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ABSTRACT
Background. Vaginal lubrication is a crucial physiological response that occurs at the
beginning of sexual arousal. However, research on lubrication disorders (LD) is still in
its infancy, and the role of long non-coding RNAs (lncRNAs) in LD remains unclear.
This study aimed to explore the function of lncRNAs in the pathogenesis of vaginal LD.
Methods. The expression profiles of LD and normal control (NC) lncRNAs were
examined using next-generation sequencing (NGS), and eight selected differentially
expressed lncRNAs were verified by quantitative real-time PCR. We conducted GO
annotation and KEGG pathway enrichment analyses to determine the principal func-
tions of significantly deregulated genes. LncRNA-mRNA co-expression and protein-
protein interaction (PPI) networks were constructed and the lncRNA transcription
factors (TFs) were predicted.
Results. From the results, we identified 181,631 lncRNAs and 145,224 mRNAs in
vaginal epithelial tissue. Subsequently, our preliminary judgment revealed a total of
499 up-regulated and 337 down-regulated lncRNAs in LD. The top three enriched GO
items of the dysregulated lncRNAs included the following significant terms: ‘‘contractile
fiber part,’’ ‘‘actin filament-based process,’’ and ‘‘contractile fiber’’. The most enriched
pathways were ‘‘cell-extracellular matrix interactions,’’ ‘‘muscle contraction,’’ ‘‘cell-
cell communication,’’ and ‘‘cGMP-PKG signaling pathway’’. Our results also showed
that the lncRNA-mRNA co-expression network was a powerful platform for predicting
lncRNA functions. We determined the three hub genes, ADCY5, CXCL12, and NMU,
using PPI network construction and analysis. A total of 231 TFs were predicted
with RHOXF1, SNAI2, ZNF354C and TBX15 were suspected to be involved in the
mechanism of LD.
Conclusion. In this study, we constructed the lncRNA-mRNA co-expression network,
predicted the lncRNA TFs, and comprehensively analyzed lncRNA expression profiles
in LD, providing a basis for future studies on LD clinical biomarkers and therapeutic
targets. Further research is also needed to fully determine lncRNA’s role in LD
development.
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INTRODUCTION
Female sexual dysfunction (FSD) is a complex pelvic floor disease with an incidence of
25%–63% globally and 37.6% in China (Ma et al., 2014). FSD can significantly affect
women’s physical and mental health, and it can even affect their sexual partners, leading
to feelings of mutual alienation (Amidu et al., 2010; Kammerer-Doak & Rogers, 2008;
Laumann et al., 2005). Once a neglected subject, FSD is now being studied by a growing
number of researchers who have found that its incidence is even higher than that of male
sexual dysfunction (Nazareth, Boynton & King, 2003).

Vaginal lubrication is an essential physiological response during sexual arousal, and
its dysfunction can lead to several problems including orgasm disorder and sexual pain
(Munarriz et al., 2002). Vaginal lubrication disorder (LD), a type of sexual dysfunction
that is mainly defined as the inability to elicit vulvar swelling or vaginal lubrication
responses to any type of sexual stimulation, falls under the category of a genital sexual
arousal disorder (Yildiz, 2015). In China, it is the most common type of FSD, accounting
for approximately 97.9% of the total incidence of FSD (Ma et al., 2014). From limited
literature on this subject, there is an evidence that capillary fluid in the submucosa
and mucous that is secreted by the cervical and periurethral glands are involved in the
vaginal lubrication process. The epithelial tissue is responsible for the transportation
and rationing of ions and water molecules and plays an important role as the final
gatekeeper of vaginal lubrication (D’Amati et al., 2003; Pastor & Chmel, 2018; Shabsigh et
al., 1999). The role of fluid transport in vaginal lubrication, mainly in the transport of small
molecules such as water, glycerol, and ions, has been explored in recent studies (Gorodeski,
2005; Sun et al., 2014). Our group identified miR-137 and its downstream effector AQP2
as important molecules involved in the regulation of vaginal lubrication (Zhang et al.,
2018). Additionally, we also previously explored the differentially expressed circRNAs
in women with vaginal LD, constructed a circRNA-miRNA-mRNA network, and found
that hsa-miR-212-5p and hsa-miR-874-3p were associated with LD development (Cong
et al., 2021; Zhang et al., 2019). These results provided some molecular basis and clues for
understanding the development of vaginal LD. However, vaginal LD needs to be explored
in more depth as existing treatments still leave much to be desired (Li, 2014).

Long non-coding RNA (lncRNA) is a class of endogenous non-coding RNA located in
the nucleus or cytoplasm. They are the transcripts that more than 200 nucleotides long
and similar to mRNA in structure but lack the ability to encode proteins (Mercer, Dinger
& Mattick, 2009). Studies have shown that lncRNAs are involved in regulating epigenetic
inheritance (Tsai et al., 2010), the cell cycle (Wang et al., 2019), and cell differentiation
(Fatica & Bozzoni, 2014). There malfunction are closely related to the occurrence and
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development of tumors and diseases such as Alzheimer’s (Ponting, Oliver & Reik, 2009;Qiu
et al., 2013; Yang et al., 2014). With recent developments in high-throughput sequencing
and gene chip technology, some lncRNAs have been found to be closely associated
with the development of vascular-derived diseases, including diabetes (Ma et al., 2020),
hypertension (Shen et al., 2020), atherosclerosis, (Guo et al., 2019), coronary heart disease
(Xu et al., 2020a), erectile dysfunction (Cong et al., 2020), and pre-eclampsia (Lei et al.,
2021). The physiological mechanism that triggers vaginal lubrication reveal that it is
dependent on vascular function, but the lncRNA profiles in vaginal LD remain unknown.
Expanding our understanding of the lncRNAs involved in vaginal LD will have a profound
impact on the development of FSD therapies.

The purpose of this study is to screen and study the differential expression of
lncRNAs in women who have and do not have vaginal LD in order to further explore its
pathophysiological mechanism and to find effective biomarkers and therapeutic targets.

METHODS & MATERIALS
Patient information and sample collection
Our study received approval from the Medical Ethics Committee of the Women’s Hospital
of Nanjing Medical University (Ethic of Maternity [2014] No.66). The patients who
participated in this study read the research purposes and methodology, then provided
written consent. Taking feasibility and convenience into account, vaginal epithelial tissues
were obtained from patients who were undergoing vaginal tightening procedures. Before
operation, we scored and diagnosed vaginal LD based on our previous research (Ma et al.,
2014). Vaginal epithelial tissues were obtained during the operation and were immediately
preserved in liquid nitrogen and then transferred to 80 ◦C until RNA extraction. We
selected six women with vaginal LD and six women without vaginal LD by convenience
sampling. The subjects were all Han Chinese adult female who were planning to undergo
vaginal tightening surgery, did not have other gynecological diseases, and had received
secondary education or higher that can clearly understand and cooperate with the research.
By the way, in view of the fact that premenopausal or menopausal women may have
endocrine disorders that may lead to reduced vaginal secretions and vaginal lubrication
disorders (Al-Azzawi & Palacios, 2009; Farr et al., 2015; Hall & Phillips, 2005), the patients
selected for this study were young women aged around 35 years. The specimens for the
transcriptomic analysis were selected from patients of similar age.

RNA isolation
The total RNA of the vaginal epithelial tissues was extracted with Trizol (Tiangen, Beijing,
China) according to the manufacturer’s instruction. RNA quality and quantification were
measured using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA). The Qubit RNA Assay Kit and the Qubit Fluorometer (Invitrogen, Waltham, MA,
USA) were used for measuring the RNA concentration. The samples were set aside for
follow-up experiments only when the RNA integrity number (RIN) was greater than or
equal to 7.0 and when there was a 28S:18S ratio greater than or equal to 1.5. The required
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starting amount was between 3 to 4 ug. The starting total RNAs were accurately quantified
with the Qubit RNA Assay Kit.

cDNA library preparation and sequencing
CapitalBio Technology (Beijing, China) sequenced and generated the sequencing library,
and we dislodged rRNAs from the total RNAs using the Ribo-ZeroTM Magnetic Kit
(Epicentre, Madison, WI, USA). Using the 5× NEBNext First-Strand Synthesis Reaction
Buffer (New England Biolabs, Ipswich, MA, USA), we determined that the RNA fragment
length was ∼200 base pairs and the first strand was synthesized using reverse transcriptase
and random hexam-eric primers. We then used the 10× Second Strand Synthesis Reaction
Buffer with dUTPMix (New England Biolabs, Ipswich, MA, USA) to synthesize the second
strand cDNA. Repairing the end of the cDNA fragment involved adding a single ‘‘A’’ base
and then ligaturing the adapters. The library DNA was amplified through a polymerase
chain reaction (PCR) to purify and enrich products. The final libraries were qualified and
quantified using Agilent 2100 and the KAPA Library Quantification kit (KAPA Biosystems,
Cape Town, South Africa). Finally, the library was paired-end sequenced on the Illumina
HiSeq sequencer (Illumina, San Diego, CA, USA) with a 150-base pair reading length.

Identifying differentially expressed genes (DEGs)
We calculated and analyzed the differential genes between the LD and control groups
using the Limma package. We then used t-tests and fold-change (FC) to analyze the
significance of gene expression between vaginal epithelial tissues of women with LD and
the healthy control, and used the ggplot2 to package plot differential volcanoes to visualize
the expression of differential genes. We used the following criteria: |log2FC|≥1 and p-value
< 0.05. The DEGs were screened using the hierarchical clustering method, and the genes
with identical or similar expression behavior were clustered together.

Quantitative real-time reverse transcription PCR
To check the sequencing data, we used quantitative real-time reverse transcription
PCR (RT-qPCR) to select eight differentially expressed lncRNAs across the two
groups as verification of objects. Primers were designed using Primer Premier6
(http://www.premierbiosoft.com/primerdesign/index.html) and were carried out using the
Basic Local Alignment Search Tool (BLAST) from NCBI to make a unique amplification
product. We also validated the expression trends of the top 20 significantly differentially
expressed lncRNAs and mRNAs using RT-qPCR. Quantitative real-time RT-PCR
was performed using the SYBR green operational method and the manufacturer’s
comprehensive instructions. The PCR reaction system (20 µl) consisted of: 10 µl ChamQ
Universal SYBR qPCR Master Mix (2×, Cellagen Technology, San Diego, CA, USA),
0.4 µl upstream primers (10 µmol/L), 0.4 µl downstream primers (10 µmol/L), 1.0 µl
cDNA template, and ddH2O, repeated three times for each group. The RT-qPCR reaction
conditions were: denaturation at 95 ◦C for 30 s, followed by 40 PCR cycles at 95 ◦C for
10 s, and 60 ◦C for 30 s. The relative gene expression levels were quantified in accordance
with the cycle threshold (Ct) values and were suitably normalized to the GAPDH internal
parameter using the 2−11Ct (Livak) method (Schmittgen & Livak, 2008).
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Gene ontology (GO) and pathway analysis
We used GO analysis to determine the functional properties of DEGs. The candidate genes
were used to cast light upon GO terms in the database (http://www.geneontology.org/).
Pathway analysis can be used to show the DEGs in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. The p-value showed the significance of the pathways and GO
terms; the threshold value of P is 0.05 and a lower p-value represents a more significant
pathway or GO term.

Construction of lncRNA-mRNA co-expression network
The construction of a co-expression network of the coding-non-coding gene intuitively
showed the correlation between lncRNAs and mRNAs. Pearson correlation analysis was
used on the expression of differentially expressed lncRNAs andmRNAs, and we selected the
lncRNA-mRNA pairs with absolute values of Pearson correlation coefficient (|PCC|)>0.99
and P<0.05. Cytoscape software was used to map the lncRNA-mRNA co-expression
network.

Construction of protein-protein interaction networks
STRING (version 11.0, http://string-db.org) is an online tool for evaluating protein-protein
interaction (PPI) information. Cytoscape is commonly used to visualize complex networks
and its plug-in, CytoHubba, can be used to calculate gene yield values and screen for hub
genes. The 499DEGswere first imported into STRING to obtain their interactions, and then
the remaining interactions were imported into Cytoscape. We used a combined score for
the protein relationships. When the combined score between the two proteins was greater
than the set threshold, the pair was extracted if both proteins were significantly different
in the comparison. The top 10 genes were calculated from the protein interaction network
using CytoHubba and the degree algorithm, the MCC algorithm, the EPC algorithm, and
the MNC algorithm. Finally, the top 10 genes from all four algorithms were selected as the
core genes after taking the intersection from the Venn diagram. We used the SPSS 26.0 to
plot ROC curves and evaluated the diagnostic performance of each core gene by calculating
the area under the ROC curve (AUC). A core gene was considered to have good diagnostic
performance when the AUC value was >0.7.

Transcription factor (TF) prediction for differential lncRNAs
Specific binding of TFs to regions regulating gene expression was an important mode of
gene expression regulation. TF prediction was performed using the JASPAR database and
TFBSTools, which gave the binding site, direction, and scoring of TFs within regions 2,000
bp upstream and 500 bp downstream from the start of each lncRNA.

Western blot
Total protein was obtained using RIPA buffer with cocktail inhibitors (Cell Signaling Tech,
USA). Protein concentration was measured using a BCA kit (Pierce, USA). Equal amounts
of protein were separated with PVDF membranes (AmerSham, USA). The membranes
were blocked in 5% skim milk in Tris Buffered Saline with Tween R© 20 (TBST) for 2 h and
then incubated overnight at 4 ◦C with primary antibodies. The membranes were washed

Zhang et al. (2021), PeerJ, DOI 10.7717/peerj.12485 5/26

https://peerj.com
http://www.geneontology.org/
http://string-db.org
http://dx.doi.org/10.7717/peerj.12485


with TBST by three times and incubated with horseradish peroxidase-conjugated secondary
antibody for 2 h at room temperature. Blots were developed using a chemiluminescence
kit (Pierce, USA) and exposed to X-ray film.

Data analysis
FastQC was employed to evaluate the quality of raw data sequencing in fastqc format, and
NGSQL was used to filter the low-quality data. With the default parameters of Tophat2,
the high-quality clean reading was aligned to the reference genome, using the human
genome HG19 (UCSC) as a reference genome. We used Cufflinks and Cuffmerge software
on the assembly of transcripts. Using the transcript results, all lncRNAs and mRNAs were
compared and analyzed. mRNA and lncRNA transcripts were processed as known mRNAs
or lncRNAs and annotated using the public database. When forecasted to be a non-coding
RNA, the sequence length was greater than 200, and the new transcript was deemed as
a new lncRNA. We used limma package and edgeR to carry out differential expression
analysis. Based on the sequence similarity and location on the reference genome, we applied
cis- and trans- patterns to forecast the lncRNA target genes.

RESULTS
General characteristics of the lncRNA and mRNA in vaginal LD
Based on the quality-controlled of the authoritative databases, 181,631 lncRNAs and
145,224 mRNAs in 6 lubrication disorder samples and paired healthy samples were
constructed. The hierarchical clustering (Figs. 1A and 1B) and scatterplot (Figs. 1C and
1D) showed the differential expression of lncRNAs and mRNAs between LD group and
the control group. In comparison with the control, we confirmed that 499 lncRNAs
were up-regulated and 337 were down-regulated in all in LD (|log2FC| ≥1 and p-value
< 0.05) (Fig. 1F). The top 20 significantly deregulated lncRNAs are shown in Table 1.
It was shown that the expression levels of differentially expressed lncRNAs were fully
capable of differentiate lubrication disorder samples and normal samples. The top 20
significantly deregulated mRNAs are shown in Table 2. Figure 1E showed the distribution
of all identified lncRNAs between LD and NC groups. Furthermore, these up- and down-
upregulated lncRNAs were spread over the genome and overlapped all chromosomes.
These observations suggest that the landscape of the entire transcriptome during LD
development may be reshaped by a potential dynamic interaction between lncRNAs and
coding RNAs.

Verification of candidate dysregulated lncRNAs
We validated the transcriptome results using an additional 6 specimens (3 LD vs. 3 NC).
Eight differentially expressed candidate lncRNAs from the sequencing data, including
four up-regulated lncRNAs (MERGE.45744.1, MERGE.25323.3, MERGE.19926.6,
and NONHSAT258741.1) and four down-regulated lncRNAs (NONHSAT094312.2,
MERGE.50943.3,NONHSAT227852.1,MERGE.49777.1), were selected to validate through
RT-qPCR. All selected lncRNAs have an expressed fold-change of over 7 and the primers
used in this study are shown in Table 3. The results of RT-qPCR showed that the expression
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Figure 1 LncRNA andmRNA expression changes profiles in vaginal lubrication disorders (LD). (A &
B) The hierarchical clustering analysis of significantly up-regulated or down-regulated lncRNAs and mR-
NAs, respectively. (C & D) The scatterplots for differentially expressed lncRNAs and mRNAs, respectively.
The scatterplots were generated using—|log2FC|—≥ 1 and p-value< 0.05. The red dots in the figure rep-
resent the up-regulated lncRNAs and mRNAs that are statistically significant, while the green dots repre-
sent the down-regulated ones. (E) Distrubution of all identified circRNAs between the LD and NC groups.
(F) The number of differentially expressed lncRNAs and mRNAs.

Full-size DOI: 10.7717/peerj.12485/fig-1
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Table 1 The top 20 deregulated lncRNAs in lubrication disorders (LD).

LncRNA Regulation Track gene LogFC P value Preidicted TFs qPCR fold
change

MERGE.13308.8 up MERGE.13308 18.59021095 2.70E−03 DLX6, RBPJ, NFATC2, BSX, UNCX,
MZF1, ISX, MSX2, RAX2, RHOXF1,
NFIX, PRRX1, NFIA, BARX1, SHOX,
ZNF354C, STAT3

9.226425384

MERGE.14929.5 up MERGE.14929 15.45704606 7.38E−03 MZF1, TCF3, ZNF384, FOXL1,
SNAI2, SPIB, TFE3, TEAD3, TCF4,
RHOXF1

7.479190782

NONHSAT234217.1 up MERGE.17169 14.22167555 1.02E−02 ZNF354C, DLX6, MEIS1 4.986763369
MERGE.29036.1 up MERGE.29036 12.08543036 1.90E−02 KLF16, SP1, SP8, RHOXF1, SP3,

DLX6, SPIB, MEIS1, MZF1
5.037770479

MERGE.62067.1 up MERGE.62067 11.08023213 1.37E−03 MEIS1, RAX2, MSX1, FOXD2,
RHOXF1, EN1, NFATC2, FOXI1,
FOXG1, FOXP3, KLF5, BARX1,
FOXL1, ISX, ZNF384, LBX2,
ZNF354C, MSX2, FOXD1, FOXO3,
SHOX, FOXO4, BSX, MYB, SPIB,
MZF1, FOXO6, DLX6, LHX9

5.631547226

NONHSAT258741.1 up MERGE.62035 11.06269073 3.08E−02 FOS, TCF3, BARX1, SNAI2, MEIS1,
MZF1, ZNF740, VAX2, SPIB,
ZNF354C, VAX1, RUNX3, FIGLA,
RHOXF1, MNX1, NKX6-2, HOXA5,
PDX1, CDX1, MYB, DLX6, NKX6-1

4.686123849

MERGE.19926.6 up MERGE.19926 11.04714822 4.75E−04 ZNF384, TCF3, NFYA, TCF4, KLF5,
HIF1A, THAP1, BARX1, MEIS1,
OTX2, SP1, ZNF354C, RHOXF1,
MZF1, ARNT::HIF1A

2.970739229

MERGE.25323.3 up MERGE.25323 10.73936911 4.19E−02 NR4A2, SNAI2, FOSL1, MZF1, RBPJ,
NFIA, NFIX, JUNB, ZNF354C, MYB,
HIC2, FOSL2, RHOXF1

4.04161483

MERGE.59325.11 up MERGE.59325 10.64785935 3.51E−08 MSX2, GATA5, UNCX, KLF5,
RAX2, TBX15, MGA, PRRX1, TBX1,
CEBPA, LHX9, TBX5, ZNF384,
FIGLA, MEIS1, ISX, MZF1, RHOXF1,
BARX1, TBX4, MSX1, NFATC2,
ZNF354C, DLX6, POU3F4, SHOX,
BSX, SPIB

3.606962335

NONHSAT227526.1 up MERGE.5169 10.47424434 1.79E−05 NKX6-2, VAX1, TEAD3, BSX,
TBX15, VAX2, MZF1, TBX1, SREBF1,
FOS, RBPJ, TBX4, FOXG1, NFIX,
KLF5, TBX5, SREBF2, NKX6-1,
MSX1, MSX2, SP1, FOXL1, TBX21,
ZNF354C, DLX6, NFIA, PDX1,
RHOXF1, MEIS1, MGA

2.113818893

(continued on next page)
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Table 1 (continued)

LncRNA Regulation Track gene LogFC P value Preidicted TFs qPCR fold
change

MERGE.19364.3 down MERGE.19364 −11.4609105 3.18E−02 HOXB3, VAX2, VSX1, NFIA, TFAP2C
(var.2), ZNF384, PDX1, RHOXF1,
DLX6, YY1, GATA5, GATA3, STAT3,
TFAP2A, ZNF354C, VSX2, TFAP2B
(var.2), VAX1, EN1, NR4A1

0.250934797

NONHSAT094312.2 down MERGE.42993 −11.2139755 3.36E−06 BHLHE22, MYB, RELA, RHOXF1,
MZF1, GATA5, BHLHE40, FOXL1,
ZNF354C, NFIA, NFIX, TFE3,
GATA3, SPIB, GATA6, MEIS1

0.216712247

NONHSAT237433.1 down MERGE.26394 −10.4010082 7.94E−06 NKX2-8, ZNF354C, MZF1, RHOXF1,
FOXH1, ZNF384, SPIB, NFATC2,
FOXO6, NFIX, FOXL1, FOXP3,
GATA5, FOXI1, FOXO4, BARX1,
GATA3, MEIS1, FOXD2, OTX1,
OTX2, PITX3, HOXA5

0.37435834

MERGE.22093.11 down MERGE.22093 −10.112809 2.06E−02 DLX6, MEIS1, LHX9, RAX2, MSX1,
UNCX, MIXL1, BARX1, LBX1, MSX2,
ISX, BSX, PDX1, OTX2, ZNF354C,
ZNF384, SHOX, NKX6-2, NKX6-1,
RHOXF1, MYB, TCF4, TCF3, MNX1,
PRRX1, HOXA5, MZF1

0.263678391

MERGE.13442.1 down MERGE.13442 −10.0134944 1.90E−07 NFATC2, SPIB, ZNF384, MEIS1,
MZF1, KLF5, RHOXF1, MEIS3,
STAT3, MEIS2, ZNF354C, STAT1

0.520026317

MERGE.50943.3 down MERGE.50943 −9.99578708 4.32E−02 BARX1, FOXO4, MEIS3, RHOXF1,
ZNF354C, UNCX, FOXI1, ZNF384,
MEIS2, TEF, MEIS1, LMX1A,
FOXG1, FOXO3, FOXD1, FOXP3,
FOXD2, ISX, LMX1B, FOXO6,
SHOX, NFATC2, MIXL1, MZF1,
FOXL1

0.425092965

MERGE.43176.6 down MERGE.43176 −9.98923044 7.24E−04 ID4, NFIA, MYC, KLF5, SPIB,
TEAD3, ZNF354C, SNAI2, MEIS1,
SP1, NFIX, MZF1

0.247329872

MERGE.791.7 down MERGE.791 −8.79298043 2.26E−04 GATA5, FOXO6, SPIB, FOXO4,
KLF5, MYB, RHOXF1, FOXI1, TCF4,
FOSL2, FOXD2, ARNT::HIF1A,
NRF1, GATA3, MZF1, FOSL1, SP1,
NFIX, JUNB, ZNF354C, FOXL1,
FOXP3

0.431813425

NONHSAT227852.1 down MERGE.5992 −8.69413796 1.13E−04 TEAD3, SP1, SOX13, RHOXF1, KLF5,
MEIS3, GSC2, GSC, MEIS2, PITX3,
GATA3, TEAD2, TFE3, NRL, MZF1,
NR4A1, SOX9, HOXC10, TEAD4,
MYB, FOXL1, GATA5, MEIS1

0.624916621

MERGE.35898.5 down MERGE.35898 −8.67534141 3.99E−02 TFDP1, TEAD3, E2F4, RBPJ, ZNF384,
E2F6, ZNF354C, MZF1, RHOXF1

0.315777779
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Table 2 The top 20 deregulated mRNAs in lubrication disorders (LD).

mRNA Track gene Regulation Symbol Pathway term GO term LogFC P value qPCR fold
change

ENST00000618621 MERGE.42841 up LPP – cell adhesion etc. 15.39594 1.35E−05 7.07218

ENST00000554617 MERGE.17909 up FOS cAMP signaling pathway etc. reproduction etc. 13.79122 2.39E−04 7.82350

ENST00000524189 MERGE.56201 up KIF13B vesicle-mediated transport etc. cell morphogenesis etc. 12.50214 2.04E−02 6.71365

ENST00000378933 MERGE.61388 up TAB3 NF-kappa B signaling pathway
etc.

MAPK cascade etc. 12.41181 2.53E−02 5.76634

ENST00000495522 MERGE.54887 up CALD1 vascular smooth muscle con-
traction etc.

muscle system process etc. 12.25227 2.98E−08 6.16173

ENST00000604624 MERGE.7522 up KCNMA1 Ca 2+ activated K + channels
etc.

response to hypoxia etc. 11.80386 2.05E−08 5.53297

ENST00000535737 MERGE.62662 up FHL1 staphylococcus aureus infec-
tion etc.

immune effector process etc. 11.76909 2.35E−02 4.97539

ENST00000316292 MERGE.50636 up EEF1A1 RNA transport etc. nucleobase-containing com-
pound metabolic process etc.

11.63237 2.42E−02 3.72391

ENST00000290378 MERGE.19073 up ACTC1 Cardiac muscle contraction
etc.

muscle contraction etc. 11.48328 4.44E−03 3.69505

ENST00000530866 MERGE.10267 up LTBP3 elastic fibre formation etc. intracellular protein transport
etc.

11.40485 6.35E−06 4.08425

ENST00000438362 MERGE.3267 down CSDE1 – reproduction etc. −12.0215 3.18E−02 0.29101

ENST00000588188 MERGE.26410 down PRKAR1A insulin signaling pathway actin cytoskeleton organiza-
tion etc.

−11.5882 3.36E−06 0.37288

ENST00000555572 MERGE.25926 down NME1-NME2 metabolic pathways etc. epidermis development etc. −11.4146 7.94E−06 0.42573

ENST00000439383 MERGE.42731 down PSMD2 epstein-barr virus infection etc. morphogenesis of an epithe-
lium etc.

−11.0173 2.06E−02 0.45590

ENST00000398514 MERGE.48061 down DPYSL3 pyrimidine metabolism etc. response to stimulus etc. −10.7505 1.90E−07 0.30212

ENST00000487676 MERGE.49859 down HLA-DQB1 cell adhesion molecules
(CAMs) etc.

cell activation etc. −10.7313 4.32E−02 0.39846

ENST00000342216 MERGE.29023 down PKN1 PI3K-Akt signaling pathway
etc.

activation of MAPK activity
etc.

−10.6141 7.24E−04 0.31874

ENST00000354956 MERGE.39633 down ATG7 regulation of autophagy etc. cellular response to stress etc. −10.3407 2.26E−04 0.17802

ENST00000468064 MERGE.35761 down D2HGDH metabolism etc. organic acid metabolic process
etc.

−10.1826 1.13E−04 0.50124

ENST00000393893 MERGE.10452 down CORO1B – regulation of smooth muscle
cell migration etc.

−10.0713 3.99E−02 0.59471
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Table 3 Primers used in this study.

Gene name Forward (5′–3′) Reverse (5′–3′) Annealing
temperature (◦ C)

Aim band
length (bp)

MERGE.45744.1 ACTTTTATCTTTCCTGTCCATCA CCCTGCTCCAACTTCCATA 60 194
MERGE.25323.3 ACGATGGCAAGGTGGTGTC GATCTTCCAGTGGGATCTGTG 60 117
MERGE.19926.6 CACCGAGGCACATTTGAA AGACACCACAGAGCTAAGGCT 60 121
NONHSAT258741.1 TAACCCTTCCACTCCCTTTGT TAGGTAACCAGCACCCTCTTG 60 163
NONHSAT094312.2 ACCTTGACCTCTGTCCCTCTT GTATGCTCTGTGGCTTGCTG 60 129
MERGE.50943.3 GCTGGCTGGTGACTGTCCT AATCGGCTTCCATTTCTTG 60 140
NONHSAT227852.1 GCTATCTGGACCCTGCTCA GGGCTCATTCCTTTGCTCT 60 131
MERGE.49777.1 CGGGACACGGCGGTGTAGA GGTCGGGAGGGAAATGGC 60 159
GAPDH GGACCTGACCTGCCGTCTAG GTAGCCCAGGATGCCCTTGA 60 100

Figure 2 RT-qPCR for the expression verification of eight lncRNAs. Four lncRNAs were up-regulated
and four lncRNAs were down-regulated in FSD, and the results were consistent with the sequencing data.
*: P value< 0.05; **: P value< 0.01.

Full-size DOI: 10.7717/peerj.12485/fig-2

levels of eight lncRNAs were consistent with sequencing data (Fig. 2). We also validated
the top 20 differentially expressed lncRNAs and 20 mRNAs using RT-qPCR, the results are
displayed in Tables 1 and 2.

GO and pathway analysis
The GO annotation describes gene and gene product attributes in humans and other
organisms (http://www.geneontology.org). The three GO domains are: cellular component,
biological process and molecular function. Using GO analysis on the DEGs, we found
that cellular process (ontology: biological process), cell (ontology: cellular component),
and binding (ontology: molecular function) were the terms with the most genes. The top
30 enriched GO items of dysregulated lncRNAs are shown in Fig. 3A, with the top three
significant terms being contractile fiber part (GO:0044449), actin filament-based process
(GO:0030029), and contractile fiber (GO:0043292). The bubble chart (Fig. 3B) illustrated
the rich factors of the top 30 GO terms. Actin crosslink formation (GO:0051764) had the
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Cell-extracellular matrix interactions | R-HSA-446353
Muscle contraction | R-HSA-397014

Cell-cell communication | R-HSA-1500931
cGMP-PKG signaling pathway | hsa04022
Smooth muscle contraction | R-HSA-445355
Cell junction organization | R-HSA-446728

cGMP effects | R-HSA-418457cGMP effects | R-HSA-418457
Aldosterone-regulated sodium reabsorption | hsa04960

RHO GTPases activate PAKs | R-HSA-5627123
Nitric oxide stimulates guanylate cyclase | R-HSA-392154

Extracellular matrix organization | R-HSA-1474244
Ca2+ activated K+ channels | R-HSA-1296052
Vascular smooth muscle contraction | hsa04270
Hypertrophic cardiomyopathy (HCM) | hsa05410Hypertrophic cardiomyopathy (HCM) | hsa05410

Insulin secretion | hsa04911
Dilated cardiomyopathy | hsa05414

Viral myocarditis | hsa05416
Hemostasis | R-HSA-109582

Striated muscle contraction | R-HSA-390522
Adrenergic signaling in cardiomyocytes | hsa04261

Oxytocin signaling pathway | hsa04921Oxytocin signaling pathway | hsa04921
Focal adhesion | hsa04510

Arrhythmogenic right ventricular cardiomyopathy (ARVC) | hsa05412
Cardiac muscle contraction | hsa04260

Adherens junction | hsa04520
Gastric acid secretion | hsa04971

Signaling by Rho GTPases | R-HSA-194315
Axon guidance | R-HSA-422475Axon guidance | R-HSA-422475

Thyroid hormone signaling pathway | hsa04919
Regulation of actin cytoskeleton | hsa04810

Contractile fiber part | GO:0044449
Actin filament-based process | GO:0030029

Contractile fiber | GO:0043292
Adherens junction | GO:0005912

Cytoskeletal protein binding | GO:0008092
Muscle system process | GO:0003012
Anchoring junction | GO:0070161Anchoring junction | GO:0070161

Myofibril | GO:0030016
Movement of cell or subcellular component | GO:0006928

Actin binding | GO:0003779
Cell-substrate junction | GO:0030055
Cell junction assembly | GO:0034329

Cell junction | GO:0030054
Muscle contraction | GO:0006936Muscle contraction | GO:0006936

Structural constituent of muscle | GO:0008307
Actin cytoskeleton | GO:0015629

Actin crosslink formation | GO:0051764
Focal adhesion | GO:0005925

Cell-substrate adherens junction | GO:0005924
Plasma membrane protein complex | GO:0098797

Circulatory system process | GO:0003013Circulatory system process | GO:0003013
Contractile actin filament bundle | GO:0097517

Stress fiber | GO:0001725
Positive regulation of biological process | GO:0048518

Blood circulation | GO:0008015
Actin cytoskeleton organization | GO:0030036

Costamere | GO:0043034
Sarcomere | GO:0030017Sarcomere | GO:0030017

Actin filament bundle | GO:0032432
Cytoskeleton organization | GO:0007010

Top 30 of Enrichment

Cellular processes
Drug development
Environmental information processing
Genetic information processing
Human diseases
Metabolism
Organismal systemsOrganismal systems

Significant Enriched Pathway Terms(Top 30)

Significant Enriched Pathway Terms(Top 30)A B

C D

E
Sensory system
Nervous system
Immune system
Excretory system

Environmental adaptation
Endocrine system
Digestive systemDigestive system
Development

Circulatory system
Aging

Xenobiotics biodegradation and metabolism
Nucleotide metabolism

Metabolism of cofactors and vitamins
Lipid metabolismLipid metabolism

Glycan biosynthesis and metabolism
Global and overview maps
Carbohydrate metabolism
Amino acid metabolism
Substance dependence

Infectious diseases: Viral
Infectious diseases: ParasiticInfectious diseases: Parasitic
Infectious diseases: Bacterial

Immune diseases
Endocrine and metabolic diseases
Drug resistance: Antineoplastic

Cardiovascular diseases
Cancers: Specific types
Cancers: OverviewCancers: Overview

Translation
Transcription

Folding, sorting and degradation
Signaling molecules and interaction

Signal transduction
Membrane transport

Transport and catabolismTransport and catabolism
Cellular community-eukaryotes

Cell motility
Cell growth and death

Top 30 of Enrichment

Contractile fiber part | Cellular component.
Contractile fiber | Cellular component

Actin filament-based process | Biological process
Cytoskeletal protein binding | Molecular function

Adherens junction | Cellular component
Muscle system process | Biological process
Anchoring junction | Cellular componentAnchoring junction | Cellular component

Myofibril | Cellular component
Movement of cell or subcellular component | Biological process

Actin binding | Molecular function
Cell-substrate junction | Cellular component
Muscle contraction | Biological process
Cell junction | Cellular component

Cell junction assembly | Biological processCell junction assembly | Biological process
Structural constituent of muscle | Molecular function

Actin cytoskeleton | Cellular component
Focal adhesion | Cellular component

Actin crosslink formation | Biological process
Cell-substrate adherens junction | Cellular component

Sarcomere | Cellular component
Costamere | Cellular componentCostamere | Cellular component

Actin cytoskeleton organization | Biological process
Blood circulation | Biological process

Positive regulation of biological process | Biological process
Stress fiber | Cellular component

Contractile actin filament bundle | Cellular component
Circulatory system process | Biological process

Plasma membrane protein complex | Cellular componentPlasma membrane protein complex | Cellular component
Actin filament bundle | Cellular component

Cytoskeleton organization | Biological process

Cell-extracellular matrix interactions | Reactome
Muscle contraction | Reactome

cGMP-PKG signaling pathway | KEGG PATHWAY
Cell-cell communication | Reactome
Cell junction organization | Reactome
Smooth muscle contraction | Reactome

cGMP effects | ReactomecGMP effects | Reactome
Aldosterone-requlated sodium reabsorption | KEGG PATHWAY

Nitric oxide stimulates guanylate cyclase | Reactome
RHO GTPases activate PAKs | Reactome

Extracellular matrix organization | Reactome
Ca2+ activated K+ channels | Reactome

Hypertrophic cardiomyopathy (HCM) | KEGG PATHWAY
Vascular smooth muscle contraction | KEGG PATHWAYVascular smooth muscle contraction | KEGG PATHWAY

Insulin secretion | KEGG PATHWAY
Viral myocarditis | KEGG PATHWAY

Dilated cardiomyopathy | KEGG PATHWAY
Hemostasis | Reactome

Striated muscle contraction | Reactome
Adrenergic signaling in cardiomyocytes | KEGG PATHWAY

Signaling by Rho GTPases | ReactomeSignaling by Rho GTPases | Reactome
Gastric acid secretion | KEGG PATHWAY
Adherens junction | KEGG PATHWAY

Cardiac muscle contraction | KEGG PATHWAY
Arrhythmogenic right ventricular cardiomyopathy... | KEGG PATHWAY

Focal adhesion | KEGG PATHWAY
Oxytocin signaling pathway | KEGG PATHWAY

Axon quidance | ReactomeAxon quidance | Reactome
Thyroid hormone signaling pathway | KEGG PATHWAY
Regulation of actin cytoskeleton | KEGG PATHWAY

Figure 3 Gene ontology (GO) classification and pathway analysis of differentially expressed lncRNAs.
(A) The top 30 enriched GO items of dysregulated lncRNAs. (B) Bubble chart intuitively illustrating the
rich factors of the top 30 GO terms. (C) The top 30 enriched pathway items of the dysregulated lncRNAs.
(D) Bubble chart intuitively illustrating the rich factors of the top 30 pathway terms. (E) A total of 263
genes were involved in 38 differential classifications in the KEGG pathway analysis.

Full-size DOI: 10.7717/peerj.12485/fig-3

greatest enrichment. Additionally, we analyzed pathway annotation and enrichment of
DEGs to further understand the biological functions of genes based on pathway analysis
(Figs. 3C–3E). The first 30 enrichment pathways are organized in Figs. 3C and 3D based on
their p-values. The most enriched pathways were ‘‘cell-extracellular matrix interactions,’’
‘‘muscle contraction,’’ ‘‘cell–cell communication,’’ and ‘‘cGMP-PKG signaling pathway’’.
‘‘Cell-extracellular matrix interactions’’ and ‘‘Ca2+ activated K+ channels’’ were the
pathways with the maximum enrichment score. Ultimately, 263 genes were involved
in 38 differential classifications in the KEGG pathway analysis (Fig. 3E). Among these
classifications, signal transduction contained the most genes.
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Construction of the lncRNA-mRNA co-expression network
LncRNA has been reported to play an important role in a variety of gynecological diseases,
including polycystic ovary syndrome (Zhao et al., 2019), endometriosis (Panir et al., 2018),
and gynecological tumors. The co-expression network of lncRNA and mRNA is of great
significance for the preliminary prediction of lncRNA function and can provide evidence
for the participation of lncRNA in core biological functions (Mo et al., 2019). In this
study, we constructed a co-expression network based on the normalized signal intensity of
misaligned lncRNA and target mRNA. We also intuitively studied the relationship between
the different expressions of lncRNAs and their significantly related mRNAs. The gene
correlation was calculated using the Pearson algorithm, and the correlation coefficient and
p-value were obtained. If the absolute value of the correlation coefficient was more than
0.99 and the p-value was less than 0.05, a co-expression relationship between lncRNAs
and mRNAs was suggested. We used miRanda software to predict the lncRNA-mRNA
relationships. A total of 100 lncRNAs and 311 mRNAs were included in the 411 network
nodes that made up the co-expression network. They interacted to build 765 connecting
bridges (Fig. 4). Notably, all relationship pairs in this co-expression networkwere negatively
correlated. Through this co-expression network, we found that one lncRNA can target up
to 17 coding genes, and a single coding gene can be associated with up to eight lncRNAs.
Western blot was used to verify PPP1R14A expression and RT-qPCR was used to verify the
expression of three co-expressed lncRNAs, including MERGE.11465.1, MERGE.58127.14,
and NONHSAT159728.1, with the results consistent with our predictions (Fig. 5).

PPI network analysis
A network analysis of protein interactions was carried out on 499 DEGs using the STRING
database, and the results were imported into Cytoscape software where the protein
relationships were scored using the combined score. The resulting interaction network
consisted of 289 nodes and 959 edges (Fig. 6). The cytoHuhha was used to analyze the core
genes and the top 10 DEGs were considered as core genes across all three algorithms. The
final core genes for vaginal LD, obtained by Venn diagram intersections, were ADCY5,
CXCL12, and NMU (Fig. 7A). Based on the 27 LDs vs 27 NCs data results, we plotted the
ROC curves for the 3 core genes using SPSS 26.0. The results are shown in Figs. 7B, 7C and
7D. The screened genes ADCY (AUC = 0.783), CXCL12 (AUC = 0.878) and NMU (AUC
= 0.805) have relatively high diagnostic value.

Prediction of TFs
The specific binding of TFs to the regulatory regions which confer gene expression is
an important gene transcription regulation mechanism. Predicted TFs of abnormally
expressed lncRNAs can bind to lncRNA promoters to regulate the expression of lncRNA,
thus affecting the key components of disease pathogenesis (Huang et al., 2017; Jiang et
al., 2018; Long et al., 2017). Based on the lncRNA-mRNA relationship pairs obtained
by co-expression analysis, we used the JASPAR database (http://jaspar.genereg.net/) and
TFBSTools to predict the TFs. They also allowed us to obtain the upstream of each
lncRNA-TF binding site, direction and scoring in the region 500 bp downstream of
2,000 bp.
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Figure 4 Co-expression network consisting of 100 lncRNAs and 311 mRNAs. Yellow nodes represent
lncRNAs, and the larger the node, the more connections. Green nodes represent mRNAs; the smaller
the node, the more connections. The edges between lncRNAs and mRNAs represent their relationships.
Among the lncRNAs, NONHSAT172707.1, MERGE.44026.4, NONHSAT142909.2, and MERGE.12311.3
had the most ligands. Among the mRNAs, ESRP2, MLC1, PNPLA6, MYH11, HAPLN2, ANP32E, PAC-
SIN3, and TMEM184B all had eight ligands.

Full-size DOI: 10.7717/peerj.12485/fig-4

We found that 100 lncRNAs in the co-expression network were predicted to be
paired with 231 TFs (Fig. 8). Among these, NONHSAT134595.2 matched a total of
53 TFs, including RHOXF, TBX15, and FOXD1. These TFs consisted of eight classes:
‘‘C2H2 zinc finger factors,’’ ‘‘Basic helix-loop-helix factors (bHLH),’’ ‘‘Fork head/winged
helix factors,’’ ‘‘Homeo domain factors,’’ ‘‘Rel homology region (RHR) factors,’’
‘‘Other C4 zinc finger-type factors,’’ ‘‘SMAD/NF-1 DNA-binding domain factors,’’
and ‘‘T-Box factors’’. Of the 53 TFs related to NONHSAT134595.2, the RHOXF1 was
correlated with up to 92 lncRNAs. Additionally, NONHSAT024276.2, MERGE.40864.1,
MERGE.57680.1, NONHSAT173657.1, NONHSAT218506.1, NONHSAT173817.1, and
NONHSAT230433.1 were associated with more than 45 lncRNAs.
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Figure 5 Validation for MERGE.11465.1, MERGE.58127.14, NONHSAT159728.1 and PPP1R14A.
(A) RT-qPCR validation results for the differential genes MERGE. 11465.1, MERGE.58127.14, and
NONHSAT159728.1. (B, C) Western Blot detects the expression of PPP1R14A protein. ****: P value
0.0001.

Full-size DOI: 10.7717/peerj.12485/fig-5
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Figure 7 Core gene screening and ROC curve of core gene diagnosis LD. (A) The Venn diagram was
drawn using the four algorithms: degree, MCC, EPC, and MNC. The three genes intersected by the four
algorithms were used as hub genes . (B, C and D) ROC curves for ADCY5, NMU and CXCL12 in distin-
guishing vaginal lubrication disorders and normal. Abscissa represents specificity and ordinate represents
sensitivity.

Full-size DOI: 10.7717/peerj.12485/fig-7
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Figure 8 One hundred lncRNAs in the network and the predicted transcription factors (TFs). The yel-
low dots refer to the different lncRNAs, and the purple dots refer to the TFs. The larger the dot, the more
nodes connected to it. The lncRNA with the most nodes connected to it was NONHSAT134595.2 with 53
nodes connected to it. Those connected to more than 50 nodes in the TFs included RHOXF1, ZNF354C,
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DISCUSSION
An LD is defined as the inability to attain a sufficient lubrication response during sexual
activity (Sawatsky, Dawson & Lalumière, 2018). It not only causes pain and obstacles to
orgasm during sex, but it can also be the cause of interpersonal conflict (Isbill, 2018).
Research on vaginal LD is still in the initial stages and no explicit targeted diagnosis
or treatments have been proposed (Miller et al., 2018; Weinberger et al., 2019). Current
treatments mainly rely on hormone replacement therapy (HRT), drug, or psychotherapy,
but effects are not significant for all patients and vary in effectiveness and practicability
(Weinberger et al., 2019).

In recent years, more researches on lncRNAs have been conducted. Many previously
unknown lncRNAs have been identified at an unprecedented rate, and their significance
in the diagnosis and treatment of diseases have received great attention (Lin, 2020; Xu et
al., 2020b). LncRNAs are involved in transcriptional activation and inhibition (Liu et al.,
2018), embryonic (Yan et al., 2013) and tissue development (Schmitz, Grote & Herrmann,
2016), and many other activities. A striking feature of lncRNAs is that they are expressed in
a more tissue-specific manner than protein-coding RNAs (Deniz & Erman, 2017). Possible
physiological causes of vaginal LD include endocrine disorders, vascular endothelial
damage, and nervous system abnormalities (Bergh & Giraldi, 2014; Courtois et al., 2018;
Diehl et al., 2016; Imprialos et al., 2018; Salonia et al., 2010; Salonia et al., 2006; Wierman et
al., 2010). Studies have shown that some lncRNAs are closely related to lesions of nerves
(Zhao et al., 2013), blood vessels (Simion, Haemmig & Feinberg, 2019), vaginal smooth
muscles, and vaginal epithelium (Wei et al., 2020). In previous research, next-generation
sequencing was conducted to mine differentially expressed circRNAs in the vaginal
epithelial tissue of women with vaginal LD, and circRNA-miRNA-mRNA networks were
conducted (Camilleri, Sandler & Peery, 2020; Cong et al., 2021; Zhang et al., 2019). Few
studies have explored the relationships between lncRNA and vaginal LD. Therefore,
we investigated the differential expression of lncRNAs in order to explore its possible
mechanisms.

Using next-generation sequencing, we detected a total of 21,368 lncRNAs and 48,806
mRNAs. We identified 499 up-regulated and 337 down-regulated lncRNAs with 1,582
up-regulated and 633 down-regulated mRNAs in LD tissue compared to healthy vaginal
epithelial tissue with a filter of |log2FC| ≥1 and a p-value< 0.05. GO and pathway analysis
provided more information about the function of the target genes. Dysregulated lncRNAs
were closely interrelated with few important biological processes connected with the LD
mechanism, including muscle contraction, structural constituent of muscle, and blood
circulation.

Since most of the lncRNAs functioned through the regulation of mRNAs, the lncRNA-
mRNA co-expression network provided us with a powerful platform for the prediction
of lncRNA function (Iwakiri, Terai & Hamada, 2017). Using the lncRNA-mRNA co-
expression network, we found that three lncRNAs (MERGE.11465.1, MERGE.58127.14,
and NONHSAT159728.1) were connected with PPP1R14A, which was functionally related
in LD tissue. It has been found that the phosphorylation of PPP1R14A can suppress the
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function of myosin phosphatase, thereby affecting smooth muscle contraction (Lartey et
al., 2007; Sakai et al., 2017).

Three hub genes, ADCY5, CXCL12, and NMU, were obtained by constructing PPI
networks and using four different algorithms. ADCY5 is a member of the membrane-
bound adenylate cyclase family, which converts adenosine triphosphate into cAMP and
pyrophosphate (Vijiaratnam et al., 2019). Functional studies have shown that ADCY5
may affect glucose metabolism through glucose-coupled insulin secretion in human islets
(Dupuis et al., 2010). Mutations in the ADCY5 gene can cause dyskinesia and dystonia
(Vijiaratnam et al., 2019). CXCL12, a class of cytokines with chemotactic activity, plays
an important role in physiological and pathological processes including hematopoiesis,
angiogenesis, and inflammation (Bakogiannis et al., 2019; Döring et al., 2019; Mousavi,
2020). CXCL12 has been shown to activate and induce themigration of endothelial cells and
most leukocytes, and exert biological effects under homeostatic and pathological conditions
by interacting with its receptors, including atypical chemokine receptor 3 (ACKR3) and
CXC chemokine receptor 4 (CXCR4), and binding to glycosaminoglycans (GAGs) in tissues
and endothelium (Janssens, Struyf & Proost, 2018). NMU is a smooth muscle contractile
polypeptide that is widely distributed in peripheral organs and the central nervous system
(Martinez & O’Driscoll, 2015). Two specific endogenous receptors for NMU, NMU1R,
and NMU2R, are widely distributed in animals and have different distribution patterns,
demonstrating NMU’s diversity of physiological functions (Howard et al., 2000). NMU has
been shown to have important physiological functions in the regulation of smooth muscle
contraction, blood pressure, local blood flow, stress, and energy metabolism (Jarry et al.,
2019). Additionally, we also predicted the TFs of differentially expressed lncRNAs. Studies
have shown that the RHOXF1 is preferentially expressed in reproductive tissues (Borgmann
et al., 2016). The SNAI2 is a downstream effector of the estrogen receptor alpha pathway
and a key inducer of epithelial-to-mesenchymal transition (EMT). ZNF354C and TBX15
have been reported to be related to the occurrence of various cancers, including breast
and ovarian cancer (Gozzi et al., 2016; Zang et al., 2017). The above-mentioned predicted
differences in TFs may play a role in the pathogenesis of vaginal LD and are worthy of
further exploration.

The limitations of this study need to be specifically discussed. Only differentially
expressed lncRNAs in vaginal epithelial tissue were screened and validated. To gain a
deeper understanding of lncRNA functions and roles in LD development, the expression
of certain miRNAs targeted by lncRNAs should be further investigated, which may provide
new information about the pathogenesis and diagnosis of LD. We plan to undertake these
efforts in future functional studies.

CONCLUSION
In this study, we report for the first time the profile of differentially expressed lncRNAs
in LD. We found that a large number of lncRNAs are involved in LD pathogenesis.
The GO and KEGG pathway and co-expression analysis results indicated that these
differentially expressed lncRNAs may be related to the occurrence and development of LD.
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Further research is needed to explain the biological progress and molecular mechanism of
dysregulated lncRNAs.
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