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Abstract: Intervertebral disc (IVD) degeneration and its medical consequences is still one of the
leading causes of morbidity worldwide. To support potential regenerative treatments for degener-
ated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the
annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in
intervertebral disc research as a readily available source of NP and AF material from healthy and
young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing
(RNAseq) to unravel the cell populations in these two structures and analyze developmental changes
across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize
the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF
structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous
cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and
a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predomi-
nantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our
results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.

Keywords: intervertebral disc; nucleus pulposus; annulus fibrosus; RNA sequencing; bovine

1. Introduction

Intervertebral disc (IVD) degeneration is a complex disease for which resolutive
therapies are not yet available. Attempts to regenerate the tissue are complicated by the
lack of knowledge on the exact cellular composition of the disc. Many studies have tracked
and proven the developmental characteristics of IVDs [1–3]. However, little is known about
the type of cells populating the mature tissue. IVDs are cushion-like structure between the
vertebrae that act as stress and impact absorbers and as a protection for the spinal nerves.
The IVD poses extreme conditions for cells to live in, leading to a hyperosmotic, avascular
and acidic environment [4]. They provide viscoelastic and mechanical properties with
shock-absorbing capacity that allow bending, twisting and loading of the upper body [5–7].

Structurally, the IVD is composed of three main compartments: the cartilaginous
endplate (CEP), the annulus fibrosus (AF) and the nucleus pulposus (NP) [8]. The CEP, a
thin layer of hyaline cartilage at the interface with the vertebrae, contains chondrocytes
embedded in an aggrecan and collagen type II rich extracellular matrix [8,9]. It is com-
posed of a network of collagen fibrils and hydrated proteoglycan molecules. Vascularized
by microscopic vessels during development, they disappear once the IVD has reached
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maturity [9]. The annulus fibrosus (AF) is a compartment originating from mature somites.
It is believed that the AF develops from the mesenchymal cells of the sclerotome that
generate the connective tissues of the future axial skeleton [10]. The annulus is connected
to the CEP via its lamellae, structures made of fibrous cartilage and mainly composed of
water and concentric sheets of collagen fibers [5]. The lamellae, oriented at various angles,
enclose the nucleus pulposus (NP).

The NP, which is believed to have derived from the notochord [11–13], is composed
of a gel-like material with a loose network of collagen fibers [1,6,14–16]. On a cellular
level, the outer human AF is populated by elongated and fusiform cells that extend in
the long axis of the fibrils. The cells of the inner AF, instead, are spherical in shape, and
many resemble chondrocytes [3]. The annulus fibrosus is believed to retain the capacity to
regenerate itself during the neonatal phase, and this is then lost during maturation [17].
Annulus fibrosus cell (APC) markers described in the literature include Col1a1, Col4, Lam1
and Thy1, among others [10,18–24]. Instead, the young NP presents an abundant extracel-
lular matrix (ECM) that separates NP cells (NPC) [8]. Numerous NPC type populations
have been described in the literature. Among them, there are large cells with numerous
vacuoles that are believed to be notochordal remnants [25]. NPC progenitors have also
been described in the healthy IVD that are TIE2+ and GD2+ positive [26]. Additionally,
cells that express a mesenchymal stem cell phenotype have also been reported [27]. The
NPC population changes with aging and degeneration leading to the disappearance of
the aforementioned progenitor cells and vacuoled cells [27–30]. There are a wide variety
of NPC biomarkers such as Krt8, Krt18, Krt19, Ca12, ACAN, Col1a2 and Col2a1, described
in the literature [19,31–35]. Additional, notochordal markers such as Brachyury, FOXA2,
CHRD, NOG and LGALS3 are also often used to track NP cells lineage [36–40], together
with NCAM1, a2 macroglobulin and desmocollin 2 [36,41–43]. The mature IVD presents
a very limited regenerative capacity [44]. However, a comprehensive profile of all of the
NPC in this compartment is still missing [2,20,45]. This, in turn, hampers any attempts of
regenerative therapies in patients suffering from disc degeneration which is still one of the
leading causes of disability worldwide [2,46,47].

The purpose of our study was to deconvolute the cell composition in the AF and NP of
healthy bovine IVD. Bovine IVDs are a widely used animal model for spine research as they
offer the possibility to examine young and healthy tissues. Furthermore, the bovine model,
while not a prefect substitute for the human model, has shown remarkable similarities
in tissue specific marker expressions to the human model [41,48]. To reach our goal, we
performed 10× Genomics single-cell RNA sequencing together with bulk RNAseq. Single-
cell RNA sequencing is a powerful and innovative technique, which allowed the individual
transcriptome analysis of 10 k NPCs and 10 k AFCs from two bovine tails.

2. Results
2.1. Single-Cell RNAseq Experimental Design

Eight samples were processed for whole transcriptome analysis using single-cell
RNAseq sequencing (Table 1). Four samples were collected per biological replicate, i.e.,
the nucleus pulposus and annulus fibrosus from both, proximal and distal intervertebral
discs of two bovine tails. Due to the nature of the composition of IVDs entailing a low
cell number, each NP or AF sample consisted of a pool of three adjacent IVDs from either
the distal or proximal region. To obtain a cell suspension, the ECM was digested before
further processing.
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Table 1. Samples scRNAseq. List of samples used for single-cell sequencing.

Sample N◦ Description Source

1 3 NPs proximal Animal 1
2 3 AFs proximal Animal 1
3 3 NPs distal Animal 1
4 3 AFs distal Animal 1
5 3 NPs proximal Animal 2
6 3 AFs proximal Animal 2
7 3 NPs distal Animal 2
8 3 AFs distal Animal 2

2.2. Bulk RNAseq Experimental Design

High-throughput transcriptome analysis, also referred to as bulk RNAseq, has become
a standard tool for identifying differentially expressed genes between two or more sample
groups. scRNAseq is a lot noisier due to technical and biological influences, compared to
bulk RNAseq [49,50]. Three biological replicates (three bovine tails) were used to isolate
cells for the bulk RNAseq analysis. Similar to the scRNAseq samples, distal and proximal
NP and AF samples were processed for each of the three biological replicates. Tissue from
two IVDs was pooled for each sample (Table 2), and the ECM was digested overnight to
obtain a cell suspension. The cell suspension was then subjected to bulk RNAseq.

Table 2. Samples bulk sequencing. List of samples used for bulk RNA sequencing.

Sample N◦ Description Source

1 2 NPs proximal Animal 3
2 2 AFs proximal Animal 3
3 2 NPs distal Animal 3
4 2 AFs distal Animal 3
5 2 NPs proximal Animal 4
6 2 AFs proximal Animal 4
7 2 NPs distal Animal 4
8 2 AFs distal Animal 4
9 2 NPs proximal Animal 5

10 2 AFs proximal Animal 5
11 2 NPs distal Animal 5
12 2 AFs distal Animal 5

2.3. Cell Clustering Using Single-Cell RNAseq Data

To comprehensively characterize subpopulations of NPs and AFs in either distal
or proximal discs, we used the data from the scRNAseq experiments. Cell populations
within each of the samples can be clustered according to their single-cell transcriptome
profile expression values utilizing graph-based cluster method to acquire unsupervised
cell clustering results. To obtain an impression of the overall gene expression variance
within the NPs and the AFs, we performed a canonical correlation analysis (CCA) and
corrected the datasets by aligning the relevant canonical correlations (CCs). The aligned
CCs (ACC) for the NPs (Figure 1A) and the AFs (Figure 1B) exhibit a high correlation
between the samples and animals. To better visualize the correlation, we performed t-
stochastic neighbor embedding (t-SNE). The overlap of the samples in each t-SNE plot
showed a high expression profile correlation among the NP cell populations (Figure 1C)
and among the AF cell populations (Figure 1D), within and between animals, respectively.
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Figure 1. Canonical correlation analysis (CCA). CCA identifies common sources of variation between
the datasets for NPs (A) and AFs (B). The CCA aligned subspaces ACC1 and ACC2 for each condition
are plotted as violin plots with the points reflecting the data distribution. The plots reveal high
correlation between proximal and distal NPs and AFs within and between animals. t-SNE plot of
four CCA corrected NPs samples (C) and four CCA corrected AFs samples (D). Each dot represents a
cell and the different colors are assigned to different samples. The location of a cell is determined by
its gene expression profiles, therefore cells that localized in close proximity exhibit a high correlation
in their gene expression pattern. In both graphs, the four samples contribute in a comparable way in
populating each region of the graph, showing a good overlap among all the NPs (A) and among all
the AFs (B).

With the apparent expression profile proximity in the t-SNE plot, we performed a
cell cluster analysis and used cell cluster size correlation as a metric to better understand
our sample datasets. A size comparison of the cell clusters in the NP samples (Figure 2A)
and the AF samples (Figure 2B) served as metric. The graphical representation in Figure 2
shows a high correlation between cell cluster sizes of the NP samples and the AF samples.
The correlation coefficients for the NP samples are higher than 0.85 and for the AF samples
higher than 0.87. A correlation matrix with hierarchical clustering (Figure S1) shows that
the differences of the distal and proximal NPs are higher than the differences between the
animals. Conversely, the differences of the AFs between the animals are larger than between
the proximal and distal AFs. This may indicate possible temporal shifts in development
between NPs and AFs.

Using unsupervised clustering, the NP cell populations (Figure 3A) exhibited 15 dis-
tinct cell clusters (Figure 3B). This analysis revealed that proximal and distal NPs identified
mostly overlapping cell populations (Figure 3A) resulting from a high correlation of ex-
pression profiles and some shifts in the percentage fractions of some of the most abundant
cell populations (Figure 3C).
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Figure 2. Cell cluster size correlation. The graphical alignment of cell cluster sizes within the NPs
(A) and the AFs (B) shows a high correlation (r > 0.85) within the datasets. The numbers placed
around the piechart are cell cluster numbers, with the largest cluster starting at number zero. Each
ring represents one sample and each color within the ring represents one cluster.

Figure 3. Cell cluster distributions between proximal and distal NPs.The first t-SNE plot (A) provides
a visual measure for similarity for the proximal and distal NPs. The graphical overlap stands for
the amount of similarity in gene expression profiles of the distal and proximal NPs. The second
t-SNE plot (B) shows the identified cell clusters. (C) The population sized within a cell cluster. The
first dot plot (C) is a representation of the percentage of the fractions of cells per cluster, normalized
to the total amount of cells in each corresponding sample (see Table S1 for the original data). The
population shift observed between the proximal and the distal samples, is described in terms of
number of cells that compose a cluster in each sample. (D) The difference in percentage between the
cell cluster sizes of the proximal and distal NPs, indicating the amount of correlation between the
samples. (Animal 2, in Figure S2 and Table S3).

In regards to the AF samples, the overlap between distal and proximal cell cluster
populations was even higher (Figure 4A), with 12 main cell clusters identified (Figure 4B)
and no apparent shift of cell populations (Figure 4C).
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Figure 4. Cell cluster distributions between proximal and distal AFs. The first t-SNE plot (A) provides
a visual measure for similarity for the proximal and distal AFs. The graphical overlap stands for
the amount of similarity in gene expression profiles of the distal and proximal AFs. The second
t-SNE plot (B) shows the identified cell clusters. (C) The population sized within a cell cluster. The
first dot plot (C) is a representation of the percentage of the fractions of cells per cluster, normalized
to the total amount of cells in each corresponding sample (see Table S2 for the original data). The
population shift observed between the proximal and the distal samples, is described in terms of
number of cells that compose a cluster in each sample. (D) The difference in percentage between the
cell cluster sizes of the proximal and distal NPs, possibly indicating developmental transitions in
cells. (Animal 2, in Figure S3 and Table S4).

2.4. Differential Gene Expression Analysis from Bulk RNAseq

To further investigate potential phenotypic differences across all samples, we per-
formed differential expression analysis on bulk RNAseq data. This analysis revealed that
within the groups, i.e., NPs and AFs, samples are highly correlated and clustered together
(Figures S4 and S5) as with the scRNAseq data. Firstly, we investigated other differences
along the rostrocaudal axis within the groups, i.e., differential gene expression analysis
from the proximal and distal NPs as well as AFs. Hierarchical clustering was applied to
the data and plotted as a heat map. There were no significant differences in the proximal
and distal NP expression profiles (data not shown). However, the AFs provided distinct
expression patterns for the proximal and the distal AFs after gene clustering (Figure 5).
Gene Clusters 1, 5 and 6 are upregulated in the distal AFs when compared to the proxi-
mal AFs. However, the opposite seems true for the gene Clusters 2–4, which are instead
downregulated in the distal AFs.
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Figure 5. Heat map bulk AFs. Heat map for the differential genes expression for proximal and distal
AFs (bulk RNAseq).

In a further analysis, we looked at the significant differential gene expression across all
AFs and NPs. A hierarchical clustering was performed on the top 100 expressed genes of all
samples and the data was normalized over all datasets. Figure 6A shows a good correlation
in expression levels between the AF and NP groups. Figure 6B depicts the statistical
significance of each gene against the fold change in expression level (Log2FoldChange),
whereas Figure 6C shows the expressed genes that are up- or downregulated in either
group and are statistically significant, which hints at biologically meaningful tissue profiles.
Hierarchical clustering of the differentially expressed genes showed distinct gene clusters
in both groups, AFs and NPs (Figure 6D).
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Figure 6. Comparison between NPs and AFs in the bulk RNAseq data. In the correlation graphic
(A) is present a light correlation in the gene expression between all the (6) NPs and (6) AFs, with
relevant differences. The volcano plot (B) shows a high number of significant differentially expressed
genes with relevant fold changes between NPs and AFs. The dendrogram (C) compares the top
100 most expressed genes in the NPs and AFs. This shows a clear distinction between the gene
expression of the NPs and the AFs, that clustered separately. Intra group, the NPs samples cluster
per animal. In the AFs, instead, Animal 5 clustered together, while, for the Animals 3 and 4, the
clustering occurs between the two proximal and the two distal samples. The heat map (D) shows a
very clear distinction in the gene expression pattern of the NPs over the AFs. Here, the gene Clusters
1, 4 and 6 are upregulated in the NPs, while the gene Clusters 2, 3 and 5 are downregulated.

2.5. Integration of the Single-Cell RNAseq Data with the Bulk RNAseq Data

We went back to our scRNAseq data to identify genes that are exclusively expressed
in either the NP or the AF samples. The heat map in Figure 7 depicts two sets of genes that
are uniquely expressed in either all NPs or all AFs.
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Figure 7. Heat map scRNAseq. Heat map depicting the presence and absence of expressed genes (top
cluster markers) in the proximal and distal AFs and NPs of Animals 1 and 2, scRNAseq data. The gene
clusters that are expressed exclusively in AFs and NPs are of particular interest as potential markers.

The two extracted gene clusters were subsequently mapped to cell clusters to identify
the cell populations within the AF and NP that express those exclusive genes (Figure 8).
In both sample sets, the AFs and NPs, we identified two cell populations that expressed
the previously identified unique expressed genes. In the NPs, cell population/Clusters
3 and 7 showed the highest overlap with the uniquely identified NP genes (Figure 8A),
whereas cell population/Clusters 7 and 8 had the highest overlap in the AF unique genes
(Figure 8B). Subsequently, we investigated the expression levels of the unique set of AF
and NP genes in an expression heat map (Figure 9).

We then proceeded to identify those same genes in the bulk RNAseq data. We inter-
sected the list of unique specific genes from the scRNAseq data with the bulk transcriptome
for AFs and NPs and aligned them to the scRNA cell clusters/populations for NPs and AFs.
We performed hierarchical clustering and visualized the results in a heat map (Figure 10).
In the NPs, the overlap in structure specific (NP) genes for bulk and single-cells data
show the previously identified NP cell Clusters 3 and 7 (Figure 10A). The AF specific
genes were added as a control set and did not show any overlap. In the AFs, the bulk
and single-cell data overlapped in cell Cluster 8 (Figure 10B). The NP specific genes were
added as a control. The dendrogram structure at the top of the heat maps provides a
measure of commonly expressed genes among the clusters indicating a potential lineage
relationship between clusters. All 27 and 24 structure specific genes identified in the NP
and AF respectively were found in the scRNAseq and bulkRNAseq data (Table S5).
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Figure 8. Heat map scRNAseq cluster. Heat map of exclusive AF and NP genes in the scRNAseq data,
expressed in the NPs proximal and and AFs proximal of Animal 1. (A) The first heat map depicts the
cell clusters that express NP genes. (B) The second heat map depicts cell clusters that express AF
genes. The dendrogram at the top is a function of the amount of commonly expressed genes.

Figure 9. Genes that are highly expressed in scRNAseq clusters. Genes that are highly expressed in
the clusters of interest in the scRNAseq data. (A) From the NPs proximal Animal 1, the Clusters 3
and 7 previously identified were selected. (B) From the AFs proximal Animal 1, the Clusters 7 and 8
previously identified were selected. The focus was pointed on the genes that are highly expressed in
the clusters of interest. Higher expression value are highlighted in yellow.
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Figure 10. Heat map exclusive genes bulk and scRNAseq. Heat map of exclusive AF and NP genes
common between the scRNAseq and bulk RNAseq. These genes are mapped against a single sample.
(A) The first heat map depicts the cell clusters that express the NP common genes in the sample NPs
proximal Animal 1. (B) The second one depicts cell clusters that express AF common genes. The
dendrogram at the top is a function of the amount of commonly expressed genes.

2.6. Gene Enrichment Analysis

Once we identified cell clusters that express specific tissue genes, we aimed at identi-
fying possible cells types for these clusters. The enrichment analysis on a single-cell level
allows for the investigation on the potential characteristic of the cell populations in the
NPs and AFs tissue. For the gene enrichment analyses, the genes were translated into
their human homologous. The subsequent enrichment analysis of each sample hinted at
potential cell types for each identified cell cluster (Figure 11). Such hints are especially
interesting for the cell clusters that express the structure specific genes, namely Clusters 3
and 7 for the NPs (Figure 11A) and Clusters 7 and 8 for the AFs (Figure 11B). The results
for the NP Cluster 3 show the characteristics closest to a cancer cell, yet with otherwise
very little common features to the other cells types. These data suggest a cell type that was
not present in the repository. Cell Cluster 7 of the NP, however, has the highest similarity
to a monocyte derived dendritic cell, followed by cancer cell characteristics. While most
suggested cell types are not sensible, the fibroblast characteristics for Clusters 4 and 8
of the NP are plausible. AF Cluster 8 appears to have the highest similarity to vascular
endothelial cells. Similar to the NP suggestions, the AF suggested cell types are mostly not
convincing. The cell Cluster 10 appears to possess fibroblast-like features, yet its predicted
top feature is Myeloid-derived suppressor cell. The consistent presence of stem cell-like
cells in the suggestions might hint at the existence of stem and progenitor cells in the
clusters. As a last step, we performed an enrichment analysis. The analysis was performed
on the single-cell and bulk RNAseq samples. The enrichment allows for the identification
of detectable pathways in our samples. We compared all NPs and all AFs using GSEA GO
terms Biological process (Figure 12). There is a significant enrichment in the NPs for the
collagen metabolic process and regulation of DNA transcription in response to stress.
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Figure 11. Heat maps enrichment. Heat maps of the enrichment analysis of all the eight scRNAseq
samples. The detected genes for each cell cluster have been translated into the human homologous
and run through an enrichment analysis. The pathways that could be characteristic of each cluster
are highlighted in red, defining a potential cell type profile. (A) The first heatmap depicts potential
cell type profiles for the NP cell clusters. (B) The second heatmap depicts potential cell type profile
for the AF cell clusters.

Figure 12. Enrichment analysis bulk RNAseq Enrichment analysis of all the NPs over the AFs bulk
RNAseq data. GSEA, GO terms Biological Process. The bar chart shows a significant enrichment of
the collagen metabolic process and DNA response to stress in the NPs over the AFs.

3. Discussion

Single-cell RNAseq enabled the profiling of 92,277 intervertebral individual cell tran-
scriptomes. Our study identified 15 distinct NP cell populations and 12 distinct AF cell
populations of the bovine IVDs which supports previous findings on cell population com-
position of NPs and AFs [34,36,41,43,51–56]. Unsupervised cell clustering methods allow
the detection of cell types and differentiation states based on the whole transcriptome in
a fine-grained manner. These methods have readily and successfully been used [57–61],
even if minor imprecisions may occur at defining cross-species identities of specific cell
types and functional differences among identified cell types [62,63]. In our single-cell
RNAseq analysis, we used the shared nearest neighbor approach for unsupervised cell
clustering to identify distinct cell types in the four AFs and four NPs of the bovine IVDs
from two animals [64]. Through hierarchical clustering, we identified structure specific
genes in the NPs the AFs. These genes were subsequently matched to the earlier identified
cell populations. Interestingly, only two distinct NP cell populations and two distinct AF
cell populations matched. A literature research on the top expressed genes of each cell
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population identified two distinct notochordal cell-like populations in the NP and two
distinct AFC populations, with one putative fibroblast-like population.

The heterogeneity of the cells contributing to either the NP or AF has been exten-
sively described in the literature. Diverse techniques such as immunohistochemistry, qPCR
and Western blot, among others, have been used to define phenotypic markers for these
two populations, all of which have their obvious disadvantages, especially in regards to
sensitivity issues. The aim of this study was to elucidate at a single-cell resolution the
individual NPC and AFC populations along the bovine rostrocaudal model. Coupled with
highly sensitive bulk RNAseq analysis of these two tissues, we could identify specific NP
and AF genes as well as cell populations, which gives unique insight into the biology of
this organ. NPC have been reported to have differentiated along the notochordal lineage,
clearly distinguishing them from other cell types in the body [11–13]. As a matter of fact, no-
tochordal or notochordal-like cells have been reported in both fetal notochordal immature
NP and adult NP. The exact role of these cells remains unclear; however, it is believed that
they either act as a regulator or as a progenitor cell for the NP. A broad panel of markers
associated with the phenotype of NP notochordal cells [36,38–40] was detected mainly
concentrated in cell Clusters 3 and 7 from the single-cell NP samples (Figure S8A); these
include CD24, galectin-3 (LGALS3), cytokeratin 8 (KRT8), KRT18, KRT19 and brachyury.
Brachyury is a protein that is encoded by the TBXT (T-box transcription factor T) and has
been described to be necessary for notochordal morphogenesis and patterning. TBXT was
detected in cell Cluster 7 only, and even some of its binding partners were detected in cell
Clusters 3 and 7, such as SMARCA4, STAT3 and WNT5B. We additionally found other
notochord associated genes expressed, such as CDH2 and FN1. Galectin-3, however, was
predominantly expressed in mainly cell Clusters 8 and 0. Moreover, these cell clusters also
expressed genes that have been associated with pluripotent stem cells or progenitor cells
such as KRT15 [65], CD44 and CD55. These two cell clusters are in the same trajectory
in the slingshot (Figure S8C) which is a cluster-based lineage reconstruction and pseudo-
time inference approach indicating their relatedness. These first set of findings, provide a
unique insight in the rostrocaudal bovine model for IVDs as we could detect specific cell
populations that have a notochord-like phenotype. It is believed that these cell populations
decrease as adulthood arrives, as supported by the findings that CD24 gene expression
is reduced in the adult NP [36]. A target of TBXT that may be relevant to NPC is the
connective tissue growth factor (CTGF/CCN2), which is an ECM protein that is necessary
for post-natal NP function [66]. CTGF was detected in cell Clusters 1, 2 and 5.

There was an additional cell cluster (Cluster 8) that did not express the notochordal
associated genes but instead stem cell markers such as CD63, CD44 and galectin-3. This
cell cluster additionally expressed WISP2 (CCN5), which is a growth factor member of the
CTGF/CCN family of secreted, ECM-associated proteins [67] that has been shown to be an
inhibitor of angiogenesis [68] and predicted to be an active regulator of notochordal gene
expression. WISP2 was identified in non-chondrodystrophic dog notochordal cell model
(together with CTGF) and proposed to be key for healthy NP homeostasis. Additionally,
NOV(CCN3) was also found in cell Cluster 8. This secreted extracellular protein is key in
mesenchymal stem cell differentiation and regulates differentiation, growth and maturation
of osteogenic, chondrogenic and hematopoietic progenitor cells. Wnt signaling has been
extensively described in the maintenance of notochord progenitor cells identity [69]. The
expression of CCN2 and CCN5 are upregulated in the early stages of mesenchymal stem
cell differentiation by Wnt3A stimulation [70,71]. These results are not surprising since the
Wnt/beta catenin signaling pathway has been shown to be required for the development,
organization, senescence and degeneration of the NP [72,73].

Thus, cell Cluster 8 indeed indicates a progenitor-stem cell phenotype, as shown in
Figure 11. One of the proposed roles for this cell cluster, which needs further interrogation,
is their potential role in regulation of notochordal cells. It has been shown that sustained
Wnt signaling is required to maintain the notochordal progenitor cells’ notochordal fate [69].
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Additionally, cell Clusters 3, 7 and 8 expressed ECM regulators such as BMP2 and secreted
factors (Figure S6), indicating their involvement in NP homeostasis.

Cell Clusters 3 and 7 furthermore expressed HIGD2A (HIG1 Hypoxia Inducible Do-
main Family Member 2A), which is a hypoxia marker, and its expression is induced by
the hypoxia-inducible factor-1 (HIF1). Cell Cluster 7 additionally had an upregulation of
XBP1 (X-box binding protein), a transcription factor and signal transducer involved in
HIF1-alpha mediated hypoxia responses in survival [74], thus further supporting that these
cell populations play in potentially detecting the environmental condition, ECM regulators
and secreting soluble factors to maintain tissue homeostasis as indicated by the matrisome
enrichment (Figure S6) [75–77].

Since the NP is the largest avascular tissue in the body and NPC have developed to
thrive in a unique hypoxic and hyperosmotic environment, we looked further at other
hypoxic factors other than HIGD2A which also contribute to top cell marker clusters. Cell
Cluster 5 of the NP had a higher expression of HIF1A, which could potentially indicate that
these cells may act as environmental/hypoxic regulators. This is of particular importance
since HIF1A encodes for the alpha subunit of a transcription factor Hypoxia-inducible factor
(HIF-1). HIF-1 functions as a master regulator of cellular and systemic homeostatic response
to hypoxia by activating transcription of many genes. Our data show an upregulation in
HIF-1A-downstream genes reported to be involved in autophagy (BNIP3 and BNIP3L),
glycolysis (LDHA and PGK1), cell migration and adhesion (CXCR4), angiogenesis (VEGFA)
and lipid storage and endoplasmic reticulum homeostasis (PLIN2). Furthermore we
identified C1QTNF3 and TXNIP in cell Clusters 3 and 7 which are in the same trajectory
of the slingshot (Figure S8D). C1QTNF3 has been described as downstream factor of
HIF-1alpha which plays an essential role in cartilage development [78]. TXNIP as part
of the TXNIP-NLRP3 inflammasome has been related to IVD degeneration [79], yet it is
known for its pleiotropic effects as it plays an important role in the energy metabolism [80]
and in cell cycle regulation [81]. Semaphorin 4A (SEMA4A) was also expressed in cell
Cluster 5. Semaphorins are transmembrane proteins that have been shown to not only
lead to repulsive axon guidance but also to play key roles in tissue homeostasis and
morphogenesis. These results potentially indicate that cell Cluster 5 is one of the NPC
populations involved in NP homeostasis under hypoxic conditions and avoiding nerve
ingrowth. It is also a contributor to the ECM by expressing regulators, glycoproteins and
proteoglycans (Figure S6). This same Cluster 5 expresses T-cell factor 3 (TCF3), a member
of the Wnt signaling pathway that has been shown to be a modulator in embryonic stem
cells and development [82]. In regards to the ECM, in the NP, we observed that collagens
were primarily expressed in cell Clusters 1, 4 and 8 (Figure S6), which accounted for almost
a third of all the cells analyzed. Additionally, returning to the point about the effects
that hypoxia may have in maintaining tissue homeostasis. HIF1-alpha has been shown
to control collagen synthesis in chondrocytes by inducing collagen-modifying enzymes
such as lysil oxidase (LOX) and collagen prolyl hydroxylase (P4H42), these genes were
expressed in cell Cluster 8 and 4, respectively [83–85]. These are key ECM-modifiers that
increase crosslinking and stability of the collagen triple helices. Taken together, our data
indicate a series of very distinct cell populations that are closely orchestrated living in this
unique environment. Our data, whether in the single-cell RNAseq or the bulk RNAseq,
show that we could identify most NP specific markers and genes previously reported to be
expressed at higher levels in the NP than in the AF [86,87].

From the eight differentially expressed genes in the NP reported in an earlier single-cell
experiment from Fernandes et al. 2020, we could detect six genes in our single-cell RNAseq
data, namely COL2A1, KRT8, CD24, COMP, FMOD and ACAN, but not A2M and DSC3.
Discrepancies between their single-cell experiments and ours are most likely due to single-
cell RNAseq experimental/technique, number of cells analyzed and sequencing differences,
especially in regards to sequencing depth. Furthermore, our bulk RNA experiments could
only support the overexpression of KRT8 and CD24 in the NP, indicating the potential
limitations in detecting changes in gene expression in very heterogeneous cell populations.
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Novel NP markers such as CHRD [88], CHRDL2, SCUBE1 [89] and CLEC3B were both
detected and differentially expressed in both our NP datasets [21]. Some of the novel
detected NPC contributing genes are part of important signalling pathways and act as
inhibitors of WNT (FRZB and DKK3) and BMP signaling (CHRD, CHRDL2).

The AF provides a wrapping with strong tensile properties and contains the NP. This
leads to a unique architecture of the AF as it is composed of a ring of ligament fibers with
a tendon/ligament-like structure [90]. Thus, the cells in the AF reported very specific
phenotypic signatures that can enable such a defined biomechanical AF function. In
contrast to the NP, where only a couple of cell clusters expressing some collagens, most
cell clusters in the AF contributed by expressing of a wide variety of collagens (Figure S7).
Among those highly expressed collagens, we found COL1A1, COL1A2, COL9A3, COL18A1
and COL4A1, which have been widely reported [20,21].

Small leucine rich proteoglycans (SLRPs) such as BGN, DCN, FMOD, OGN and PRELP
were highly expressed in the AF and predominantly found to be expressed in Clusters 1
and 6 (Figure 8B). SLRPs are associated with collagen fibrillogenesis and ECM assembly
especially in the AF to form concentric lamellae of oriented collagen [22–24].

Another major component of the ECM are the basement membrane proteins and a
major noncollagenous constituent of this family are laminins which have been described
in both chondrocytes and the IVD. LAMA3/4/5, LAMB1/2/3 and LAMC1 were top cluster
markers for a wide range of cell clusters in the AF.

From the ECM remodeling side, we detected SPARC (SPARC, also called osteonectin
or basement membrane protein 40), which encodes a cysteine-rich acidic matrix-associated
protein. This matricellular protein plays a dynamic role in regulating extracellular procol-
lagen processing in the pericellular environment so that it can be efficiently incorporated
into the ECM [91–93]. SPARC has been proposed to modulate cell-ECM interactions
and remodeling of the ECM since it binds collagen Types I–V and VIII, vitronectin and
thrombospondin-1 [94–96]. Increased methylation of SPARC and its promoter as well as
decrease in levels of SPARC have been reported in the human IVD with aging and in
patients suffering with low back pain [97,98]. In the AF, SPARC was highly differentially
expressed in the AF over the NP and ubiquitously found in the scRNAseq data for the AF,
indicating its pivotal role for a healthy AF environment.

Other matricellular genes involved in collagen fibrillogenesis were detected in our AF
data and include PCOLCE, PCOLCE2 and MXRA5 [21]. Due to load bearing properties of
the AF and similarities in mechanical functionalities, it was not surprising to find that AFC
expressed tendon-related markers such as Tenacin C, tenomodulin and thrombosponins
(THBS1/3/4) as well as cartilage intermediate layer proteins (CILP2 and CILP), some of
which have reported in previous studies [21,99]. Additionally, a wide variety of heat shock
proteins (HSPA5, HSPA6, HSPA8, HSP90AA1, HSP90AB1, HSP90B1, HSPB1, HSPH1 and
HSPA1A) were mostly detected in Clusters 4 and 5 in the AF, suggesting their role in the
stress response to load bearing.

Growth factors such as CTGF, PDGFB, VEGFC, IGF2 and FGF2/7 were also detected
in the AF mostly concentrated in cell Cluster 8. According to the potential cell type
profile (Figure 11), the cells in Cluster 8 have a vascular endothelial and progenitor cell
phenotype. We found though that it also expresses genes associated with class II major
histocompatibility complex (MHC) such as CD74 and BoLA-DR-alpha. This same cluster
highly expresses CXCR4 that is involved in the recruitment of mesenchymal stem cells in
bone fractures and IGF2 that is related to fibroblast proliferation [100,101].

We detected TIE1 and TIE2/TEK in the AF specifically in cell Cluster 8. Intrigu-
ingly, TIE1 and TEK receptor kinases have been reported to be specifically expressed in
endothelial cells during embryonic angiogenesis [102]. Through heterodimerisation, they
mediate interactions not only with the ECM but also the surrounding mesenchymal cells,
thus suggesting a paracrine regulation [103]. VEGF has also been shown to activate TEK
through TIE1 [104]. These findings are significant as up to now TEK/TIE2+ cells have
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been uniquely described in progenitor NPC across many species, including bovine and
human [26].

Surprisingly, cell Cluster 9 in the AF seems not to be a major contributor to the
matrisome (Figure S7), although it highly expressed CD44, CD63 and galectin-3. indicating
a stem cell-like phenotype which may play key role in tissue homeostasis. Furthermore,
CALD1, LUM and CTSK, all of which have been described in fibroblasts of the dermis [105],
were highly expressed in cell Clusters 9 and 10, as was PTGDS, which has been recently
described as a papillary fibroblast marker in the human dermis [106]. The potential
cell type profile of Cluster 10 is fibroblast-like cells. TAGLN (SM22) has similarly been
described in fibroblasts and dedifferentiated cultured chondrocytes [107,108]. Overall, our
data match spatial proteomics findings from Tam V. 2020 in detecting structural specific
genes both in the NP and AF, indicating the relevance and integrity of our data [21].
Discrepancies, however, might be due to the disc composition and remodeling of a sample,
especially because with RNAseq data we only capture the cellular information and these
only represent a small fraction of the disc volume [109].

Taken together, our results show a complex and heterogeneous cell population in both
the NP and AF.

Calf tails have been extensively used in intervertebral disc studies as a ready source of
these cell populations [41,110–112]. The use of this model in our study, however, does entail
some limitations specially in regards to the age of the calves as there is a variable window
of 6 months. Given the rostrocaudal developmental gradient in calves, an age shift can
influence the cellular composition of the IVDs at a given level, thus introducing variance in
the differential gene expression analysis of the proximal and distal IVDs [44]. However, we
may have compensated for the age-related variance due to the pooling of three adjacent
IVDs to obtain enough cells for our experiments. Our scRNAseq data suggest, especially
for the AF, a significant developmental gradient along the rostrocaudal axis. Indeed, we
showed size fluctuations of 10–20% exist in the larger cell cluster fractions of the NPs
and AFs. These fluctuations are expected mainly due to age differences when comparing
AFCs and NPCs among different animals. Furthermore, the amounts of fluctuation among
animals is larger for the NPCs and along the rostrocaudal axis for the AFs. Given that
these cell populations may consist of stem cells, transient amplifying progenitors and
terminally differentiated cells, the pattern of these fluctuations may indicate possible tem-
poral differences in the development of the two compartments. This would be consistent
with the transcripts expressed by certain populations of these intervertebral disc cells.
This notion is further supported by the differential gene expression analysis performed
on the so-called bulk RNAseq data from three additional calves. While the NP samples
showed no distinct patterns across animals along the rostrocaudal axis, the AF samples
showed significant differences along the rostrocaudal axis but not across animals. These
differences consist of three differentially expressed transcript clusters being upregulated
in the proximal AF in all animals and the other three clusters being upregulated in the
distal compartment. Furthermore, hierarchical clustering in the bulk RNAseq showed, as
expected, major transcriptome profile differences between the AF and NP, as previously
published [20]. Overall, our data suggest that the AF exhibits rostrocaudal developments
whereas the NP seems to be rather stable.

Another potential drawback from the IVD cell isolation procedure used in our study
is the lack of hypoxic conditions during the extracellular matrix digestion to obtain the
single-cell suspension required for the scRNAseq experiments. We are aware that this could
have influenced the differentiation state of the cells and as a result altered the cell cluster
sizes and numbers [113]. However, IVD cells were immediately processed after digestion
to ensure a minimal impact on the transcriptome of the IVD cells themselves as well as the
maintenance of the original cell numbers. Multiple studies have shown that culturing IVD
cells in monolayers after digestion affect IVD cell phenotype and differentiation [113–116].
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4. Materials and Methods
4.1. Samples Collection and Processing

Two bovine tails were used for the scRNAseq, and three tails for the bulk RNAseq.
The animals were aged from 6 to 12 months. The cow tails were collected from local abattoir
within 2 h post mortem, during which the samples were kept at 4 degrees. After disinfection
of the tails with Betadine (Mundipharma Medical Company, Basel, Switzerland), the IVDs
were dissected and small portions of the Nuclei Pulposi and the Annuli Fibrosi were
extracted. For the scRNAseq, the three most proximal NPs were pooled, as well as the three
most distal ones, in order to have a minimum of 30,000 cells per sample (Table 1). The same
procedure was applied to isolate the most proximal and distal AFs. As it was previously
shown that there are gene expression differences noted depending on the segmental level
of the coccygeal discs [117], we decided to pool the most distal and the most proximal IVD
tissues. For the bulk RNAseq, only the two most proximal and distal NPs and AFs were
used (Table 2). The samples were then cut in small pieces and incubated in flasks with
0.19% Pronase for 1 h at 37◦ on shaker at lowest speed. After the incubations, the cells
were then washed with PBS before placing them again in flasks for an overnight incubation
with Collagenase II (260 IU/mg) at 37◦ on shaker at lowest speed. The next morning,
the cells were washed with PBS and then filtered through a 100 µm filter to remove
potential undigested tissue aggregates and debris. For the scRNAseq samples, the cells
were then counted and diluted in PBS + BSA (0.05%) with an approximate concentration
of 1000 cells/µL. For the bulk RNAseq samples, the cells were collected in a pellet and
shock frozen.

4.2. Bulk RNAseq

The RNA was extracted following the RNAeasy Mini Kit Qiagen manual. The quality
of the RNA was evalutated using Tapestation (Agilent, Waldbronn, Germany). The libraries
were prepared using SENSE mRNAseq Library Prep Kit (Lexogen, Vienna, Austria) and
sequenced on the NextSeq500 System (Illumina, San Diego, CA, USA) using a 150 cycle
kit, single-end 150 bp, following the manufacturer’s instructions. In total, 25M reads were
obtained per sample.

4.3. Bulk RNAseq Data Analysis

The quality of Illumina SE RNAseq reads was evaluated using FastQC v.0.11.7 [118].
FastqScreen v.0.11.1 [119], was used to screen for potential sample contaminations (ge-
nomic DNA, rRNA, mycoplasma, etc.) using a custom database including UniVec [120],
refseq mRNA sequences, selected genome sequences (human, mouse, bacteria, virus,
PHIX, lambda and mycoplasma) [121] and SILVA rRNA sequences [122]. Illumina SE
reads were preprocessed using Trimmomatic v.0.36 to trim off sequencing adapters and
low-quality ends [123]. Trimmed reads were aligned to the reference genome and tran-
scriptome (FASTA and GTF files, respectively, Ensembl, Bos taurus, UMD_v3.1, Annotation
release 92-2018-0530) with STAR [124] version 2.7.3a with default settings for single end
reads. PCR duplicates were marked using Picard v.2.18.0. Differentially expressed genes
were identified using R/Bioconductor package edgeR (R version: 3.6.1, edgeR version:
3.28.1) [125], in which the normalization factor was calculated by trimmed mean of M
values (TMM) method [126].

4.4. Single-Cell RNAseq

The quality and concentration of the single-cell preparations were evaluated using an
hemocytometer in a Leica DM IL LED microscope and adjusted to 1000 cells/µL. 10,000 cells
per sample were loaded in to the 10× Chromium controller (Pleasanton, CA, US) and
library preparation was performed according to the manufacturer’s indications (single-cell
3’ v3 protocol). The resulting libraries were sequenced in an Illumina NovaSeq sequencer
according to 10× Genomics recommendations (paired-end reads, R1 = 28, i7 = 8, R2 = 91)
to a depth of around 50,000 reads per cell (Figure 13).
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Figure 13. 10× single-cell sequencing workflow. Single-cell RNA-seq workflow. (1) Isolated single NP or AF cells together
with barcoded beads and reverse transcription reagents were isolated in oil droplets using the 10× Genomics Chromium
system (2) Within each micro reactor, the single cell were lysed, and reverse transcription of polyadenylated mRNA occurs
with the incorporation of cell-specific and transcript specific barcodes or UMIs (Unique Molecular Identifier). (3) As a result,
all cDNAs from a single cell had the same barcode, which enabled the sequencing reads to be clustered together. Next
generation sequencing (NGS) libraries from these barcoded cDNAs were prepared. (4) NGS was performed in a Novaseq
6000 system. (5) Cell Ranger (v3.0.1) was used to align the reads to the reference genome and generate count tables of UMIs
for each gene per cell. Subsequent data analysis steps were performed as described in Section 4.5.

4.5. Single-Cell RNAseq Analysis

The fastq files were aligned to the Bos taurus reference sequence (UMD-v3.1 Release-92)
taken from Ensembl. After the alignment, each observed barcode, UMI, gene combination
was recorded as a UMI count matrix that was then filtered to remove low RNA content cells
or empty droplets. All these steps were performed using the CellRanger software (v3.0.1).
Starting from this matrix, we used the R package Seurat (version 2.3.4) [127] to perform
the following downstream analyses per sample: genes and cells filtering, normalization,
feature selection, scaling, dimensionality reduction, clustering and differential expression.
We started by filtering out genes that did not obtain at least 1 UMI count in fewer than
five cells, and discarded cells for which fewer than 400 genes or more than 4200 genes
were detected and also those that had a mitochondrial genome transcript ratio greater than
0.25. After this, the data were normalized using a global-scaling normalization method
that normalizes the feature expression measurements for each cell by the total expression,
multiplies this by a scale factor (10,000 by default) and log-transforms the result. We next
calculated a subset of 2000 features that exhibited high cell-to-cell variation in the dataset.
Using as input these variable features, we performed PCA on the scaled data. Since Seurat
clusters cells based on their PCA scores, we used a heuristic method called ‘Elbow plot’
to determine how many principal components (PCs) we needed to capture the majority
of the signal. In this way, the cells were clustered using an unsupervised graph-based
clustering approach using the first 12 PCs and a resolution value that ranged from 0.3 to
0.5. Clusters were visualized using t-distributed Stochastic Neighbor Embedding of the
principal components (spectral t-SNE) [128] as implemented in Seurat. We found positive
markers that defined clusters compared to all other cells via differential expression. The
test we used was the Wilcoxon Rank Sum test, which assesses separation between the
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expression distributions of different clusters. Genes with, on average, at least 0.25-fold
difference (log-scale) between the cells in the tested cluster and the rest of the cells and an
adjusted p-value < 0.05 were declared as significant. Cell-cycle phases were predicted using
a function included in the scran R package [129] that scores each cell based on expression
of canonical marker genes for S and G2/M phases. Since scran only includes markers for
human and mouse, we performed this analysis using the human homolog genes taken
from Ensembl.

4.6. Pathways Analyses

To identify which kind of cell populations were present in the samples, we performed
three types of enrichment analyses: singular enrichment analysis (SEA), gene set enrich-
ment analysis (GSEA) and gene set variant analysis (GSVA). GSEA was also performed for
the bulk RNAseq data to detect pathways enriched in either the NP or the AF structures.
The most traditional enrichment approach, SEA, iteratively tests annotation terms one at a
time against a list of interesting genes for enrichment. In this case, we used Gene Ontology
1, KEGG 2 and Wiki pathways 3 as annotation terms and we used the marker genes found
in every cluster as our lists of interesting genes. SEA calculates an enrichment p-value by
comparing the observed frequency of an annotation term with the frequency expected by
chance; individual terms beyond some cut-off (e.g., p-value ≤ 0.05) were deemed enriched.
GSEA method is similar to SEA, but it considers all genes during analysis, not just those
deemed as interesting or significant by some metric or threshold. Alternatively, we per-
formed a biological theme comparison among gene clusters with statistical analysis of GO
and KEGG pathways. Finally, we used the enrichment method GSVA to find associations
between clusters and cell types. GSVA calculates sample-wise gene set enrichment scores
as a function of genes inside and outside the gene set, analogously to a competitive gene
set test. GSVA is similar to GSEA, but it estimates variation of gene set enrichment over the
samples independently of any class label. This time, instead of using GO terms or KEGG
pathways as gene sets, we used cell types and gene markers identified in different tissues
in human taken from the CellMarker database 4. Bos taurus gene symbols were converted
to their homolog gene symbols in Homo sapiens.

1. http://geneontology.org (accessed on 29 April 2019)
2. https://www.genome.jp/kegg (accessed on 29 April 2019)
3. https://www.wikipathways.org (accessed on 29 April 2019)
4. http://biocc.hrbmu.edu.cn/CellMarker (accessed on 29 April 2019)

4.7. Multiple Samples Integration

To find inter- and intra-individual differences between animals, we used a method
implemented in Seurat v 3.0.1 [64] that aims to identify shared cell states that are present
across different datasets. We initiated this process through dimensional reduction using
canonical correlation analysis (CCA), aiming to place datasets in a shared low-dimensional
space. Following dimensional reduction, we identified the K-nearest neighbors (KNNs) for
each cell within its paired dataset, based on the L2-normalized CCV. Finally, we identified
mutual nearest neighbors (MNN; pairs of cells, with one from each dataset, that are
contained within each other’s neighborhoods). We refer to these pairwise correspondences
as “anchors”. Filtering and scoring anchors steps were performed to mitigate the effects of
any incorrectly identified pairs of cells.

5. Conclusions

By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering
results of our study [130,131], we identified 27 NPC structure/tissue specific genes and
24 AFC structure/tissue specific genes. Developmental changes were detected in the AF
along the rostrocaudal axis. From our single-cell RNAseq results, we could deconvolute
the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a
notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we also detected

http://geneontology.org
https://www.genome.jp/kegg
https://www.wikipathways.org
http://biocc.hrbmu.edu.cn/CellMarker
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a stem cell-like cell cluster, a cluster with a predominantly fibroblast-like phenotype and
an endothelial progenitor cell like cluster.
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The following abbreviations are used in this manuscript:

AF Annulus Fibrosus
AFC Annulus Fibrosus Cell
CCA Canonical Correlation Analysis
CEP Cartilage Endplate
GSEA Gene Set Enrichment analysis
GSVA Gene Set Variant Analysis
IVD Intervertebral disc
KNN K-nearest neighbors
MNN Mutual Nearest Neighbors
NP Nucleus Pulposus
NPC Nucleus Pulposus Cell
PCA Principal Component Analysis
RISH Hybridization on paraffin sections
SEA Singular Enrichment Analysis
t-SNE t-stochastic neighbor embedding
UMI Unique Molecular Identifier
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