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ABSTRACT

Unequivocal functional assessment of candidate
genomic regulatory regions, such as transcriptional
response elements, requires genetic alteration
at their native chromosomal loci. Targeted DNA
cleavage by Cas9 or other programmable nucleases
enables analysis at virtually any genomic region,
and diverse alleles generated by editing can
be defined by deep sequencing for functional
analysis. Interpretation of disrupted response
elements, however, presents a special challenge,
as these regions typically comprise clustered DNA
binding motifs for multiple transcriptional regulatory
factors (TFs); DNA sequence differences, natural
or engineered, that affect binding by one TF can
confer loss or gain of binding sites for other TFs.
To address these and other analytical complexities,
we created three computational tools that together
integrate, in a single experiment, allele definition
and TF binding motif evaluation for up to 9216
clones isolated, sequenced and propagated from
Cas9-treated cell populations. We demonstrate 1) the
capacity to functionally assess edited TF binding
sites to query response element function, and 2)
the efficacy and utility of these tools, by analyzing
cell populations targeted by Cas9 for disruption of
example glucocorticoid receptor (GR) binding motifs
near FKBP5, a GR-regulated gene in the human
adenocarcinoma cell line A549.

GRAPHICAL ABSTRACT

INTRODUCTION

The glucocorticoid receptor (GR; product of the NR3C1
gene) (1) is a ligand-gated transcriptional regulatory
factor (TF) that binds to specific sequence motifs at
genomic glucocorticoid response elements (GREs) and
nucleates combinatorial assembly of multicomponent
transcriptional regulatory complexes, which modulate
expression of cognate target genes (2). As for many
vertebrate signal-activated TFs that coordinate broad gene
expression programs, three features greatly complicate
determination of transcriptional regulatory activity by a
genomic GR-occupied region (GOR). First, in any given
context, most individual GORs appear to lack direct
regulatory function (3), and outnumber glucocorticoid-
responsive genes by an order of magnitude or more (4–6).
Second, a GRE may in fact comprise multiple GORs,
together with multiple non-GR TF motifs, scattered over
tens or hundreds of kilobases, each potentially contributing
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distinct regulatory outcomes. Third, GRE activities are
highly context-dependent (2), and must be assessed in
their normal chromosomal environments. As a result, very
few GREs or other response elements have been fully
functionally validated at native loci in living cells (7).

In principle, functional validation can be addressed
by targeted genomic editing of GORs residing within
candidate GREs, coupled with expression analysis of
predicted cognate target gene(s). Edited subclones can
be identified from bulk cell populations treated with a
programmable nuclease (including zinc-finger nucleases,
transcription activator-like effector nucleases (TALENs),
and RNA-guided CRISPR-associated nucleases
(e.g. Cas9)) using deep sequencing (e.g. sequencing by
synthesis (SBS)) (8,9) to interrogate target regions. This
requires multiplexing hundreds to thousands of samples
and a computational workflow for deconvolution and
analysis to identify genetic alterations that compromise
GR binding sequence (GBS) motifs underlying GR
occupancy, while also detecting concomitant changes to
other vertebrate transcription factor binding site (TFBS)
motifs. To accomplish these goals, three unmet needs were
apparent:

1. An index (barcode) set and Sample Sheet scaled
sufficiently for SBS discrimination of thousands of
subclonal genotypes. In many Illumina® sequencing
applications, DNA sequences from distinct samples
are labeled with barcodes, pooled (multiplexed) as a
library applied to a single flow cell, and demultiplexed
based on sample:index relationships specified in a
Sample Sheet, which relates user-specified workflow
parameters to Illumina® sequencer control software.
Illumina® systems formally limit barcode assignments
to <96 (single-index) or <384 (dual-indexed/paired-
end) distinct samples. SBS analysis of independent
samples at larger scale requires an augmented barcode
set, and automated sample:barcode assignment in a
Sample Sheet that specifies hundreds to thousands of
data relationships.

2. Rapid clonal genotype inference to identify potentially
rare mutant clones with desired characteristics. Excellent
web-based and command line interface (CLI) tools
(e.g. plateScreen96, which can be used to uniquely
identify up to 96 individual samples (9), as well as
CRISPR-GA (10), AGEseq (11), CRISPResso (12),
CRISPR-DAV (13), Cas-analyzer (14), BATCH-GE
(15), BE-Analyzer (16) and CRIS.py (17)) perform
aggregate mutation counts and efficiencies from
next-generation sequencing (NGS) data, and report
population-distributed allele type resolution distinct
from the bundled mutation frequencies returned by
aggregate analyses that rely on Sanger sequencing
(e.g. TIDE (18), TIDER (19)). We sought to develop
a tool that specifically identifies alleles and resolves
genotypes for single clones, and visually maps guide
RNA sequence(s) on alignments to aid evaluation of
mutations triggered by the action of programmable
nucleases (e.g. Cas9).

3. Automated TF binding site (TFBS) collation, to infer
potential consequences of sequence variants or edits

to TF function at candidate response elements. Cell
populations edited by programmable nucleases typically
display a broad spectrum of alleles at targeted loci,
generated as insertion/deletion (indel) outcomes of
non-homologous DNA double-strand break repair
processes (20). For indels in putative response elements,
identifying mutation-associated loss or gain of putative
TFBSs is essential for interpretation and/or prediction
of functional consequences.

To serve these needs, we developed computational tools
to automate sequence processing from input to output of
a targeted editing effort focused on candidate response
elements, seeking to expedite clone selection for retrieval
and archiving, to prioritize clones for analysis based on
inferred genotype definitions, and to anticipate potential
functional consequences based on altered TFBSs. In a
use case, we deployed these tools to analyze Cas9-induced
mutations affecting candidate GREs associated with a
glucocorticoid-regulated gene in a human adenocarcinoma
cell line. Beyond the application we describe, these tools
operate independently of one another and can be used to
evaluate variation (i) at sequenced loci among cells clonally
isolated from a heterogeneous population and (ii) directly
on complex populations with variant alleles.

MATERIALS AND METHODS

Code overview and implementation

We developed code to support and expedite a workflow
that reports locus-specific alleles, genotypes and associated
TFBS differences for up to 9216 clones from a single
Illumina® SBS run (Figure 1). SampleSheet.py (Figure
2) automates preparation of an Illumina® Sample Sheet,
the text document that defines well:barcode assignments
for demultiplexing on Illumina® sequencing platforms.
Genotypes.py (Figure 3) facilitates rapid convergence to
genotype from demultiplexed fastq files (21), simplifying
identification of cultured clones of interest to archive
and examine. CollatedMotifs.py (Figure 4) summarizes
alterations to TFBS motif matches for each sample (clonal
isolate) relative to a reference sequence, capitalizing on
public repositories of sequence-selective position frequency
matrices for characterized DNA-binding regulatory factors.
Natural variation or DNA sequence alterations associated
with editing by programmable nucleases (e.g. Cas9) in
putative response elements may cause losses or gains of
TFBSs, making their annotation in clones important for
interpretation of potential functional consequences. Scripts
are available as annotated Jupyter notebooks (22) (.ipynb)
for interactive use in a web browser and as program
files (.py) that can be run at a command-line interface
(CLI) at https://github.com/YamamotoLabUCSF, and pre-
compiled in Open Virtualization Format for virtualization
(e.g. in Oracle VM VirtualBox, https://www.virtualbox.
org/) with supporting resources, example input and output
files, and test datasets at https://doi.org/10.5281/zenodo.
3406861. All scripts require Python 3.7 or greater for
operation on Mac OSX, Linux or Windows systems. A
full list of dependencies can be found in Supplementary
Table S1 and in the README.md file associated with
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Figure 1. Three Python scripts facilitate analysis of genetic diversity in deeply sequenced amplicons. (A) SampleSheet.py automates construction of an
Illumina® Sample Sheet with up to 9216 sample:barcode relationships defined in its [Data] table. Briefly, target loci from up to 9216 samples can be
amplified and indexed in two consecutive PCRs (PCR1 & PCR2), from essentially any nucleic acid source (e.g. Cas9-edited clonal isolates [colored circles]).
After arraying genetic source material from individual samples in 96-well or 384-well (not shown) plates for amplification (PCR1), small amounts of each
PCR1 product are used as templates in second reactions (PCR2) primed by pairs of uniquely barcoded forward and reverse primers compatible with
Illumina® sequencing platforms (ninety-six i7, ninety-six i5 barcode possibilities). Barcoded amplicons are pooled as a library; user-supplied values at
SampleSheet.py prompts are expanded to populate a Sample Sheet with sample:barcode designations, enabling read demultiplexing into up to 9216 sample-
specific fastq files following Illumina® SBS; (B) Genotypes.py accepts any number of fastq files as input, applying Python counter functions to classify and
count read frequencies. After aligning the most abundant reads to a reference genome (BLASTN), alleles are hypothesized and defined based on relative
read frequencies and alignment comparison to the wild-type reference (e.g. SNPs, indels); genotypes are inferred based on allele definitions. Optionally,
DNA subsequences (short oligonucleotide sequences) can be mapped onto allele outputs to flag positions and/or presence/absence of specific sequence
motifs; (C) CollatedMotifs.py accepts fastq files as input, along with a single fasta file defining reference sequence(s). Like Genotypes.py, CollatedMotifs.py
identifies candidate alleles by read frequency and alignment to a reference sequence; it then identifies and compares matches to TFBS motifs in reference
and allele sequences (Meme FIMO), returning a visualization and spreadsheet of novel and lost TFBS in each allele.
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Figure 2. SampleSheet.py: automated Illumina® Sample Sheet construction for sequencing and demultiplexing of up to 9216 barcoded samples. (A)
SampleSheet.py anticipates user-defined, console-supplied entries for six variables, which define (1) the Illumina® Indexed Sequencing Workflow (‘A’
or ‘B’); (2) the absolute path at which the Sample Sheet file will be created; and subsections of an Illumina® Sample Sheet: two [Header] values (3)
‘InvestigatorName’ & (4) ‘ProjectName’, the [Reads] section (indicating (5) the number of sequencing cycles for single-end or paired-end formats) and (6) a
list of sample plate names and i7 + i5 barcode permutations, the principal [Data] output; (B) PCR strategy that links amplicons to barcodes, which underlies
the relationship that SampleSheet.py creates between an individual sample identity (plate and well ID) and its distinctive i7 + i5 barcode combination. In
this strategy, i7 sequence (blue) defines individual wells of a 96-well plate, and is used across plates; i5 (yellow), in contrast, defines up to all wells of a single
plate; (C) SampleSheet.py performs automated expansion of appropriate sample:index relationships in the Sample Sheet [Data] table, (D) output in the
Sample Sheet for up to 9216 samples. In the example given, samples arrayed in three 96-well plates have been uniquely labeled, and an input list with three
lines of text is expanded into a list of 242 entries, with index sequences accurately presented in the Sample Sheet.
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Figure 3. Genotypes.py: allele definition and genotype inference based on read abundance in deeply sequences amplicons. (A) Eight user-defined inputs
specify locations of three directories and two executable files (BLASTN and BLASTDBCMD), as well as two optional short nucleotide sequences to
be mapped onto analyzed sequence outputs––ultimately generating eight output files; (B) fastq files are read into Genotypes.py, which classifies merged
paired-end reads by relative representation (Python counter function) and defines alleles based on calculated frequency. The top ten most abundant reads
(‘ranked alleles’) are labeled with sample ID and abundance/representation and populated into a fasta file (fasta.fa), which is (C) passed to BLASTN for
alignment to a position in the reference genome/sequence provided as a BLASTN database in (A). The output alignment file (blastn alignments.txt) is
parsed from html format to populate lists and dictionaries with read-specific metadata (allele identifier, ‘hit’ position in reference sequence, alignment to
‘hit’); these data are the basis of allele type definition (deletion, insertion, wild-type, etc.) and subsequent genotype inference; reads with alignments that
span multiple BLASTN high-scoring pairs (hsp’s) are further processed by BLASTDBCMD to reconstitute alleles with potentially long (>∼60 bp) indels;
(D) eight output files are generated (allele definitions.txt, allele definitions.csv, allele evidence.pdf (optional), blastn alignments.txt, fasta.fa, genotypes.txt,
population summary.txt, script metrics.txt); portions of the principal output in allele definitions.txt and allele evidence.pdf are shown (see Supplement for
further examples).
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Figure 4. CollatedMotifs.py: identification of altered regulatory motifs in defined alleles, relative to reference sequence. (A) Eleven user-defined inputs
specify locations of two directories, four executable files (BLASTN, FIMO, MAKEBLASTDB, FASTA-GET-MARKOV), three files (fasta file with
reference sequences, text file with TFBS motifs, text file with sequence(s) from which markov background will be defined), a single database prefix string, and
a TF of interest (optional); (B) fastq files are read into CollatedMotfis.py, which identifies the top 5 most abundant merged paired-end read types for each
sample; (C) reference sequences in user-provided fasta file and fasta file containing top 5 reads for each sample are provided to BLASTN for alignments
and to FIMO for TFBS determinations, (D) with alignments and collated TFBS (lost and/or gained) displayed in output files collated TFBS.txt and
collated TFBS.xlsx. Due to the gap in the aligned query sequence, when a deletion mutant gains a TFBS, the motif alignment to the query matches only
one side within the output and ‘note, approx. position’ is displayed next to motif pval.
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each program at the GitHub repository (https://github.
com/YamamotoLabUCSF). The key inputs and outputs
of each computational tool are described below. Further
descriptions of the tools as well as user guidelines, script
operation summaries, and explanations of the contexts and
uses of additional output files (outside of the particular
experimental examples detailed below) are available in the
Supplementary Guidelines.

Experimental use case

GBS motifs underlying eight GORs (GR ChIP-seq
summits) in a putative topological unit encompassing
the dex-responsive gene FKBP5 were targeted for Cas9-
mediated mutagenesis in A549 (Figure 5); clonal isolates
were recovered by flow-assisted cell sorting into 96-well
plates. Target loci were PCR-amplified from lysates in
individual wells (PCR1), appended with Illumina flow cell
adaptors and custom barcodes to label sample-specific
identities (PCR2), and pooled for deep sequencing (paired-
end 2 × 150) on an Illumina MiSeq (Figures 1 and 2).
SampleSheet.py was used to create a Sample Sheet to
demultiplex reads to sample sources (Figure 2). Resulting
fastq files were directly supplied as inputs to Genotypes.py
(Figure 3) and CollatedMotifs,py (Figure 4) for analysis.
See Supplementary Methods for experimental details.

RESULTS

Automated assignment of paired-end barcodes to samples:
SampleSheet.py

Illumina® SBS workflows entail library construction,
cluster generation, sequencing, and data processing,
where a single, plain-text, comma-separated (*.csv)
file––the Sample Sheet––mediates communication of user
preferences and sequencing workflow specifications to
the software overseeing sequencing operations and data
acquisition. The Sample Sheet documents fundamental run
properties (e.g. sequencing cycle number, chemistry) and
key links between library identities and barcodes, allowing
reads to be demultiplexed into individual fastq files after
sequencing. Illumina® provides an excellent whitepaper
describing Sample Sheet sections and preparation in Pub.
No. 970–2017–004-A (2017).

For small numbers of indices (e.g. tens), samples and their
identifying barcodes are easily compiled manually in a text
document. For hundreds to thousands of samples, however,
manual compilation is time-consuming and prone to error
(e.g. typos or mistaken entries that lead to sample:barcode
mispairings). SampleSheet.py automates Sample Sheet
construction, allowing a Sample Sheet with up to 9216 data
entries to be compiled in seconds from a single list of up
to 96 short lines of text (Figures 1A and 2), linking sample
IDs in 96-well plates to specified i7 (Illumina index 1) and
i5 (Illumina index 2) barcode pairs (23). SampleSheet.py
draws upon a custom library of 192 8-nucleotide barcode
primers compatible with Illumina® sequencing platforms
(Supplementary Figure S1)––96 ‘forward’ and 96 ‘reverse’
as defined by sense/antisense to read 1 orientation in
the Illumina® MiSeq workflow. Easily ordered and
accessed in 96-well plate format (Supplementary Excel file),

permutations of the ninety-six i7 (read 1) and ninety-six
i5 (read 2) barcodes allow unique labeling of up to 9216
distinct samples. Detailed user guidelines are provided in
Supplementary Guidelines (SampleSheet.py).

SampleSheet.py operations and Sample Sheet output file

SampleSheet.py creates a comma-separated file
interpretable by Illumina® software as a Sample Sheet.
To establish sample:barcode pairings based on user input,
SampleSheet.py prompts users for six values, entered as
text at individual Jupyter interface or CLI prompts (Figure
2A, Supplementary Table S2, Supplementary Figures
S2, S3A). These values include: (i) Illumina® Indexed
Sequencing Workflow (A versus B, Supplementary Figure
S4), (ii) absolute path to output directory and filename
for Sample Sheet, (iii) Investigator Name, (iv) Project
Name, (v) Single-end (SE) or Paired-end (PE) sequencing
run with cycle number(s), and (vi) list of sample:barcode
relationships.

The key utility of SampleSheet.py is to automate large
numbers of sample:barcode relationships in the [Data] table
section of a Sample Sheet. In principle, the custom i7
and i5 primers (Supplementary Figure S1) can be used in
any combination with one another, but in the workflow
described, the i7 barcodes act as well IDs (A01-H12 of a
96-well plate), while the i5 barcodes act as plate IDs (plate
1 through 96); the combinations of 96 i7 by 96 i5 barcodes
allow for up to 9216 clones/loci, across ninety-six 96-well
plates, to be genotyped in a single experiment (Figures 1A
and 2C).

These specified uses of i7 and i5 barcodes are achieved
by attention to primer selections when preparing amplicon
libraries by two successive PCR reactions (Figure 1A,
Supplementary Figures S1 and S5). Samples to be
PCR-amplified for amplicon sequencing are arrayed in
96-well plates with each sample containing a unique well
ID + plate ID combination. In a first PCR (PCR1), the
target locus is amplified from a genetic sample source (such
as isolated DNA, cDNA, or crude lysate) using primers
each containing a 5’ common adaptor and a 3’ target-
specific sequence. In a second PCR (PCR2), universal
well- and plate-position-specific primers containing
the i7 adaptor:index1 barcode:common adaptor1 and
the i5 adaptor:index2 barcode:common adaptor2 (see
Supplementary Excel File) are used to amplify the original
PCR1 product (Figures 1A and 2B–C, Supplementary
Figures S5, S6). Automation for PCR1/PCR2 is described
in Supplementary Figure S7.

Provided with user-specified designations for individual
96-well plate names, the script ultimately outputs unique
corresponding sample names for all specified wells, with
each unique full sample name articulated as ‘Plate name-
Sample well position’ in the Sample Sheet. Plate name(s)
and i7, i5 oligo IDs are user-entered at the final console
prompt, requiring only a single line of three comma-
separated values per 96-well plate (plate name, i7 barcode
ID range, i5 barcode ID) to populate up to 96 uniquely
named and barcode-identified well entries in a Sample
Sheet (Figure 2A, input #6; Supplementary Figure S3A,
Supplementary Figures S4–S6). For 9216 entries in Sample

https://github.com/YamamotoLabUCSF
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Sheet format, only 96 lines of text are required, dramatically
reducing labor and error-potential relative to manual entry
of 9216 assignments––the key utility of SampleSheet.py.
The i7/i5 barcodes and script provided here are equally
useful for samples arrayed in a single 96-well plate as
for samples arrayed across the maximum capacity at
ninety-six 96-well plates (i.e. useful for 1–96 plates).
Upon sample:barcode range entry at the command-line,
generation and completion of the corresponding Sample
Sheet text file is virtually instantaneous (<1 s).

Allele definition and genotype inference at specific loci of
individual clones: Genotypes.py

Whether focused on non-coding or coding genomic
sub-regions, allele definition and genotype deduction
at experimentally examined loci are common goals of
population genetic analyses, including identification
of mutant clones downstream of targeted editing. We
developed Genotypes.py, a script that converts reads
in individual sample-specific fastq files into deduced
genotypes for those samples at PCR-amplified (queried)
loci (Figures 1B and 3). The script defines alleles based
on relative read abundance (frequencies), and infers
corresponding sample-specific genotypes. Most similar
computational tools describe population-level allele
frequencies from deeply sequenced loci (10–17). In
addition to population-level allele frequencies (aggregated
across multiple samples), Genotypes.py reports predicted
genotypes for individual samples (e.g. clones), parsing
BLASTN (24) read alignments to reference sequence(s) to
define alleles.

BLASTN excels at alignments for sequence spans that
differ from one another by insertion/deletion stretches
that range between 1–60 bp––a predominant indel range
generated during targeted genome editing––making it an
excellent choice for alignment-based allele definition at loci
targeted by programmable nucleases and PCR-amplified
for short-read sequencing. Longer deletion spans (>60 bp)
may also arise as products of targeted editing (such as
by delivery of two targeted nucleases to distinct sites).
Because alignments with gap (indel) spans that exceed ∼60
bp are split into multiple high-scoring alignment pairs by
BLASTN, Genotypes.py further evaluates alignment data
for reads with high-scoring pairs (hsp’s) if the distance
spanned by the hsp’s is within 1 kb, reasoning that these
BLASTN outputs may be representative of longer indel
alleles. Genotypes.py invokes BLASTDBCMD to retrieve
the reference sequence spanned by the hsp’s, and then
reconstitutes a predicted indel allele to include in genotype
inferences. This feature enables alleles that differ from a
reference by even several 100 bp (e.g. long deletions) to
be reconstituted from alignments on paired-end reads. We
observed that Illumina sequencing chemistry is quite robust
to amplicon length variations ranging from 100–800 bp
(Supplementary Figure S8). Detailed user guidelines are
provided in Supplementary Guidelines (Genotypes.py).

Genotypes.py operations and output files

Foremost, Genotypes.py converts raw sequencing read
data to proposed allele and genotype representations

for demultiplexed samples. Its key operations center
on discernment of distinct reads, assessment of relative
read frequencies, definition of proposed alleles as wild-
type or mutant relative to an alignment reference, and
genotype hypotheses based on ranked allele abundances.
Its key outputs provide, for user evaluation, visually
accessible evidence for allele definitions and hypothesized
genotypes (Supplementary Figure S9). Genotypes.py
prompts users for up to eight values––six required and
two optional––entered as text at Jupyter Notebook
or CLI prompts (Figure 3, Supplementary Table S3,
Supplementary Figure S3B). These include: absolute paths
to (i) input and (ii) output directories, (iii) BLASTN
executable and (iv) alignment reference database; (v)
reference database file prefix; (vi) BLASTDBCMD
executable; and (optional) (vii, viii) DNA sub-sequences to
display on alignments. The script delivers up to eight output
files in a user-defined directory location. Content and uses
of four key output files (allele definitions.txt, genotypes.txt,
allele evidence.pdf, population summary.txt) are described
here; additional files generated as intermediates during
script processing and to log script operations are described
in Supplementary Guidelines, Supplementary Table S4,
and Supplementary Figure S9.

Ranked allele definitions and inferred genotypes

Genotypes.py displays its findings in two text files,
allele definitions.txt and genotypes.txt; for each sample
ID, allele definitions.txt reports genotype, followed by
‘alleles’ (up to ten sequences ranked by relative frequency)
identified from merged read 1 (R1) and read 2 (R2)
sequences (Figure 3D, Supplementary Figure S9). Three
text blocks report frequency metrics, allele specifications
and alignments: (i) ‘Allele’ reports sequence name (fasta
defline containing sample ID and frequency metrics) and
allele specifications (definition as ‘wild-type’ or ‘mutant’
relative to reference sequence (BLASTN ‘hit’), and if
‘mutant’, further resolution as ‘likely deletion | insertion
| substitution | complex indel’, including number of bp
altered by the mutation (e.g. ‘likely deletion 8 bp’);
(ii) ‘Locus’ reports details of alignment database ‘hit’,
defined by BLASTN database content (typically, locus
identifier and coordinates); (iii) ‘Alignment’ reports allele
sequence relative to reference ‘hit’ sequence, with midline
(pipe (‘|’) versus gap) reporting matched vs. unmatched
nucleotide positions. If DNA sub-sequences were provided
for annotation, Genotypes.py maps the position(s) of these
sequence(s) above (if guide RNA or target binding sequence
for a programmable nuclease) or below (if query sequence
provided to be tested for presence vs. absence in allele)
each alignment in which the sequence(s) were identified
in an allele or its reference, facilitating interpretation
of indels as plausible consequences of programmable
nuclease-directed mutagenesis, and/or assessment of query
(test) sequences for presence vs. ablation/absence. Ranked
sequences that occurred at adjusted frequency <10% are
demarcated from other alignments with text highlighting
their scarceness as likely artefacts for studies probing
homogenous clonal isolates (not representing genetic
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source sequences): ‘>>>>> remaining alleles occur at
frequency <10% <<<<<’.

Like allele definitions.txt, the file genotypes.txt reports
allele definitions and alignments for ranked alleles, but
reports samples based on inferred genotype class. In other
words, a ‘homozygous deletion’ cohort is reported before
a ‘homozygous insertion’ cohort, in turn reported before
‘heterozygous’ cohorts, followed by a ‘homozygous wild-
type’ cohort and finally, a cohort for which insufficient
evidence was recovered to infer genotype (‘unclear or
multi-allelic, insufficient representation of allele(s)’)
(Supplementary Table S5). This format provides an
organized list of identified mutant clones, useful for
further experimental processing and long-term storage.
In addition to their summation in allele definitions.txt
and genotypes.txt, allele data compiled in genotypes dict
are transferred to a pandas dataframe for output in the
spreadsheet-compatible allele definitions.csv file, providing
convenient user access to raw data for the sample-specific,
frequency-ranked alleles used in genotype deductions
(Supplementary Figure S9).

Display of ranked allele frequencies (optional)

As visual evidence for genotype inferences, Genotypes.py
reports merged R1 + R2 ranked sequences in frequency
plots printed to allele evidence.pdf (Figure 3D,
Supplementary Figure S9), an optional output file
that highlights the ranked sequence subset representing
alleles most likely to account for sample genotype. For each
sample, ranked sequence abundance is rendered as (i) raw
frequency (% total reads), (ii) % top 10 reads, (iii) % reads
filtered for reads occurring at >1% raw frequency, (iv) %
reads filtered for reads occurring at >10% raw frequency.
A sizeable fraction of reads that occur at <1% frequency
in a fastq file are attributable to template differences
introduced by sequencing or PCR artefacts (25), justifying
their exclusion in plots (iii) and (iv) and the frequency
recalibration of more abundant sequences. Cumulative
generation of these plots can be time-intensive (e.g. ∼2
seconds per pdf page depending on system resources), and
this code passage is therefore optional in Genotypes.py;
after initial user input and just before script operations
begin, a user is prompted to specify whether to include (‘Y’)
or bypass (‘N’) frequency plot generation and assembly into
a pdf file. Together, allele evidence.pdf, genotypes.txt, and
allele definitions.txt provide complementary metrics that
support the genotype inferences delivered by Genotypes.py;
moreover, the availability of ten frequency-ranked alleles
can help users detect potential copy number variation.

Population-wide genotype distribution summary

Although Genotypes.py chiefly hypothesizes genotypes
for individual samples demultiplexed from a potentially
diverse library population, the program also reports
aggregate population properties in population summary.txt
(Supplementary Figure S9). In ‘Synopsis of Interpretations:
Allele Definitions & Genotype Inferences’, the script
catalogs (i) the fraction of samples for which a genotype was
inferred, (ii) overall genotype properties represented in the

sample population (e.g. % samples diploid (1–2 prominent
alleles inferred) versus % multiploid (>2 prominent alleles
inferred), % homozygous wild-type versus homozygous
mutant (subsetted for deletion, insertion, substitution,
complex indel), % heterozygous (wt + mutant), subsetted
as above, % heterozygous (mutant + mutant), etc.) and
(iii) overall alleles represented (e.g. % wild-type alleles, %
mutant alleles (deletion, insertion, substitution, complex
indel)). In ‘Synopsis of Reads Lost to Analysis’, the script
earmarks frequency-ranked reads that were deprecated
from genotype inference, due to (i) no hits, or (ii) multiple
hits, in the reference database (for sequences with ‘no hits’, a
user may wish to use BLAST online to identify non-target
sequence(s) detected as amplified from sample source; for
sequences with multiple hits, a user may choose to recast
(constrain) the reference database to focus target alignment,
and/or may choose to redesign primers or PCR conditions
to improve specificity in future amplicon libraries for the
locus in question). Ranked reads identified for potential
allele reconstruction with BLASTDBCMD are also subject
to deprecation if their high-scoring pairs (hsp’s) overlap or
span >1 kb.

Taken together, Genotypes.py outputs provide users
with well-documented, evidence-based genotype inferences
for deeply sequenced amplicons based on frequency
representations among demultiplexed reads in fastq files
and comparison to user-provided reference sequence(s),
automating genotype definition from one to thousands of
loci amplified from individual genomic sample sources.

Identification of altered TFBS motifs in individual mutant
clones: CollatedMotifs.py

Editing efforts targeted to putative genomic response
elements demand careful annotation of resulting
alleles––specifically, to monitor loss, gain, or
‘reconstitution’ of TFBSs consequent to genetic alteration.
Widely available pattern-matching tools enable prediction
of TFBSs in a query sequence based on matches to
position frequency matrices of known TFs. We developed
CollatedMotifs.py to automate identification and
comparison of TFBS motifs between sample-specific
alleles and a user-supplied reference sequence. Detailed
user guidelines are provided in Supplementary Guidelines
(CollatedMotifs.py).

CollatedMotifs.py operations and output files

Like Genotypes.py, CollatedMotifs.py reports
hypothesized alleles for demultiplexed NGS datasets, but its
sequence alignments are populated with matches to TFBS
motifs––specifically, with TFBSs lost or gained in an allele
sequence relative to a user-provided reference sequence. Its
key operations prepare data resources used by BLASTN
(24) and FIMO (26) (such as a BLASTN alignment
database and background Markov file from user-defined
sequence(s)), and supply visually accessible evidence
for allele definitions and associated TFBS comparisons
(Supplementary Figure S10). CollatedMotifs.py prompts
users for up to eleven inputs entered as text into the Jupyter
Notebook or CLI prompts. Ten required inputs include
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nine absolute paths to directories, files, or executables,
and one prefix for alignment database files. The name of
one transcription factor (TF) of interest can be included
as an optional eleventh input (Figure 4, Supplementary
Table S5). The script delivers six output files and three
sub-directories in a user-defined location. Content
and uses of three key outputs (fimo out, fimo out ref,
collated TFBS.txt, collated TFBS.xlsx) are described
here; additional files and sub-directories generated as
intermediates during script processing and to log script
operations are described in Supplementary Guidelines,
Supplementary Table S6, and Supplementary Figure S10.

Comparison of TFBSs in hypothesized alleles relative to the
reference sequence: fimo out and fimo out ref

The purpose of CollatedMotifs.py is to provide users
with an overview of changes in sequence-based TFBS
predictions that occur in sample alleles relative to a user-
provided reference (e.g. ‘wild-type’) sequence. After initial
allele definition based on read frequency counts and
BLASTN alignments to a reference sequence database, the
script advances to identification of matches to TFBS motifs
in DNA sequences, invoking FIMO. FIMO separately
queries two fasta files––(i) the reference sequence file
provided at the script outset by a user, and (ii) a fasta
file (fasta.fa) containing sample-specific inferred candidate
allele sequences generated by CollatedMotifs.py; FIMO
evaluates sequences in these files for TFBS matches
to motifs in a user-supplied position frequency matrix
(positional weight matrix/PWM). For each of the two fasta
files, CollatedMotifs.py directs five FIMO default output
files (cisml.xml, fimo.gff, fimo.html, fimo.tsv, fimo.xml) to
one of two script-generated subdirectories, fimo out ref or
fimo out (Figure 3C). By default, FIMO reports TFBS
matches at a p-value threshold of 0.0001 (1e–4), but users
can adjust this threshold by adding the flag –thresh with a
revised value to the script’s FIMO operation call (details
for this and other flags can be found at http://meme-
suite.org/doc/fimo.html), or by using the variant script
CollatedMotifs-with user-set pval available in the GitHub
repository.

Collated TFBS losses and gains in ranked alleles

The distinctive output of CollatedMotifs.py is the collation
of TFBSs for reference sequence(s) and putative alleles. For
each sample-associated, ranked allele, CollatedMotifs.py
determines the appropriate user-supplied reference
sequence with which to pose a comparison (Figure 4).
For each sample ID, collated TFBS.txt reports a visual
mapping of (i) TFBSs new to each allele above the
alignment and (ii) TFBSs lost from each allele below
the alignment (e.g. ‘new TFBS’ and ‘lost TFBS’) (Figure
4D, Supplementary Figure S10). All inferred allele
alignment data and FIMO-identified TFBSs are archived
in collated TFBS.xlsx, an Excel file containing up to eight
tabbed worksheets that further organize interpretations
for TFBSs lost and/or gained across ranked alleles for
every sample. If users input the optional TF of interest,
CollatedMotifs.py will add worksheets that specifically

display alleles that have lost a TFBS for the specified TF,
with or without regain of an alternative TFBS for the same
TF or gain of a TFBS for a distinct TF (see Supplementary
Figure S10 for details).

The outputs of CollatedMotifs.py are well-documented,
evidence-based genotype inferences for deeply sequenced
amplicons established on frequency representations among
demultiplexed reads in fastq files. By applying comparison
of TFBS identification relative to user-provided reference
sequence(s), CollatedMotifs.py annotates each allele
alignment with TFBSs (and associated FIMO-defined
p-value matches to PWMs) collated as ‘lost’ or ‘new’.

Use case: Cas9-edited disruptions of glucocorticoid receptor-
bound loci near a glucocorticoid-regulated gene, FKBP5

As a use context and developmental proof of principle,
we used the 96 × 96 barcoded primers and the
three computational tools described here to identify
and characterize mutants among thousands of
Cas9-treated clones in the human adenocarcinoma
cell line A549, specifically seeking disruptions of
glucocorticoid receptor-occupied regions (GORs) near the
glucocorticoid-responsive gene FKBP5 (Gencode v32 gene
ENSG00000096060.14). FKBP5 is strongly glucocorticoid-
induced in many human cell types examined; in A549
cells, the FKBP5 gene body is characterized by promoter-
proximal and intronic (27) GORs (Figure 5A).

Glucocorticoid resistance in humans––associated with
recurring lifetime vulnerability to major depressive disorder
(MDD) and other brain diseases––is potentially associated
with higher induced levels of FKBP5 (28,29). Several GORs
proximal to FKBP5 house GR binding site (GBS) motifs
with high evolutionary conservation across 100 vertebrates
examined, suggesting early emergence of these sequences
in the vertebrate lineage and negative selection against
changes to these GBSs occurring across vertebrate lineages
and timespans approaching or exceeding 400 million years
(Supplementary Figure S11).

We examined consequences of individual disruptions
of eight GORs in a 1.5 Mb genomic region
(GRCh38/chr6:34,950,000–36,450,000), in which FKBP5
occurs as the only dexamethasone-responsive gene within
a putative topological domain comprising ∼400 kb
(chr6:35,339,500–35,740,000, and encompassing the
genes PPARD, FANCE, RPL10A, TEAD3, TULP1,
ARMC12). FKBP5 mRNA is induced ∼15-fold within 4 h
of dexamethasone (dex, a pharmaceutical glucocorticoid)
exposure (100 nM) (Figure 5C), the only gene body
affected >1.5-fold in this region (L. Pack & K. Yamamoto,
unpublished; (30)). In brief, Cas9 sgRNA sequences were
cloned downstream of a U6 promoter in a puromycin-
selectable vector expressing Streptococcus pyogenes Cas9,
producing functional Cas9 RNPs in vivo when transfected
into cells (RRID:Addgene 62988, procedure detailed
in Supplementary Methods); after puromycin selection,
single cells from Cas9-treated cell populations were FACS-
isolated into individual wells of ninety-six 96-well plates
for arrayed clonal expansion and amplicon barcoding
(Supplementary Methods, Supplementary Figures S5
and S7). Amplicons from 96-well plates were pooled and

http://meme-suite.org/doc/fimo.html
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sequenced on an Illumina MiSeq with excellent (>99%)
barcode pair detection across 9216 samples (Supplementary
Figures S12 and S13). A single list of 96 plate:barcode
relationships was prepared in plain text format to present
as [Data] input to SampleSheet.py; SampleSheet.py
rendered the Sample Sheet used for sequencing and
demultiplexing in 0.05 s (<2 min total user interaction with
script).

After sequencing and demultiplexing reads into 9216 × 2
(18,432 R1 + R2) fastq files containing sample read
content, fastq files were submitted to Genotypes.py in
batches corresponding to locus and sgRNA (i.e. individual
editing scenarios, 384–480 samples/768–960 fastq files
per batch). On a typical 2017 MacBook Pro laptop
with 16 GB RAM and a 4-core CPU, allele definitions
and inferred genotypes were completed for each batch
and returned in allele definitions.txt and genotypes.txt
within 1.2 min (mean), with population statistics
completed in population summary.txt in <20 s (total
genotype deduction and text file reports completed within
2 min); altogether, genotypes for 9216 samples were
complete within 35 min. Visual evidence in the form of
frequency plots (allele evidence.pdf) was completed within
6 h.

Despite low overall editing frequencies (1–10%
altered alleles across individual editing experiments,
Supplementary Figure S14) and generally small indels
at edited loci (e.g. generally < 5 bp, which would be
undetectable by typical gel-based fragment size analysis),
Genotypes.py readily identified clonal cell lines with
biallelic disruptions to the targeted GBS motif(s) for five
of the eight GORs. We selected clones based on mutant
genotypes at target GORs, and evaluated consequences
to FKBP5 regulation by RT-qPCR (Supplementary
Methods). Interestingly, most tested ablations did
not significantly impact dex-induced FKBP5 mRNA
accumulation (4 h) as measured by RT-qPCR. For example,
consider the GBS that underlies the GR ChIP-seq peak
summit at GOR + 86.85 kb, a GBS with high vertebrate
conservation and able to drive dex-induced luciferase
reporter expression when cloned upstream of a minimal
promoter and transfected into A549 cells. Clones with
either small (<5 bp) or larger (>60 bp) biallelic disruptions
within (small indels) or spanning (large deletions) the GBS
displayed little effect on dex-responsive FKBP5 mRNA
induction (Figure 5B and C; Supplementary Figure
S14).

The strong evolutionary conservation of the GBS
sequence implies that GOR + 86.85 kb is functional
in certain biological settings, although regulatory
activity displayed on a transiently transfected reporter
(Supplementary Figure S14, (4)) does not accurately
predict activity in the normal chromosomal context.
The more likely explanations are either assay context
or physiological context. The former recognizes that
we are measuring activity at a single time point after
treatment with a single dex concentration, whereas activity
might be evident in kinetic, time-course or dose-response
assays. Physiological context acknowledges that we are
seeking GOR activity in cultured A549 cells, whereas
function may reside in other cell types, in response

to alternative glucocorticoid ligands, in combination
with other signaling pathways, or in an organismal
context.

Additional interpretations emerged when we
batch-processed fastq files (384–480 files/batch) in
CollatedMotifs.py as for Genotypes.py. Within 5 min per
96-well plate, collated TFBS.txt and collated TFBS.xlsx
files mapped lost or gained matches for up to 519 vertebrate
TFs (JASPAR/JASPAR CORE 2016 vertebrates,
MEME) relative to inferred allele sequences; files
documenting TFBS for 9216 samples were complete
within 8 hrs. We found that despite the biallelic loss of the
native GBS targeted at GOR + 86.85 kb, the sequence
change at one of the alleles reconstituted a novel, alternative
GBS (Figure 5B and C, clone #1a). Moreover, we found
in other examples that particular FKBP5-associated GOR
alterations produced distinct regulatory consequences
correlated with differential loss and/or gain of binding
sites for non-GR TFBS motif matches. In one example,
a mutant with bi-allelic deletions at GOR –26.65 kb
appeared unaffected for FKBP5 induction at 1 nM and
100 nM dexamethasone (Figure 5D, clone #2a), whereas
another mutant homozygous for a single-bp insertion
(+1 bp) at the same GOR showed nearly ablated FKBP5
induction (Figure 5D, clone #2b; Supplementary Figure
S14). Closer analysis revealed that the mutant with ablated
FKBP5 induction produced a unique gain-of-function
that resulted in elevated pre-dex FKBP5 transcript levels
(Figure 5E).

Further evaluation with CollatedMotifs.py revealed that
although both clone #2a and #2b lost the native GOR
summit GBS as a consequence of Cas9 editing (Figure
5F, maroon arrows (‘lost GBS’) in top (clone #1) and
lower (clone #2) panels), the homozygous insertion in
clone #2 uniquely reconstituted a novel GBS (Figure 5F,
red arrow (‘new GBS’) in lower panel). Moreover, clone
#2b acquired sequence matches to Sox2 and DMRT3
binding motifs consequent to the +1 bp insertion within
this GOR (Figure 5F, lower panel). Identification of the
‘new Sox2’ site (Figure 5F blue arrow in lower panel)
associated with an FKBP5 transcriptional phenotype is
particularly interesting, as Sox2––a TF typically associated
with stemness––is neomorphically overexpressed in many
lung carcinomas (relative to adjacent normal lung tissue),
including A549 (31,32).

These results highlight that even simple Cas9 edits
can be associated with distinct transcription regulatory
consequences, potentially illuminated by mutation-specific
TFBS alterations that could render distinct functionalities
(e.g. amorphic, neomorphic or inconsequential outcomes)
to response elements under evaluation. Similarly, in
other examples, small indels that successfully ablated the
GBS native to the GOR summit commonly introduced
a novel alternative GBS (across five FKBP5 GORs
and fourteen guide RNAs for which edited alleles were
recovered, 14–60% of alleles that lost a native GBS
reconstituted a novel substitute GBS, Supplementary
Figure S15). As noted below, such novel GBSs
produce altered contexts that may prove informative
in studies that explore GBS sequence-selective GRE
mechanisms.
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Figure 5. Use case: evaluation of Cas9-altered loci occupied by human glucocorticoid receptor (GR) near a glucocorticoid-regulated gene, FKBP5. (A)
top panel, GR ChIP-seq (A549 ± 100 nM dex, 1.5 h) indicating eight intronic and promoter-proximal dex-dependent GR-occupied regions (GORs (yellow
circles)) in vicinity of dex-induced FKBP5; GOR coordinates defined as peak summit distance from FANTOM5-defined TSS for FKBP5 transcript variant
1 (RefSeq NM 004117, coordinates chr6:35,688,937 in GRCh38) (36); lower panel, zoom-in of region comprising GOR4-8; (B) regulatory analysis (fold
change (log2) of mRNA levels) for five dex-responsive genes (FKBP5 and four control genes on separate chromosomes, ANKRD1, PER1, SCNN1A, IL8)
sampled from A549 (wild-type and GOR mutants) ±1 nM and 100 nM dex, 4 h (RT-qPCR, ��CT dex relative to ethanol control, n = 3, mean ± sd), for
wild-type compared to two clones with biallelic disruption to the GBS at GOR2 (+86.85 kb) peak summit: Clone #1a (biallelic � in GBS) and Clone #1b
(biallelic � across entire GBS); (C) CollatedMotifs.py TFBS annotations in ��+86.85 kb clone #1a show that both alleles lose native GBS (maroon arrow,
lost GBS), but one allele reconstitutes a novel GBS (red arrow, new GBS); (D) Clones #2a and #2b (biallelic � and homozygous + 1 bp in GBS at GOR4
(-26.65 kb) peak summit) exhibit distinct regulatory consequences for FKBP5 induction, unique among evaluated genes; (E) �CT analysis (CT FKBP5 –
CTgeometric mean for three reference controls (GAPDH, HBMS, RPL19)) indicating basal (EtOH control) and induced (+dex) levels (n = 3, mean ± SD)
indicates that loss of FKBP5 dex induction in ��-26.65 kb clone #2b is partly attributable to increased baseline (EtOH) transcript level (arrow) relative
to wild-type (n = 3, mean ± SD); (F) CollatedMotifs.py TFBS annotations in ��–26.65 kb clones #2a versus #2b show that both clones lose native GBS
(maroon arrow, lost GBS), but clone #2b reconstitutes a novel GBS (red arrow, new GBS). Furthermore, clone #2b also exhibits TFBS for novel TFs
(e.g. blue arrow, new Sox2), suggesting an avenue to further examine––and potentially explain––ostensible mutation-specific regulatory phenotypes for
response elements under study.
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DISCUSSION

We have described three Python programs (https:
//github.com/YamamotoLabUCSF), which will be of value
to researchers who prepare amplicons for targeted SBS on
Illumina® platforms: SampleSheet.py, Genotypes.py, and
CollatedMotifs.py. These tools were developed in particular
to facilitate analysis of edits targeted by programmable
nucleases to genomic response elements––chromosomal
regions that confer transcriptional regulation, each
containing clusters of TFBSs potentially occupied by
context-specific combinations of DNA sequence-specific
TFs. The tools could also be useful in population studies
that explore natural selection, sequence diversity, and
allelic TFBS/co-TFBS coevolution.

A tool set for TFBS analysis

Several other useful computational and experimental
tools aid in the identification, processing, and analysis
of altered genomic sequences. Dual-index barcoding
system workflows (9,33) as well as computational analysis
software packages (10–17) allow for aggregate analyses
of populations of cells with sequence diversity by next
generation sequencing. To our knowledge, however, the
suite of programs and experimental procedures presented
here is the only pipeline to use a dual-index deep sequencing
approach to examine genomic sequence variations for up
to 9216 samples for alterations in TFBS motifs in a single
experiment. Identifying changes in TFBS landscape is
an essential step in directly linking sequence variation
with potential mechanism and phenotypic outcome.
ENCODE (34) catalogues genome-wide positions for
tens of thousands of these TFBS-rich putative response
elements, but few such loci have been functionally validated
in vivo. In principle, editing enables genetic analysis of sub-
regional function within and across candidate response
elements, including query of individual TFBSs; automated
collation of lost and gained TFBSs can inform selection of
clones for analysis, as well as guide hypotheses for further
study.

Tools to probe potential response element function

To validate the functionality of the suite of tools, we used
a CRISPR/Cas9 approach, targeting GORs in A549 cells
and generating hundreds of independent mutant clones.
Although the specific position of a Cas9 cut can be
predicted, the exact nature of the resulting indel cannot. It
is therefore important to screen a large number of real edits
to identify potentially informative mutant clones. Using the
programs described here, we found that small (e.g. 1–5 bp)
genomic edits in candidate response elements frequently
changed not only the GR recognition sequence(s) targeted
for genetic evaluation, but also, recognition motifs for
other TFs. In some cases, small indels transfigured one
GR recognition sequence (GBS) for another (Figure 5);
precise sequence conservation of GBSs in many putative
GREs implies that even simple transfigurations may be
illuminating when examined in more complex cellular
or signaling contexts. These results demonstrate that it

is essential to define in detail the edits that occur in
candidate response elements. Recent innovations in Cas9-
directed editing, such as prime editing (35), which stipulates
both target site and intended edit, should prove helpful,
as sequence alterations delivered to candidate response
elements can be pre-screened in silico for collateral TFBS
alterations using CollatedMotifs.py.

Applications to genome editing

Editing frequencies by programmable nucleases can
vary dependent on locus, cell type, editing technology
(e.g. TALENs versus CRISPR/Cas9), guide RNA sequence
(for RNA-directed nucleases), and delivery mechanism
(e.g. lipofection, nucleofection or viral delivery of DNA
expression constructs or protein/ribonucleoprotein
complexes), commonly demanding the screening of
hundreds or thousands of candidates to identify rare
clonal populations that harbor desired/desirable alleles,
genotypes and zygosities (e.g. homozygous or biallelic
mutants). Whereas small indels (1–10 bp, or allelic
differences without base loss or gain) are not easily
resolved by fragment analysis (such as by amplicon gel
electrophoresis) or enzymatic assays, larger indels can
be flagged by electrophoretic amplicon size differences;
canvassing hundreds or thousands of amplicons is
not amenable to high throughput, however, without
specialized technologies such as the ZAG DNA Analyzer
System (Agilent). Moreover, fragment analysis does not
return allele identities, whereas the basis of screening
in a deep sequencing approach is genotype definition.
Genotypes.py excels at allele definition for a broad range
of indel sizes: e.g. indels spanning ≤60 bp (intrinsic to the
BLASTN algorithm) as well as indels approaching 100’s
of bp (drawing on reference sequence spans retrieved by
BLASTDBCMD), accomplishing genotype definition in
concert with rare-clone screening.

Employment of these resources outside of genome editing

While we employed our three new computational tools
to a Cas9-editing workflow targeting candidate genomic
response elements, the scripts are applicable to any
scenario calling for locus-specific assignment of allele
definitions and genotype inferences to individual members
of a potentially diverse population, e.g. sequencing of
single or multiple loci amplified from cell lines, tumor
biopsies, cell-free DNA samples, viral passages, or
individuals in a population. Illumina® SBS is broadly
amenable to paired-end sequencing of amplicons that
canvas alleles with larger indel size variation than those
described here (Supplementary Figure S8). We envision that
SampleSheet.py and the 96 × 96 i5/i7 barcoded primers
may be of broadest utility to users who sequence pooled,
PCR-amplified material from large populations of discrete
entities and wish to back-track sequence properties to their
sources; that Genotypes.py may be useful for those who
need rapid distillation of allele definitions and hypothesized
genotype(s) for samples of known biological origin
(i.e. with reference sequences available for alignment); and
that CollatedMotifs.py may be of utility for users interested

https://github.com/YamamotoLabUCSF
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in an overview of TFBS differences resulting from genetic
differences in experimental samples relative to a reference
sequence, potentially aiding understanding of molecular
phenotypes (hypothesis generation) or prioritization of
clone choice/selection for further experimental analysis.

Open source program files, annotated Jupyter
Notebooks, and Open Virtualization Format file for
all code are available for download, enabling users to
edit and tailor for customized goals, preferences and
applications.

DATA AVAILABILITY

Code for SampleSheet.py, Genotypes.py, and
CollatedMotifs.py are available as annotated Jupyter
Notebook (.ipynb) and program (.py) files at
https://github.com/YamamotoLabUCSF, and pre-
compiled in an Open Virtualization Format directory for
virtualization at https://doi.org/10.5281/zenodo.3406861.
Sample datasets analyzed in the current study are
available as examples in the Zenodo repository
https://doi.org/10.5281/zenodo.3406861. These resources
include the list of sample:barcode assignments, fastq
files, GRCh38 reference genome, fasta file of reference
sequences, and TFBS file with position frequency matrices
underlying these examples, along with sample output
files; users can recapitulate generation of the Sample
Sheet that demultiplexed reads from these clones as a
test of SampleSheet.py, and for a subset of fastq files
(corresponding to Cas9 edits targeted to GOR +86.85 kb)
can recapitulate generation of the inferred genotypes
and associated files as a test of Genotypes.py, and can
recapitulate comparison of TFBS motifs as a test of
CollatedMotifs.py. Raw fastq and processed (bigWig)
GR ChIP-seq datasets from which FKBP5 GORs were
identified in A549 are available in the NCBI Gene
Expression Omnibus (GSE163398).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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10. Güell,M., Yang,L. and Church,G.M. (2014) Genome editing
assessment using CRISPR Genome Analyzer (CRISPR-GA).
Bioinformatics, 30, 2968–2970.

11. Xue,L.-J. and Tsai,C.-J. (2015) AGEseq: analysis of genome editing
by sequencing. Mol Plant, 8, 1428–1430.

12. Pinello,L., Canver,M.C., Hoban,M.D., Orkin,S.H., Kohn,D.B.,
Bauer,D.E. and Yuan,G.-C. (2016) Analyzing CRISPR
genome-editing experiments with CRISPResso. Nat. Biotechnol., 34,
695–697.

13. Wang,X., Tilford,C., Neuhaus,I., Mintier,G., Guo,Q., Feder,J.N. and
Kirov,S. (2017) CRISPR-DAV: CRISPR NGS data analysis and
visualization pipeline. Bioinformatics, 33, 3811–3812.

14. Park,J., Lim,K., Kim,J.-S. and Bae,S. (2017) Cas-analyzer: an online
tool for assessing genome editing results using NGS data.
Bioinformatics, 33, 286–288.

15. Boel,A., Steyaert,W., De Rocker,N., Menten,B., Callewaert,B., De
Paepe,A., Coucke,P. and Willaert,A. (2016) BATCH-GE: batch
analysis of Next-Generation Sequencing data for genome editing
assessment. Sci. Rep., 6, 30330.

16. Hwang,G.-H., Park,J., Lim,K., Kim,S., Yu,J., Yu,E., Kim,S.-T.,
Eils,R., Kim,J.-S. and Bae,S. (2018) Web-based design and analysis
tools for CRISPR base editing. BMC Bioinformatics, 19, 542–547.

17. Connelly,J.P. and Pruett-Miller,S.M. (2019) CRIS.py: a versatile and
high-throughput analysis program for CRISPR-based genome
editing. Sci. Rep., 9, 4194–4198.

18. Brinkman,E.K., Chen,T., Amendola,M. and van Steensel,B. (2014)
Easy quantitative assessment of genome editing by sequence trace
decomposition. Nucleic Acids Res., 42, e168.

https://github.com/YamamotoLabUCSF
https://doi.org/10.5281/zenodo.3406861
https://doi.org/10.5281/zenodo.3406861
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkab700#supplementary-data


Nucleic Acids Research, 2021, Vol. 49, No. 16 9131

19. Brinkman,E.K. and van Steensel,B. (2019) Rapid quantitative
evaluation of CRISPR genome editing by TIDE and TIDER.
Methods Mol. Biol., 1961, 29–44.

20. Ran,F.A., Hsu,P.D., Wright,J., Agarwala,V., Scott,D.A. and Zhang,F.
(2013) Genome engineering using the CRISPR-Cas9 system. Nat.
Protoc., 8, 2281–2308.

21. Cock,P.J.A., Fields,C.J., Goto,N., Heuer,M.L. and Rice,P.M. (2010)
The Sanger FASTQ file format for sequences with quality scores, and
the Solexa/Illumina FASTQ variants. Nucleic Acids Res., 38,
1767–1771.

22. Kluyver,T., Ragan-Kelley,B., Pérez,F., Granger,B., Bussonnier,M.,
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