experimental animals throughout testing and analysis. During all behavioral
experiments, rats were tethered to an AM Systems stimulator. Rats in the VNS groups
received a 30 s stimulation (0.4 mA, 30 Hz, 500 us pulse width) every three minutes. These
stimulation parameters can modulate learning and synaptic plasticity without disrupting
ongoing behavior [23,24,29]. Sham animals were identically tethered but not stimulated.

2.2. Cross-Maze Rule-Shifting Task (CMRST)

In order to measure the effect of VNS on attention and cognitive flexibility, rats were
trained on a rule shifting task that requires decision-making capabilities and the ability
to inhibit a prepotent but inappropriate response. Procedures followed those previously
described [32,33]. Briefly, rats were habituated to the maze for three days, during which all
arms were baited with food reward pellets and animals were allowed to freely explore the
maze. Rats were connected to stimulation cables at their head caps throughout habituation
and testing, with actual stimulation only delivered on the last day (Shift-to-Visual-Cue Day).
Rats cleared habituation after consuming all the pellets on the third day in less than 15 min,
but usually this took less than 2 min. After habituation, three days of testing occurred with
the plus maze converted into a T-maze. On the first day of testing, the Rats’ turn bias was
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determined. A black and white striped visual cue was placed near the entrance to one
of the entry arms in a pseudorandom manner and rats were placed in the stem arm and
allowed to turn left or right to obtain a food pellet. After the rat consumed the reward, it
was returned to the stem arm and allowed to make another choice. If the rat chose the same
arm as on the initial choice, it was returned to the stem arm until it chose the other arm
and consumed the food pellet. A total of seven trails were run, and the most frequently
selected arm indicated the turn bias. On the second day of testing, rats were trained on
a response discrimination task that required them to learn the rule ‘always turn this way’
(left or right, direction opposite turn bias) to obtain a food pellet. The location of the stem
arm was rotated among three arms (East, West and South; North unused) to prevent rats
from using spatial strategies. Again, the black and white striped visual cue was placed
near the entrance to one of the entry arms. Placement of this cue varied pseudorandomly
to balance the cue presentation in the left or right arm over blocks of 12 trials. The order
of the stem arms was similarly alternated across blocks of 12 trials. Successful training on
Response Discrimination was marked when the rat made 9 correct choices in any block of
10 trials and then successfully passed a probe trial. In the probe trial, the previously unused
North arm was used as the stem arm to ensure that rats were indeed following the visual
cue and did not rely on an allocentric response strategy. If the probe trail was not passed,
training continued until the rat made another five consecutive correct choices, at which
point another probe trial was administered. On the third and final day (Shift-to-Visual-Cue
day), rats were tested on their ability to shift their strategy. Instead of following the “turn
this way” rule they were now required to learn to “follow the visual cue” in order to
obtain food rewards. The location of the visual cue and the position of the start arm were
again varied. The training and response criteria for the Shift-to-Visual-Cue Discrimination
were identical to those during Response Discrimination. VNS or Sham-stimulation was
delivered during Shift-to-Visual-Cue training for 30 s every three minutes. On the third day
errors were scored as entries into arms that did not contain the visual cue, and they were
further broken down into three subtypes to determine whether VNS altered the ability to
either shift from the previously learned strategy (perseverative errors), or to maintain the
new strategy after perseveration had ceased (regressive errors, or never-reinforced errors). In
order to detect shifts in the strategies that rats used, we separated trials into blocks of four
trials each. A perseverative error occurred when a rat made the same egocentric response
as required during the Response Discrimination, but which was opposite to the direction
of the arm containing the visual cue. Six of every 12 trials required the rat to respond in
this fashion against the previous egocentric response strategy. A perseverative error was
scored when the rat entered the incorrect arm on three or more trials per block of four trials.
Once the rat made less than three perseverative errors in a block, all subsequent errors of
the same type were now scored as regressive errors, because at this point the subject had
adopted an alternative strategy at least half of the time. Finally, never-reinforced errors were
scored when a rat entered the incorrect opposite arm on trials where the visual cue was
placed on the same side congruent with the previous egocentric response strategy.

2.3. Delayed Spontaneous Alternation

We used the innate tendency of rodents to alternate entries into the arms of a maze as
another test of short-term memory [33]. Therefore, rats were placed into the stem arm of a
T-maze and rats were left to choose between the left and the right open goal arm. Once
a rat had entered an arm it was confined to this arm by blocking off the entrance of the
arm. After 30 s, the barrier was removed and the animal was placed back into the stem arm
and allowed to once more choose between the left and right arm. Each animal completed
a total of six trials (with 2 choice runs per trial, separated by ~35 s), each separated by a
15-min interval during which rats received 30 s of VNS or Sham stimulation every three
minutes. The maze was cleaned with 70% ethanol after every single run. The turn direction
was recorded for each trial and the percentage of alternations between left and right arm
entries within trials was calculated. Higher rates of alternation were considered indicative
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of enhanced short-term memory. In addition, we also analyzed alternations across the
15 min intertrial interval in an effort to assess potential changes in memory on a longer
time scale.

2.4. Novel Object Recognition

We used a novel object recognition task to assess the effect of VNS on short-term and
declarative memory as previously described [32,33]. Experiments were conducted in a
60 × 60 × 40 cm open field with white walls and a black floor. Three objects of comparable
size, height, weight, and luster were used as either the familiar or novel object. All the
objects used on the test were previously tested for preference by a control group of naïve rats
to ensure that rats showed no inherent preference for any one of these objects. The object
assigned as novel was rotated across animals to further eliminate any object specific
preferences unrelated to novelty. Prior to testing, animals were handled (3 min) and
habituated to the open field (10 min) for three days. During habituation, rats were exposed
to two (familiar) objects. On test day, rats were placed in the open field for a one-minute
habituation period, followed by a three minute ‘familiar phase’ in which animals were
allowed to explore the two familiar objects. Then animals were placed in a holding cage
for a 15-min retention phase where VNS or Sham-stimulation was delivered for 30 s every
three minutes. The objects were cleaned with 20% ethanol and the chamber was cleaned
with 70% ethanol between all trials. The configuration of the objects during each trial
was changed for each animal. After the retention phase, one of the familiar objects was
replaced with a novel object and rats were allowed to explore the field for three minutes.
Activity during the novel phase was video-recorded and analyzed to determine the total
exploration time for both the novel object and familiar object. Climbing onto an object was
not considered exploratory behavior. A recognition index was determined by dividing the
amount of time spent with the novel object over the total time spent investigating both
objects [34]. Increased exploration of the novel object was considered as an indicator of
improved short-term memory.

2.5. Elevated plus Maze

We used an elevated plus maze (EPM) to assess anxiety-related behavior. For this task
we used a separate cohort of rats that had not participated in any of the other tests and
thus had not received any VNS prior to the test. The EPM consisted of two opposing arms
enclosed by 12 inches high walls, and two open arms (all arms were each 24 inches long
and 4 inches wide) positioned 18 inches from the floor. Prior to the EPM test, rats were
habituated to the room and to being connected to the VNS tether over three days. On the
days of the test, rats received three trains of VNS (30 Hz, at 0.4 mA; 500 µs pulse width)
or Sham-stimulation for 30 s in 3 min intervals before they were placed in the maze. Rats
were placed at the center of the maze and their behavior was observed for five minutes.
Trials were video recorded and analyzed for the time spent in the open arms, time spent in
the closed arms, and the total number of entries into the open arms.

2.6. Data Analysis

We used a two-way ANOVA for the Cross-maze Rule Shifting task, followed by
Bonferroni-corrected t-tests. All other tasks were analyzed using unpaired t-tests (Graph-
pad Prism 7). Data in all figures is displayed as the mean average, with error bars repre-
senting the standard error of the mean. p values less than 0.05 were considered significant,
and points of significance are indicated with *.

3. Results

We trained rats on three behavioral tests to study the effect of acute VNS on short term
memory and cognitive flexibility.
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3.1. Cross-Maze Rule Shifting Task

We used the CMRST to determine whether acute VNS can modulate cognitive flexibil-
ity. After habituation, rats (Sham, n = 14; VNS, n = 14) learned a Response Discrimination
on Day 1 and then had to shift to a different strategy on Day 2 to obtain food rewards (Shift-
to-Visual Cue-Discrimination). VNS and Sham-stimulation were applied non-contingently
at regular 3 min intervals only on Day 2 during the Shift-to-Visual-Cue discrimination. The
duration of the task varied with the rats’ performance, but no subject took longer than 2 h
to reach criterion, thus capping the maximal number of VNS stimulations at 40. A two-way
ANOVA with the factors test-day and treatment found a significant difference between
days (F(1,26) = 18.91, p = 0.0002) and treatment (F(1,26) = 7.101, p = 0.0131), as well as a trend
for an interaction between test-day and treatment (F(1,26) = 4.031, p = 0.055). Bonferroni
post-hoc testing showed no differences between Sham and VNS animals in the acquisition
of the original strategy on Day 1 Response Day (p > 0.9999). In contrast, rats treated with
VNS required fewer trials to shift to the new strategy on Day 2 compared to Sham animals
(p = 0.0033; Figure 1). We further analyzed differences in the total number, as well as the
types of errors (perseverative, regressive, and never reinforced) committed. Overall, VNS
animals made fewer errors (unpaired t-test t(26) = 2.513, p = 0.0185). While there was no
significant effect of VNS on perseverative errors (t(26) = 0.6745, p = 0.5060), VNS caused a
significant reduction in both regressive (t(26) = 2.520, p = 0.0182) and never reinforced errors
(t(26) = 2.542, p = 0.0173; Figure 1). Taken together, these results indicate that acute VNS
enhanced cognitive flexibility and facilitated the shift to a new strategy.

3.2. Delayed Spontaneous Alternation

As a first test of whether acute VNS can affect short term memory function we used
a delayed spontaneous alternation task [33]. We measured the frequency of spontaneous
alternations between entries into the left or right goal-arm over 12 free-choice trials in
a T-maze in Sham- (n = 14) and VNS-treated rats (n = 12). VNS-treated rats alternated
their entries more frequently on directly subsequent trials (within-trial alternations) than
Sham-stimulated animals (unpaired ttest t(24) = 2.513, p = 0.0191; Figure 2B), indicating
that VNS improved spatial short-term memory. However, VNS- and Sham-stimulated rats
did not differ in their alternations when compared across trails (between-trial alternations;
t(24) = 0.2093, p = 0.8359; Figure 2C), indicating that VNS did not affect memory across the
15 min intertrial interval.

3.3. Novel Object Recognition

Next, we tested how acute VNS affects the ability of rats (Sham, n = 8; VNS, n = 9)
to distinguish between a familiar and a novel object as a rodent measure of short-term
declarative memory (Figure 3). Rats in the Sham-stimulated and VNS groups showed no dif-
ferences in overall exploration during the memory test phase (unpaired t-test t(15) = 0.5001,
p = 0.6242; Figure 3B), suggesting that VNS caused no unspecific changes in locomotion and
exploration. On average, rats in both groups also spent similar amounts of time exploring
the familiar object (t(15) = 0.243) or the novel object (t(15) = 0.22). However, when the relative
time that each animal spent with the familiar and novel object, respectively, was expressed
as a recognition index (Figure 3E), it became obvious that rats in the VNS-treated group
spent significantly more time investigating the novel object (t(15) = 3.204, p = 0.0059).
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Figure 1. Vagus nerve stimulation (VNS) improves cognitive flexibility. (A) Schematic overview of
the Cross-Maze Rule Shifting task used to assess cognitive flexibility. Rats were habituated to the
maze over 3 days. On the fourth day, animals were tested for an innate preference to turn left or right
in the T-maze (Turn bias). On the next day, rats were then trained against their turn bias to learn an
egocentric strategy in order to obtain a food reward in one of the two arms of the T-maze (Response
Discrimination). Training took place in the presence of a visual cue that had to be ignored at this
stage. On the final day, rats were required to shift their strategy, to follow the visual cue to obtain
the reward (Shift-to-Visual-Cue). On Shift-to-Visual-Cue Day rats received noncontingent VNS (or
Sham-stimulation) every 3 min in one of the stem arms between runs. the (B) All animals learned
the initial response strategy at the same rate; however, Sham-stimulated rats required a significantly
larger number of trials to shift strategies compared to VNS-treated rats. (C,D) Error analysis based on
error types committed during the Shift-to-Visual Cue session. Sham-treated animals committed more
total errors, (C), and specifically more regressive and never-reinforced (NR) errors, (D). Perseverative
and Regressive errors are indicative of cognitive flexibility and functions of the medial PFC, while a
reduction in NR errors indicates that VNS-treated rats were better at avoiding ineffective strategies
and maintaining the effective strategy. Significance is * p < 0.05, ** p < 0.01, n.s. = non-significant.
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Figure 2. Vagus nerve stimulation (VNS) facilitates foraging behavior and short-term memory.
(A) Rats were allowed to enter the left or right arm of a modified T-maze. After the choice, animals
were confined to that arm for 30 s and then placed back into the stem arm for a second free-choice
run. If the animal selected the arm opposite to its initial choice this was considered a spontaneous
alternation. Rats performed a total of 6 trials (with 2 choice runs each), with 15 min separating each
trial. (B) VNS-treated rats showed more spontaneous alternations compared to Sham-stimulated
controls. (C) VNS did not affect alternation behavior across trials (i.e., the 15 min interval between
trials). Significance is * p < 0.05, n.s. = non-significant.

Figure 3. Vagus nerve stimulation (VNS) improves novel object recognition. (A) Schematic overview
of the setup used to test novel object recognition. Rats were placed in an open box and allowed to
investigate two objects for 3 min, after which they were placed back in their home cage for 15 min
during which they received VNS or Sham-stimulation every 3 min. One of the objects was replaced
with a novel object and animals were then allowed to explore both objects for an additional 2 min.
(B) Total investigation time during the test phase did not differ between treatment groups, indicating
that VNS did not induce unspecific changes in movement and exploration. (C,D) Total average
time exploring the familiar, (C), and novel object also did not differ. (E) However, exploration time
expressed as a recognition index that takes into account the relative time spent with familiar and novel
object, respectively, shows that rats in the VNS group spent significantly more time investigating the
novel object. Significance is ** p < 0.01, n.s. = non-significant.
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3.4. Elevated Plus Maze

In both humans [35] and rats [36,37] VNS has been shown to be anxiolytic. A reduction
in anxiety could contribute to improved task performance in VNS-treated rats. Therefore,
we assessed whether acute VNS reduced anxiety during a single trial in the elevated plus
maze (EPM). A separate cohort of rats (n = 9 Sham, n = 9 VNS) with no previous experience
with behavioral tasks or VNS was used for the EPM. Rats were placed in the center of the
maze and the time spent in the open and closed arms was analyzed (Figure 4). Unpaired
t-tests showed no significant differences between the two groups for time spent in the open
arms (unpaired t-test t(16) = 0.3457, p = 0.7341; Figure 4B) or for time spent in the closed
arms t(16) = 0.8851, p = 0.3892; Figure 4C). Similarly, the number of entries into the open
(t(16) = 1.531, p = 0.1452; Figure 4D) or closed arms (t(16) = 0.2757, p = 0.7863; Figure 4E) did
not differ between VNS- or Sham-stimulated rats, again suggesting that VNS did not affect
locomotion or general exploratory activity.

Figure 4. Vagus nerve stimulation (VNS) did not affect measures of anxiety in the elevated plus maze
(EPM). (A,B) Acute VNS (three 30 sec trains, separated by 3 min each, applied immediately before
the EPM) did not affect the time spent in the open arms, (B), or the closed arms, (C), of the EPM.
(D,E) VNS also did not alter the number of entries in the open arms, (D), or the closed arms, (E).
Significance is n.s. = non-significant.

4. Discussion

VNS has mainly been used to treat clinical disorders such as epilepsy and depression;
however, accumulating evidence suggests that VNS might also serve as an effective tool to
enhance learning and memory. Vagus nerve stimulation triggers neuromodulator release
that mediates cortical plasticity associated with learning. Previous studies have shown that
VNS can facilitate learning of sensory and motor behaviors [25,38–40], as well as different
memory functions [20–22,24,26,27,41,42]. Here, we used a series of tasks that require
minimal adaptation and previous training to test the acute effects of VNS on cognitive
flexibility and short-term memory in naïve rats.
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4.1. Rule Shifting

We measured VNS-induced changes in cognitive flexibility via a Cross-maze rule-
shifting task. The task requires rodents to acquire a new strategy, while inhibiting the use
of a previously reinforced strategy [32,43], task demands that correlate highly with the
Reasoning and Problem-solving domain identified by the MATRICS initiative [44]. There is
no evidence that stimulation of the left vagus nerve alone is rewarding or reinforcing [23,36]
(but see [45]), suggesting that VNS’ effects on cognitive flexibility in the current study were
not due to changes in appetitive or motivational properties of the stimuli used in the task.
VNS enhanced cognitive flexibility in the CMRST as indicated by the relatively lower
number of trials to criterion needed by VNS-treated rats on “Shift-to-Visual-Cue Day”.
An analysis of the types of errors committed revealed that VNS-treated rats committed
fewer regressive errors and never-reinforced errors, but did not reduce their number of
perseverative errors. Perseverative errors are a particularly useful index of how readily
animals are able to inhibit the use of the now incorrect strategy. However, a lack of effect
of our treatment on this type of error is not unexpected for two reasons: Perseverative
errors are a strong indicator of prefrontal cortical dysfunction [46,47], which should not
be present in our naïve wildtype rats. In addition, the design of our task, with its division
into blocks of 12 trials for analysis, allows only for a comparatively small number of
perseverative errors to occur within the range of performance of normal, healthy rats,
which based on our experience require about 60–100 trials to reach criterion on the “Shift-
to-Visual-Cue Day”; thus, the low baseline number of perseverative errors in healthy
Sham-stimulated rats allows for little further improvement by VNS. VNS-treated rats did
show a significant reduction in the number of regressive errors, which measure the ability
to maintain a novel strategy once perseveration has ceased. Finally, VNS reduced the
number of “never-reinforced” errors (responses that are incorrect during both the initial
discrimination training and during the shift), which indicates that VNS-treated rats were
more efficient in parsing out ineffective strategies [48]. The idea that VNS can enhance
cognitive flexibility is also supported by a recent study that looked at the effects of VNS on
reversal learning in rats [28].

The ability to inhibit the use of a defunct strategy and enable the learning of a new
functional strategy is an important aspect of executive functions, which in rodents are
associated with the medial prefrontal cortex [49–51] and modulated by monoaminergic
and cholinergic afferents [52,53]. Our finding that VNS improved cognitive flexibility is
therefore consistent with the so-called neurovisceral integration model which proposes that
optimal functioning of prefrontal-subcortical inhibitory circuits is reflected in the vagally-
mediated heart rate variability [54]. Higher resting state heart rate variability promotes
cognitive flexibility in human subjects [4] and this may explain why activation of the vagus
nerve can improve response selection during action cascading [42,55]. However, a recent
report also suggests that subdiaphragmatic vagal deafferentation in rats may paradoxically
facilitate reversal learning [56]. Combining VNS with the CMRST provides a way to further
explore the mechanisms through which vagal afferents can modulate cognitive flexibility.
Behavioral rigidity and perseveration occur in a number of neuropsychiatric disorders,
including schizophrenia, substance use disorders, obsessive compulsive disorder, and
autism [57–60]. Therapeutic strategies that enhance cognitive flexibility could therefore
have important clinical implications. In the next experiments we tested whether the
effects of VNS on task performance were specific to the reversal of a previously learned
discrimination (i.e., enhanced cognitive flexibility), or whether they influenced learning
and memory processes more generally.

4.2. Short-Term or Working Memory

Working memory is the delay-dependent representation of stimuli that are used to
guide behavior in a task. In rodents, any short-term memory for an object, stimulus, or
location that is used within a testing session is often defined as working memory [61,62].
Delayed spontaneous alternation in a T-maze is a measure of short-term spatial mem-
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ory that capitalizes on the innate tendency of rats and mice to alternate arm choices on
repeated trials, which may reflect a tendency of rodents for exploration [63]. Impaired
performance in the Spontaneous Alternation task can result from lesions of the medial
PFC or corticolimbic pathways that lead to behavioral disinhibition [61]. A previous report
suggests that subdiaphragmatic vagal deafferentation does not affect working memory in a
nonspatial alternation task [56]. In contrast, we show here that rats which received VNS
showed a significant increase in the frequency of alternations, suggesting that VNS can
improve working memory, consistent with a previous report in patients with epilepsy [27].
A previous report has shown that, in rats, intertrial delays of 10 min or more result in
chance performance in alternations in a Y-maze [64]. Consistent with this idea we found
low numbers of alternations across trials separated by 15 min intervals, and this was not
improved by VNS, suggesting that these events were not associated in memory and thus
not amenable to modulation by acute VNS.

4.3. Novel Object Recognition

An important aspect of episodic memory is recognition memory, which in rodents
can be assessed via the novel object recognition task. In the task, animals are allowed
to examine two or more objects, of which one has been previously investigated by the
animal. The relative amount of time taken to explore the new object provides an index
of recognition memory. Performance on the task relies heavily on interactions between
PFC and hippocampal circuits [65], two brain areas that previously were shown to be
strongly modulated by VNS [7,9,11,23,66,67]. A previous report suggests that a loss of vagal
forebrain innervation by subdiaphragmatic vagal deafferentation does not affect object
recognition memory at various intervals [56]. In contrast, several previous studies, both
in rodent models of disease [68,69], as well as in naïve animals [22], have shown that
VNS can facilitate episodic memory, supporting earlier findings in patients treated for
epilepsy [26,70]. Here we administered VNS acutely during the intertrial interval in an
effort to selectively aid consolidation of the memory for the familiar object. Consistent with
the idea that acute VNS can enhance short term memory, VNS-treated rats spent relatively
more time with the novel object than Sham-treated rats. This is consistent with a previous
report in epileptic patients which found that VNS had no effect on learning, but enhanced
consolidation, which led to improved retention [70].

4.4. Elevated plus Maze

Acute VNS delivery can also produce anxiolytic effects [37,71], and this by itself could
improve performance in cognitive tasks. To test if our stimulation parameters similarly
reduced anxiety, we tested rats on the EPM which utilizes the predisposition of rodents
to enter dark, enclosed spaces (approach) and their unconditioned fear of heights/open
spaces (avoidance), respectively, to assess anxiety [72]. The previous reports [37,71] that
found anxiolytic effects of VNS used either 1× or 5× 30 s stimulations of the vagus
nerve over 15 min immediately before the EPM test. Here we used 3× 30 s stimulation
with 3 min intervals, but in our hands, VNS did not significantly reduce avoidance or
increase exploration in the EPM. The reason for these differences is not clear but may
reflect differences in the timing or total amount of VNS applied. Taken together, our results
suggest that acute VNS can improve cognitive performance in naïve rats, even in the
absence of anxiolytic effects.

How VNS facilitates learning and memory is an area of active investigation. Stimulation
of ascending fibers of the left cervical vagus nerve leads to the release of several neuromod-
ulators, including norepinephrine (NE), acetylcholine, serotonin, and BDNF [7–14,66,67,73],
causing rapid widespread cortical and subcortical activation [14–17,74]. All of these neuro-
modulators facilitate the induction and/or expression of long-term synaptic plasticity [75–78],
biasing the manner in which cortical networks process information. VNS-induced activa-
tion of one or several of these systems may thus modulate synaptic plasticity [79] in
response to specific inputs that occur during sensory stimulation [25], or learning and mem-
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ory [23,38,41,73]. For example, the nucleus of the solitary tract (NTS), which is the prime
recipient of ascending vagal projections, regulates NE release from the locus coeruleus
(LC) via its projection to the nucleus paragigantocellularis [11,66,80–82]. Activation of the
NTS→ LC pathway and NE release in the hippocampus are important for the consolida-
tion of object-recognition memory [83]. Similarly, activation of the NTS potentiates NE
release in the amygdala to enhance retention in emotionally arousing and spatial memory
tasks [84–86]. In humans, VNS also leads to activation of the LC and improved inhibitory
control via noradrenergic mechanisms [87,88]. On the other hand, blocking LC activity
reduces VNS’ ability to induce cortical plasticity [73].

Autonomic nervous system dysfunction, specifically reduction of parasympathetic
vagal activity, is present in mild cognitive impairment, common dementia subtypes, as
well as in people with depression [89–92]. VNS may thus provide an adjunct treatment in a
wide variety of disorders in which patients suffer from cognitive impairments. Based on
clinical observations in epileptic patients with comorbid disorders [26,70], VNS has been
explored as a treatment for depression [93–95] and anxiety [35]. A number of recent human
studies have furthermore demonstrated the viability of transcutaneous or auricular VNS
to enhance cognitive function [42,87,96,97], which may further increase VNS’ potential in
clinical settings. Our findings provide further evidence that even brief VNS can improve
cognitive function. Importantly, the tasks that we utilized here are well-characterized and
easily implemented, and therefore they can be used in future studies to determine the
cellular mechanisms that underlie the behavioral effects described here.
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