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A B S T R A C T   

Reducing carbon emissions while maintaining simultaneous economic growth has been the focus 
of agricultural and environmental management research in recent times. To examine the influ-
ence of agricultural environmental regulations and related factors on agricultural carbon emis-
sions efficiency, the entropy method was utilized to weigh each index and develop an index 
system for evaluating agricultural environmental regulations. This study utilizes the Super 
Slacked-Based Measure model that takes into account undesirable outputs. The research data used 
spans the years 2010–2019 and covers 31 provinces in China to calculate the efficiency of agri-
cultural carbon emissions. A spatial Durbin model was employed to investigate the influence of 
environmental regulations and other influential factors on the efficiency of agricultural carbon 
emissions. The efficiency levels in the eastern region of China have consistently exceeded the 
national average, whereas the central region has demonstrated the lowest efficiency levels across 
the nation. Both the efficiency of agricultural carbon emissions and the intensity of agri- 
environmental regulations measured in this paper are strongly spatially autocorrelated between 
provinces. The environmental regulations index on local agricultural carbon emissions efficiency 
is significantly positive, while the effect on the agricultural carbon emissions efficiency in adja-
cent areas is not significant. Overall, agricultural environmental regulations effectively enhance 
agricultural carbon emissions efficiency, which in turn promotes technological innovation and 
economic growth. At the same time, local governments should actively adopt targeted strategies 
based on the actual situation of different regions in terms of their resource endowments and 
differences in the production characteristics of different crops.   

1. Introduction 

Global warming has become a significant problem globally due to the drastically increased levels of carbon emissions caused by 
human activities, leading to climatic disasters and ocean acidification [1,2]. Environmental challenges not only destroy the ecosystem, 
but also hurt human beings and the rate of economic development [3,4]. Other than industrial sources, the agricultural sector is the 
economic sector that emits the most greenhouse gases, accounting for 25% of the global perceived carbon emissions [5,6]. 
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In recent years, Chinese agriculture has experienced significant growth through the mechanization of farming and the widespread 
use of pesticides and fertilizers [7]. However, this modernization has also brought negative impacts on the environment, such as 
increased agricultural carbon emissions, which is a serious problem [8,9]. The academic community is currently discussing various 
ways to reduce agricultural carbon emissions, including reducing emission levels and achieving sustainable agricultural development 
by addressing economic issues [10,11]. Research has shown that policies can affect agricultural carbon emissions from six different 
sources [12]. Current research also focuses on factors that influence agricultural carbon emissions efficiency, such as cropping 
management practices, local economic development levels, farmers’ use of technology, and agricultural specialization [13–15]. It is 
important to note that reducing carbon emissions while increasing economic output and achieving sustainable development is a crucial 
issue [16,17]. 

Exploring carbon efficiency in this period is crucial to the development of green agriculture in China. The simultaneous 
advancement of emission reduction and economic growth, along with the enhancement of carbon efficiency, holds great significance in 
achieving carbon neutrality by 2060 [18–20]. A scientific measure of carbon efficiency, which compares the actual level of carbon 
emissions with the minimum level of carbon emissions, can indicate the potential for improvement in current carbon emissions [21, 
22]. Simultaneously, comprehending the impact of numerous factors on agricultural carbon emissions efficiency (ACEE) enables 
scientists to recognize the challenges and impediments involved in emissions reduction. Production characteristics are among the 
factors that could affect the efficiency of agricultural carbon emissions (cropping structure, irrigation, and the strength of the land 
scale) [21], natural characteristics (climate fluctuation, disaster occurrence, etc), economic development strengths (regional devel-
opment level, industrialization, trade openness, etc) and social factors (level of urbanization, human capital, etc) [18,21]. 

Many studies currently focus on the influencing mechanisms of the above-mentioned factors. Environmental regulations are also 
key elements influencing agricultural carbon emissions efficiency [23]. However, there have been scant studies on the influence of 
environmental regulations on the efficacy of agricultural carbon emissions. Various environmental policies have been proposed in 
China to promote ecological improvements, reduce carbon emissions, and increase the efficiency of agricultural carbon emissions [24]. 
Specifically, the establishment of an appraisal framework for environmental regulations in agriculture and the investigation of its 
impact on the diverse stages of agricultural production would assist in realizing the objective of reducing carbon emissions. Since the 
‘low carbon economy’ idea was initially proposed, environmental protection and sustainable development have become increasingly 
attractive. Environmental regulations play an important function in the government’s efforts to promote emission reductions, enhance 
the environment, and restructure economic development patterns. The implementation of these policies has had a catalytic effect on 
technological innovation, thereby promoting economic development and transformations in the agricultural sector [25–28]. It is 
critical to examine how agricultural environmental regulations (AER) on agricultural carbon emissions efficiency (ACEE) are crucial in 
achieving emission reductions, promoting sustainable agriculture, and ensuring the development of agricultural modernization. 

To explore how agricultural environmental regulations affect agricultural carbon emissions efficiency, analyzing agricultural 
production inputs and outputs is essential. Firstly, the government uses AER to encourage farmers to abandon inefficient production 
techniques and to adopt more advanced production technologies. Incorporating new technologies into farming practices drastically 
improves the efficiency of farmers’ production inputs, leading to a reduction in production costs. The unit yield of agricultural goods 
may be increased through advanced production technologies, leading to larger economic output. Furthermore, advanced technologies 
can help to mitigate environmental pollution and emissions by addressing environmental concerns at all stages of production. Agri-
cultural production pollution levels and carbon emissions are considered non-desirable outputs that can diminish agricultural carbon 
emissions efficiency. The existing theories argue that environmental regulations require pollution treatment by the target group, as 
well as actions such as purchase behaviors or technology development that will eventually bring economic burdens to farmers [29–31]. 
At the same time, pollution control leads to producers not being able to produce at optimal levels, which results in low production 
efficiency [32,33]. However, as explained by the Porter hypothesis, they believed AER makes it more difficult for environmental 
management but AER also reduces emissions of agricultural pollution. Moreover, adopting environmental regulations improves the 
technology level, optimizes factors of production, and upgrades outdated agricultural equipment [28,34]. As a result, farmers receive 
more advanced technological innovations and they become more competitive in the market, which will finally bring them profits in the 
long run [27]. The Porter Hypothesis argues that the economic loss brought by the “cost of compliance” effect can be compensated by 
the advantages of implementing environmental regulations, which will lead to rapid economic development [26]. 

Environmental regulations can also optimize farmers’ management practices, and improving agricultural production practices can 
effectively reduce carbon emissions. Studies have shown that better production patterns and management practices can effectively 
reduce agricultural carbon emissions [13]. Environmental regulations can guide and optimize farmers’ production practices by 
increasing the degree of agricultural production services, resulting in higher economic income for farmers. Environmental restrictions 
can increase agricultural operators’ knowledge of the environment on all levels and lower carbon emissions during each operator’s 
agricultural production process. The relationship between agricultural carbon emissions and economic growth is intricate and diverse, 
making it difficult to assess the effects of a single statistic. Most approaches to evaluating how strictly environmental regulations are 
enforced are focused on mitigating carbon emissions from industry and overlook agricultural carbon emissions. However, since the 
industrial sector is where the majority of carbon emissions come from, examining the response of carbon emissions to regulation alone 
is not representative of the degree to which regulation affects agricultural carbon emissions. The current study has a research gap since 
there is no measurement of the impact of environmental regulation on agricultural carbon emissions and no construction of indicators 
for the agricultural environmental regulation component. 

It is still unclear whether agricultural environmental regulations can be utilized as a tool to encourage Chinese economic devel-
opment through coercive or incentive measures to reduce environmental pollution, promote technological innovation, and ultimately 
improve the ACEE. The development of an assessment index system for agricultural environmental regulations and the investigation of 
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its effects on the ACEE in China remain unresearched topics. Indicators must be developed for the section that addresses the lessening 
of agricultural carbon emissions. This research aims to assess the ACEE of each region and province in China from 2010 to 2019 using 
data from all 31 provinces. An evaluation index system for the intensity of AER, using two dimensions of ex-ante and ex-post, is 
constructed. The analysis also examines the interactions between regions to deepen the meaning of their impact on ACEE. The paper’s 
conclusion and any pertinent policy suggestions will be presented at the end. 

2. Data and method 

2.1. Data description 

In recent years, China’s agricultural economy has experienced a rapid pace of development. Not only have agricultural production 
and farmers’ incomes surged significantly, but there has also been an excessive exploitation of agricultural resources. The continual 
excessive use of pesticides and fertilizers can result in soil degradation, and the emergence of environmental issues is becoming 
increasingly evident. Based on data availability, this paper’s scope encompasses 31 provinces in China, representing 97.80% of the 
population and 99.38% of the cropland [35,36]. Agricultural environmental regulation is measured by constructing a system of 
environmental regulation evaluation indicators. The following variables are mainly involved: the investment in pollution control, the 
investment in environmental protection, the number of released policies, the agricultural expenditure, the number of management 
staff, the agricultural carbon emissions, the amount of agricultural pollution, the sewage treatment, and the domestic waste treatment. 
The agricultural carbon component encompasses carbon emissions stemming from the production and utilization of pesticides, fer-
tilizers, and agricultural films in agricultural production, as well as the fossil fuel consumption associated with agricultural machinery 
operation, soil organic carbon depletion due to plowing, and the utilization of fossil fuels in irrigation. Agricultural capital, agricultural 
labor, and agricultural land are also involved in the measurement of carbon emission efficiency in agriculture. Each of the explanatory 
variables used in this study to calculate the degree of environmental regulation and ACEE was obtained from the various national and 
local statistical yearbooks from 2011 to 2020. Several variables were gathered from the regional statistical yearbooks. Additionally, 
the number of local carbon emissions policy releases was obtained from the PKULAW website. 

2.1.1. Measurement of agricultural environmental regulations index 
The command-and-control regulations refer to the type that the government directly supervises and demands polluters to meet 

relevant standards based on existing laws and regulations [28,37,38]. The incentive-based regulations refer to the type with 
price-based tools including financial investment and environmental protection subsidies, as well as property rights-based tools such as 
carbon emission trading [37,39]. Voluntary regulation participation refers to the way of reducing pollution behavior by relying on 
initiatives carried out by social groups such as industry associations [39]. All three categories can effectively reduce environmental 
pollution from different perspectives. 

To evaluate the intensity of AER, existing studies are mainly classified into single-index problems and composite-index problems. 
Single-index problems are further classified into cost-based AER and performance-based AER [40]. The cost-based AER includes the 
number of local environmental policies issued and the cost-to-expenditure ratio for treating pollutant emissions [41,42]. In contrast, 
the performance-based AER uses pollutant emissions and the pollutant disposal tax as the level of AER [43]. Since environmental 
regulations are diverse and continuous, using a single evaluation index may cause a large deviation from the actual situation. A remedy 
to this problem is to combine these two indicators by multiplications [27,28]. However, this strategy does not offer a thorough analysis 
of the whole scope of environmental control. Moreover, it is more comprehensive and specific to measure the intensity of AER by 
constructing an environmental regulation evaluation index system. To more effectively assess how environmental legislation in-
fluences agriculture, all indicators related to the agricultural environment and carbon emissions regulation are consolidated to provide 
a comprehensive measure of agricultural environmental regulation. Drawing on existing information, this study represents the 
implementation of environmental regulation by constructing a system of indicators for evaluating AER. 

The evaluation layers used to build the environmental regulation evaluation index system can be divided into two groups: the 
command-and-control environmental regulations and incentive-based environmental regulations. According to the full-process con-
trol theory, when evaluating environmental regulations, some scholars incorporate the implementation, effectiveness, and results of 
environmental regulations into their evaluation index system [40]. As an example, the effectiveness of environmental regulation 
transformation can be evaluated by using indicators such as relative pollution emissions, sulfur dioxide removal rate, and industrial 
soot removal rate from the previous year. Peng et al. integrated three indicators of environmental regulation: measures, impacts, and 
efficiency to build an evaluation index system and classified them into five aspects: economic type, administrative type, emission type, 
health type, and efficiency type. 

According to the full-process control theory, this paper divides the entire evaluation indicators into ex-ante indicators and ex-post 
indicators. Three primary indicators include measure indicators, impact indicators, and efficiency indicators. These three indicators 
offer a comprehensive assessment of the strength of agricultural environmental regulation. Moreover, the three primary indicators are 
further subdivided into nine secondary indicators. After preprocessing the data, the value of each variable is calculated using the 
entropy method. Weights are assigned to the outcomes to evaluate the intensity level of agricultural environmental regulations [44]. 
The ex-ante component encompasses five facets: investment in environmental governance, funding for rural environmental protection, 
number of local carbon emission policies issued, agricultural expenditure, and rural environmental managers. Investment in envi-
ronmental governance is a robust indicator of the importance placed on environmental governance by the region. Funding for rural 
environmental protection reflects the financial resources allocated by the government to agricultural energy. The number of local 
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carbon emission policies issued signifies the relevance and strength of local policies aimed at mitigating carbon emissions. Agricultural 
expenditure reflects all local costs associated with agriculture-related construction and can represent local input into agricultural 
development. The number of individuals managing rural energy institutions is also considered a factor in quantifying environmental 
regulation. Ex-post evaluation indicators include four categories: agricultural carbon emissions, relative emissions of agricultural 
pollution, sewage treatment, and domestic waste treatment, which reveal the outcomes of environmental regulation and are included 
in the indicator system. Table 1 and Fig. 1 provide a full description of the classification of environmental regulation evaluation in-
dicators, as well as the calculation and evaluation of their values. 

2.1.2. Super-SBM-undesirable model 
The initial step of this study involves determining the ACEE of all 31 provinces in China. Compared to other methods of calculating 

efficiency, the Data Envelopment Analysis method can evaluate the efficiency without setting the production function form and it has a 
wide range of applications [45–47]. A non-angular and non-radial SBM model in 2001, can effectively address the issue of radial DEA 
models not reflecting objective reality [48]. However, when using the SBM for the efficiency calculation, the effective decision-making 
units are presented as 1, and comparing different efficient decision-making units is not possible [49,50]. To overcome this problem, 
Tone proposed the Super-SBM-Undesirable Model, which takes into consideration the presence of undesired outputs [51]. To account 
for non-desired outputs such as agricultural carbon emissions and surface pollution, this article employs a super-efficient SBM model 
that incorporates these outputs into the estimation of the efficiency of China’s agricultural carbon emission production [52–54]. 

The model defines that there are n decision units with input vector x ∈ Rm, desired output vector ye ∈ Ra, and non-desired output 
vector yn ∈ Rb. We defined the matrix: X = [x1,x2,⋯,xn] ∈ Rm×n > 0, Ye = [ye

1, ye
2,⋯, ye

n] ∈ Ra×n > 0 and constructed the Super-SBM- 
undesirable Model based on non-desired outputs. See equation (1)- (5) for details. 
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ρ∗ is the calculated efficiency value. D− , De, and Dn are the slack variables for inputs, desired outputs, and undesired outputs, 
respectively. λ is the weight vector, and the subscript 0 indicates the decision-making unit. 

Before calculating the agricultural carbon emissions (ACEE), setting up a logical input and output system is required. Firstly, 
various approaches utilized in existing research work should be comparatively analyzed thoroughly. Additionally, the availability, 
comparability, and variability of the raw data should be considered in the analysis of ACEE. This paper established an indicator system 
of eight input variables, one desired output variable, and two non-desired output variables. Interpolation was used to complete missing 

Table 1 
Details of the indicators at each level.  

Secondary Indicators Explanation 

Investment in pollution control（+） Investment in environmental pollution control/GDP of the region 
Investment in environmental protection（+） Government funding for rural energy 
Number of released policies（+） Number of local carbon emissions policies issued in the year 
Agricultural expenditure（+） Regional agricultural expenditures 
Number of management staff（+） Number of rural energy management agencies 
Agricultural carbon emissions（-） The proportional amount of CO2 emissions from the agricultural sector 
Amount of agricultural pollution（-） The relative pollution level from the agricultural sector 
Sewage treatment（+） Sewage treatment plant centralization rates 
Domestic waste treatment（+） Rate of safely discarding household garbage 

In the table (+) and (− ) indicate positive and negative indexes respectively. 
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data caused by official statistics. In Fig. 2, descriptive statistics are shown. 
The entropy approach was used to calculate agricultural non-point source pollution. The loss coefficient and residue coefficient 

were obtained from Yuan Pei [55]. Agricultural carbon emissions were calculated using the data from six emission sources shown in 
Fig. 2, while the emission coefficients were obtained from Li Bo and Yuan Pei’s research findings [55,56]. 

2.2. Spatial econometric model 

Given the potential spatial correlation between AER and ACEE, the analysis of influencing factors necessitates the inclusion of 
spatial econometric methods [57]. To account for the spatial spillover effects of AER on ACEE, we employ a spatial panel model as our 
analytical methodology [58]. The spatial panel model for this study can be expressed as equation (6)- (7). 

Yit = βedit + λcontrolit + αWYit + θWedit + γWcontrolit + uit (6)  

uit = φWuit + εit (7)  

where W is the weight matrix; β, λ, α, θ, γ are the effects of local AER, local control variables, the agricultural carbon emissions ef-
ficiency in adjacent areas, AER in adjacent areas, and the impacts of control variables in adjacent areas on the local carbon emission 
efficiency, respectively. φ is the interaction effect in adjacent areas. If θ, γ, and φ are 0, the model is a spatial lag model (SAR); if α, θ, 
and γ are 0, the model is a spatial error model (SEM); if φ is 0, the model is a spatial Durbin model (SDM) [59]. 

This paper selects six explanatory variables and we study how they influence agricultural carbon emissions efficiency (ACEE). The 
agriculture environmental regulatory (AER) is the primary explanatory factor. The other five explanatory variables including rural 
public investment (PI), degree of industrialization (IN), degree of agricultural disaster (AD), industrial structure (IS), and the level of 
economic development (ED) are used as control variables. Table 2 displays the calculation methods, data sources, and descriptive 
statistics. 

3. Results 

3.1. Agricultural environmental regulation intensity 

The provinces of the nation have been classified into four regions in this article: the eastern, central, western, and northeastern 

Fig. 1. Evaluation index system of agricultural environmental regulations.  

Fig. 2. Indicators of agricultural carbon emissions efficiency (ACEE).  
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regions. This research has also produced an index for measuring the degree of agricultural environmental regulation. As depicted in 
Fig. 3(a), the agricultural environmental regulation index has exhibited a steady increase over the years, indicating a general upward 
trend in the intensity of environmental regulation across the country. The central region consistently occupies the lowest position on 
the index, while the northeastern region has experienced a significant increase. From 2010 to 2015, the eastern region had a faster rate 
of growth in environmental regulation, which was then followed by a significant decline between 2015 and 2016 before increasing 
once more. The western region consistently maintains a higher position on the index. 

3.2. Agricultural carbon emissions efficiency (ACEE) 

This paper utilizes MATLAB 2021b to compute the ACEE, using the Super-SBM-undesirable model. 
Fig. 3(b) demonstrates that between 2010 and 2015, the national average value for the ACEE increased rather steadily. Although 

the speed of increase slowed down between 2015 and 2017, exponential growth picked up in the following two years. 
Fig. 3 illustrates the dynamic changes of ACEE for each region, with lines of different colors representing their corresponding 

regions. The graph illustrates that the ACEE in the Eastern part of China has consistently been higher than the national average. 
Throughout the 2010–2019 period, the ACEE in the Western part of China has remained slightly below the national average, but the 
gap has decreased in recent years. 

The ACEE in the Northeastern part of China exhibited steady growth from 2010 to 2015, while there was a significant decline in 
2016. However, it started to rise again from 2017 to 2019. The ACEE in Central China has consistently been below the national 
average, with its growth rate increasing since 2017–2019. 

The temporal and spatial representation in Fig. 4 illustrates the variation in ACEE for each province from 2010 to 2019. From Fig. 4, 
the eastern part of China has a higher level of agricultural sustainability than the other provinces. Much more developed than other 
regions in China, provinces in the Eastern part of China are equipped with more advanced agricultural production techniques. At the 
same time, economically developed areas are usually chosen as primary pilot regions for certain government policies. Therefore, more 
local farmers in these provinces are educated and they are likely to adopt more appropriate strategies when issues happen. The Western 

Table 2 
Descriptive statistics of the regression variables.  

Variables Definition Mean Std. dev. Min Max Source 

AER As mentioned above 53074050 37915640 1442483 164371900 China Agricultural Statistical Report, Peking 
University Law website [60], Statistical bulletins of 
national economic and social development of 
various regions 

ACEE As mentioned above 0.5347899 0.2491414 0.1163657 1.124174 China Rural Statistical Yearbook, China Statistical 
Yearbook 

PI Agricultural fiscal expenditures/ 
Total fiscal expenditures 

0.115 0.032 0.041 0.203 China Rural Statistical Yearbook 

IN Industrial value-added/Regional 
GDP 

0.441 0.086 0.162 0.59 China Statistical Yearbook 

AD Area of crops affected/Total area 
sown 

0.159 0.119 0.006 0.695 China Rural Statistical Yearbook 

IS Production value of agriculture, 
forestry, animal husbandry, and 
fishery/Regional GDP 

0.517 0.088 0.338 0.74 China Statistical Yearbook 

ED Regional GDP/Regional year-end 
population 

5.176 2.61 1.323 16.421 China Statistical Yearbook, China Statistical 
Abstract  

Fig. 3. Changes in environmental regulation index and agricultural carbon emissions efficiency by province, 2010–2019.  
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part of China is comparatively less economically developed than other regions and also has a lower level of agricultural economy and 
development of rural habitat. However, the amount of pollution driven by agricultural output in Western China is minimal. The 
northeastern part of China and Central China has a lower degree of agricultural modernization and land intensification, resulting in 
less efficient agricultural carbon emissions. High land utilization brought on by Central China’s dense population limits the growth of 
the ACEE. 

The average ACEE for each province and region during the study period is presented in Table 3. Table 3 demonstrates that during 
the study period, the ACEE varied significantly among the 31 provinces in China (excluding Hong Kong, Macao, and Taiwan). The 
highest mean value of efficiency is 0.944 in Beijing, followed by 0.937 and 0.809 in Shanghai and Jiangsu, respectively. Gansu and 
Shanxi exhibit low ACEE, with values of 0.237 and 0.251, respectively. In Anhui, agricultural carbon emissions have the lowest ef-
ficiency (0.235). 

The ACEE values show a noticeable disparity across various regions in China. The central region, which includes densely populated 
provinces, should strive to improve the modernization of agriculture and technological developments, reducing carbon emissions and 
responding positively to national policies. The Western part of China should focus on upgrading agricultural production techniques to 
promote regional economic development. 

Fig. 4. Temporal and spatial variation in agricultural carbon emissions efficiency by region, 2010.  
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3.3. Global spatial auto-correlation test 

The global Moran’s I analysis conducted using the Geoda software revealed a consistently positive and statistically significant 
correlation (p < 0.05) in terms of ACEE from 2010 to 2019. The global Moran’s I of the agricultural environmental regulation intensity 
was found to be significant (p < 0.01) [61]. The ACEE is influenced by factors such as natural elements, industrial structure, and local 
economic development. Due to their similar geographical and climatic characteristics, adjacent regions are not independent of each 
other. 

3.4. Analysis of factors affecting ACEE 

3.4.1. Main results 
Before conducting the regression analysis, we transformed the values by taking their logarithm to make them smoother [62,63]. 

Table 4 shows the results of the multiple covariance test, showing that variance inflation factor (VIF) values below 10 and a mean value 
of 1.46. There’s no multi-collinearity problem present. The LM test and the robust LM test were performed first in this paper [64,65]. 
As shown in Table 5, both the LM value and the robust LM value of the SEM pass the test (p < 0.001) under the spatial adjacency 
matrix, while the robust LM value of the SAR also passes the test (p < 0.01). 

Table 6 indicates that all three Hausman tests are significant at the 1% level, suggesting that the selection of the fixed effects model 
is appropriate. Given that all of the results are significant at the 1% level, the results of the LR tests show that none of the models can be 
reduced to either an SEM or a SAR. Table 6 presents the results obtained using three models: SDM, SAR, and SEM. The goodness of fit is 
only 0.3485 and 0.0034 for the SAR and the SEM, respectively, while the SDM’s score is greater, suggesting its appropriateness for 
calculation. The SDM demonstrated a strong positive impact of the SAR at the 1% level, demonstrating that the ACEE in nearby 
provinces significantly influences the ACEE value in a particular province. 

3.4.2. Direct vs. indirect 
The point estimates applied in the fixed effects SDM ignore the interaction terms between adjacent provinces, therefore the in-

dividual coefficients may not accurately reflect the effects between the variables [66,67]. Partial differentiation is utilized to classify 
the impacts of each explanatory variable on the value of ACEE into direct, indirect, and total effects [66,67]. Table 7 shows the results. 

A coefficient of 0.566 indicates that the direct effect of the AER on the ACEE is statistically significant (p 0.05). This suggests that 
AER can enhance the productivity of local agricultural carbon emissions. The findings are consistent with the research hypothesis and 
show that implementing AER can dramatically reduce local pollution and carbon emissions, and it also improves local carbon 

Table 3 
The average value of ACEE for 31 provinces from 2010 to 2019.  

Province Mean value Province Mean value 

Beijing 0.944 Heilongjiang 0.600 
Tianjin 0.710 Jilin 0.302 
Hebei 0.393 Liaoning 0.516 
Shandong 0.686 Northeast 0.473 
Jiangsu 0.809 Chongqing 0.498 
Shanghai 0.937 Sichuan 0.623 
Zhejiang 0.576 Guangxi 0.410 
Fujian 0.658 Guizhou 0.526 
Guangdong 0.622 Yunnan 0.274 
Hainan 0.653 Shaanxi 0.612 
Eastern 0.699 Gansu 0.237 
Shanxi 0.251 Inner Mongolia 0.336 
Henan 0.584 Ningxia 0.394 
Hubei 0.492 Xinjiang 0.620 
Hunan 0.400 Qinghai 0.642 
Jiangxi 0.314 Xizang 0.758 
Anhui 0.235 Western 0.494 
Central 0.379 Nation-wide 0.536  

Table 4 
Multicollinearity test.  

Variables VIF 

AER 1.330 
PI 1.800 
IN 1.400 
AD 1.260 
IS 1.110 
ED 1.860 
Mean VIF 1.460  
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efficiency in terms of undesired outputs. In terms of the desired output, AER raises the level of production technology, leading to higher 
profits. Restrictions on agricultural production by AER stimulate technological innovation, increasing the initiative of farmers and 
improving their competitiveness. When implementing AER, the government gives farmers more innovative farming technologies and 
environmentally friendly information, leading to the improvement of ACEE. Agricultural AER’s indirect effect is statistically small, 
which means that there isn’t much of a spillover effect from nearby regions to the study region. AER has a positive and significant 
overall impact on ACEE (p 0.1). 

At the 1%, 10%, and 1% levels, respectively, the direct, indirect, and total effects of public investment (PI) on agricultural carbon 
emissions efficiency (ACEE) are all positive and statistically significant. The findings demonstrate that agricultural carbon emissions 
efficiency experienced significant growth and improvement during the study period, and this is mostly due to the large contribution 
made by governmental investment in agriculture. The high level of financial investment suggests that the local government is 
prioritizing the development of agriculture, technological innovation, and infrastructure improvements. To increase agricultural 
productivity and profitability, they all make a difference. The ACEE in neighboring regions is significantly improved by investments in 
agriculture. 

The direct effect of industrialization (IN) is significantly negative, whereas the indirect and total effects are significantly positive. 
Industrialization can contribute to the development of agricultural technology and machinery, which raises agricultural production 
and economic returns. The widespread use of agricultural machinery driven by industrialization may increase the carbon emissions of 
agricultural production, which can negatively affect the ACEE, especially at the local level. In contrast, despite the negative direct 

Table 5 
LM and robust LM tests.  

LM test Statistic df P value 

Lagrange multiplier（error） 11.069 1 0.001 
Robust Lagrange multiplier（error） 19.258 1 0.000 
Lagrange multiplier（lag） 2.392 1 0.122 
Robust Lagrange multiplier（lag） 10.581 1 0.001  

Table 6 
Estimation results.   

SDM SAR SEM 

Variables Coeff. Z-value Coeff. Z-value Coeff. Z-value 

ln (AER) 0.455** 2.44 0.557*** 3.96 0.779*** 5.74 
ln (PI) 0.476*** 3.85 0.396*** 3.32 0.020 0.14 
ln (IN) 0.371* 1.72 − 0.019 − 0.09 0.244 0.90 
ln (AD) − 0.020 − 1.11 − 0.013 − 0.73 0.002 0.09 
ln (IS) 0.449*** 3.04 0.1680 1.16 0.0001 0.03 
ln (ED) 0.752*** 3.93 − 0.133 − 0.90 − 0.8240 − 5.28 
W × ln (ER) − 0.033 − 0.11     
W × ln (PI) 1.124*** 5.83     
W × ln (IN) 4.009*** 6.60     
W × ln (AD) 0.095*** 2.61     
W × ln (IS) 0.799** 2.21     
W × ln (ED) − 2.506*** − 7.33     
ρ 1.013*** 12.84 − 0.631*** − 8.55 − 0.599*** − 6.57 
R2 0.7835 0.3485 0.0034 
Log-likelihood − 24.3630 − 99.1763 − 99.1763 
Hausman 42.00*** 16.01** 15.27** 
LR-err 81.24***   
LR-lag 88.99***   

*p < 0.1, **p < 0.05, ***p < 0.01. 

Table 7 
Total, direct, and indirect effects of explanatory variables.   

Total Direct Indirect  

Coef. z Coef. z Coef. z 
ln (AER) 0.216* 1.75 0.566** 2.09 − 0.35 − 1.13 
ln (PI) 0.794*** 7.58 0.31* 1.89 0.484*** 2.67 
ln (IN) 2.221*** 6.47 − 0.533* − 1.81 2.754*** 6.18 
ln (AD) 0.037** 2.1 − 0.049* − 1.88 0.086*** 2.61 
ln (IS) 0.636*** 3.13 0.372* 1.79 0.264 0.86 
ln (ED) − 0.893*** − 6.54 1.578** 4.62 − 2.47*** − 6.35 

*p < 0.1, **p < 0.05, ***p < 0.01. 
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effect on local efficiency of carbon emissions, industrialization has an overall positive effect on the Chinese ACEE. This suggests that, in 
general, Chinese agricultural production is still in a period driven by industrialization development, which can enhance agricultural 
productivity and improve agricultural carbon emissions efficiency. 

Reduced sown area has a favorable impact on reducing agricultural carbon emissions, at least in terms of the direct consequences. 
The local agricultural carbon emissions efficiency (ACEE) is negatively impacted by the severity of agricultural disasters (AD). 
Agricultural disasters can lead to lower harvest per unit area of agricultural land, affecting farmers’ profitability. The impact on the 
economy is greater than the decrease in agricultural carbon emissions, suggesting a lower level of efficiency in agricultural carbon 
emissions. The extent of agricultural disaster also has a large positive spillover effect on the provinces nearby’s ability to reduce their 
carbon emissions, significant at the 1% level. When one area experiences a disaster, the supply and demand of agricultural products 
can shift due to the proximity of the two regions, potentially benefiting neighboring provinces that grow similar crops, and thereby 
improving the economic returns and efficiency of agricultural production in those provinces. 

Agricultural carbon emissions efficiency (ACEE) is notably positively impacted by industrial structure (IS) at levels of 10% and 1%, 
respectively. Regions with a higher share of total output value from primary industries generally have a greater degree of ACEE inside 
the region. Firstly, regions with a higher share of the primary industry have a higher degree of land scale and efficiency of machinery 
utilization, which enables economy of scale and increases the profits generated from agricultural production. 

With a direct effect coefficient of 1.578 and a significance level of 5%, the economic development (ED) variable significantly 
positively affects the ACEE in the associated area. Higher levels of economic development in a region can provide a solid material base 
for agricultural development. Additionally, ED has a strong favorable impact on the level of innovation in agricultural technology and 
rural human capital, ultimately improving agricultural productivity and ACEE. Instead, at the 1% level of significance, a negative 
spillover effect exists between the stage of regional economic development and the level of carbon emissions in neighboring regions, 
with a coefficient of − 2.47. Areas with higher economic development may cause transfer of human capital from neighboring areas, 
generating problems such as the outflow of educated people and lower efficiency of agricultural production. Moreover, regions with 
greater levels of economic development may also attract more industrial and urban activities that contribute to higher levels of 
pollution emissions, resulting in a detrimental effect on the ACEE in neighboring regions. 

4. Discussion 

This research develops an assessment index method for agricultural environmental regulations, providing scientific measurements 
for the intensity of environmental regulations issued and quantifying their issuance. Unlike the one-dimensional measurement 
approach commonly adopted in most literature, this paper presents a novel “ex-ante” and “ex-post” evaluation index system for 
measuring the intensity of agricultural environmental regulations. This approach provides a more comprehensive method for 
measuring indicators of environmental regulation in agriculture. The full-process control theory and prior evaluation expertise are 
used to build the system. The theory of full-process control enables a comprehensive analysis of the release of environmental regu-
lations. Besides, the system uses measures of environmental regulations and other effect indicators as evaluation indicators, which 
significantly improves the previous limitations of data selection and singularity of indicators [68]. Using single-type indicators and 
choosing different indicators within the evaluation index system may bring inconsistent results to the analysis. The inconsistency can 
be alleviated by the newly added indicators. The industrial sector is responsible for the vast bulk of carbon emissions, prior studies on 
carbon emission reduction through environmental regulation cannot be directly applied to the scenario where environmental regu-
lation affects agricultural carbon emissions. To accurately evaluate the influence of environmental regulations on the efficiency of 
agricultural carbon emissions, this paper selectively incorporates pertinent indicators from the agricultural sector, thereby enhancing 
the precision and dependability of the experiment. It is possible to more accurately assess the impact of environmental regulations on 
agriculture by focusing on their specific publication related to the agricultural sector, rather than attempting to measure all envi-
ronmental regulations in general. Due to the existence of these two attributes, this approach is more comprehensive and focused, and 
the creation of comprehensive and targeted indicators to assess AER is one of the contributions of this paper. 

Due to China’s longstanding commitment to sustainable agriculture, it is essential to reduce carbon emissions and enhance eco-
nomic benefits. How carbon emission efficiency, an excellent quantitative indicator of sustainable development, is affected is the focus 
of this paper. Thus, this study examines the factors affecting agriculture’s ability to reduce its carbon emissions from the standpoint of 
agricultural environmental regulation, providing insights into the extent and scope of the result of environmental regulation on carbon 
emissions and aiding in China’s agricultural carbon emission reduction [69]. The effectiveness of carbon emissions and environmental 
legislation are intricately linked. The effect of agricultural environmental regulations’ “cost of compliance” increases the level of 
investment input and reduces overall profits [31]. According to the Porter hypothesis, the “cost of compliance” will improve the 
technology level and increase economic profitability. Environmental regulations can be quite effective at reducing environmental 
pollution in agriculture, minimizing unwanted outputs, and effectively improving the ACEE [70]. Some people believe that in recent 
years, the financial and material resources invested in environmental regulations have prompted a rise in the costs of environmental 
governance. However, technological innovations have been unable to offset the negative effects caused by increasing expenditures, 
which may lead to a decline in agricultural green productivity [41]. Based on the findings of the empirical study presented in this 
paper, agricultural environmental regulations have a significant positive effect on the local ACEE. This suggests that while the 
implementation of environmental regulations decreases profitability and raises the cost of agricultural production, it follows an 
“innovation compensation” effect in China, which leads to increased technological innovation among farmers and ultimately improves 
the overall ACEE. According to the literature currently available, environmental restrictions have a dynamic effect on agricultural 
production processes, with the “cost of compliance” effect being gradually offset by the “innovation compensation” effect [71]. Future 
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research should prioritize analyzing the dynamic process and investigating the nuanced impacts of agricultural environmental reg-
ulations on sustainable agricultural development, to determine the optimal balance point. This finding offers guidance to regulators on 
how to modify their strategies for issuing environmental regulations and enhance the overall efficacy of relevant laws and regulations. 
This study carries significant policy implications and provides a theoretical foundation for other nations to consider implementing 
environmental regulation measures in the future. 

Furthermore, this paper examines the impact of several other control variables on the efficiency of agricultural carbon emissions. 
Firstly, public investment (PI) in agriculture can significantly enhance the technological level of agriculture, leading to economic 
growth and increased efficiency in agricultural production. Industrialization (IN) may encourage the usage of agricultural equipment, 
but it can also lead to increased agricultural pollution emissions. The results of this paper show that Chinese agricultural production is 
currently benefiting more from industrialization. While a bidirectional causal connection exists between energy consumption and 
greenhouse gas emissions, industrialization exerts a moderating influence on carbon intensity [72–74]. Agricultural disasters (AD) can 
reduce the acreage of agriculture in a province, resulting in lower carbon emissions and reduced ACEE. Robust evidence has shown 
that natural disasters can directly lower carbon dioxide emissions and can also indirectly achieve this by reducing energy consumption 
[75]. The industrial structure is a significant factor influencing carbon emissions in agriculture, and this paper also reveals its sub-
stantial impact on the ACEE [74]. Agriculture production in the province is more advanced when the primary sector makes up a larger 
share of the region’s overall output. The economies of scale resulting from a well-developed agricultural sector can enhance farm 
profitability and concurrently lower carbon emissions, ultimately leading to a more effective increase in ACEE [76]. The ACEE can be 
significantly improved by the level of economic development (ED). While the disparity between economic development and envi-
ronmental quality becomes more pronounced during China’s economic transition, higher economic development will boost agricul-
tural incomes and reduce emissions through advanced technology adoption and cost reduction [77]. 

We found that ACEE currently has significant regional differences. This has similar results to previous studies [78]. The main cause 
of this is China’s uneven economic development and the government’s imperative to support poorer regions and strive for balanced 
development throughout the country. To mitigate carbon emissions and enhance economic efficiency, resource allocation should be 
optimized based on the local natural environment, production methods, social structure, and level of economic development [2,69, 
79]. There are notable regional variations in the ACEE, also because of disparities in both carbon emissions and agricultural surface 
contamination. Carbon emissions are elevated in the primary food-producing regions due to the necessity of groundwater irrigation for 
food cultivation, a process characterized by substantial energy consumption that consequently contributes to heightened carbon 
emissions [74]. Provinces that cultivate a greater quantity of crops release a higher volume of carbon emissions compared to those 
provinces with more modest crop cultivation [80]. 

From this study’s findings, key policy recommendations for China arise to improve ACEE and optimize AER: 
Environmental regulations must be tailored to local economic and social objectives, and customized solutions with regional traits 

should be implemented to attain the concurrent synergy of economic advancement and environmental preservation [80]. Regions 
should strive to establish a well-balanced framework of environmental regulatory portfolios to ensure the effective promotion and 
implementation of pertinent policies [81]. It is crucial to establish and maintain a moderate and consistent level of environmental 
regulations and standards while enhancing the integration of diverse policies and regulations across various sectors. The execution of 
policies and the strengthening of regulations should also be emphasized, rather than just the accuracy of environmental regulatory 
publishing. Environmental policies should be harmonized with the establishment of localized environmental protection levies to 
realize a symbiotic reinforcement [82]. A subsidy mechanism can be set up to address the problems of straw burning on agricultural 
land, pesticide and fertilizer residues, and the pollution of livestock and poultry manure. Price subsidies can be used to stimulate 
farmers to adopt environmentally friendly behaviors. Public environmental resources can be maintained through the establishment of 
property rights mechanisms. 

Considering China’s vast expanse, socio-economic and agricultural production traits exhibit regional variations, and ACEE is 
profoundly impacted by both of these factors. It is imperative to differentiate agricultural development and environmental manage-
ment based on the specific resource endowment and technological level of each region. It is also crucial to optimize planting structures 
and varieties by local conditions to ensure food production, fortify local food production capacity, and safeguard food security. Regions 
characterized by lower agricultural carbon emissions should prioritize the implementation of sustainable agricultural practices, aiming 
to mitigate pollution and minimize resource consumption. Additionally, they should embrace innovative, efficient, and eco-friendly 
agricultural production techniques to modernize the agricultural sector. Conversely, regions exhibiting higher ACEE can leverage 
their available resources to expand agricultural development, enhance resource utilization, and effectively undertake environmental 
protection measures. Besides, governments should promote the development of scale economies and economic efficiency by advo-
cating moderate-scale agricultural operations and land intensification. In regions with significant grain production, there should be a 
shift away from crude forms of agricultural production, and agricultural intensification should be pursued to alleviate environmental 
pressures. Continuous promotion of technological innovation can yield favorable inter-regional effects, driving the nation towards 
carbon reduction and enhanced productivity. In addition, the proportion of the agriculture, forestry, animal husbandry, and fishery 
sectors should be optimized according to local conditions. It should also combine the indicators of neighboring regions and work 
together to expand the impact of low-carbon production technologies, to achieve a joint interregional reduction of carbon emissions. 

Local government departments should augment financial support to upgrade agricultural production infrastructure, such as water 
conservancy, thereby effectively improving the conditions for agricultural production. The degree of economic development is a 
pivotal contributor to local ACEE. To strengthen the local economy, local governments must also give priority to the adoption of 
innovative technology and human capital. Emphasis should be placed on supporting energy-saving and emission-reducing key projects 
and reducing the overdependence of agriculture-related industries on resources by accelerating the extension of the industrial chain 
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and fostering new types of advantageous industries. To incentivize low-carbon agricultural production, a carbon compensation 
mechanism will be established post-food production to reward agricultural actors adopting low-carbon practices, thereby boosting 
enthusiasm for eco-friendly agricultural production. 

Enhancing the agricultural literacy of workers through education is pivotal in driving the environmentally friendly development of 
agriculture. The disparities in carbon emissions resulting from social factors have underscored the importance of training agricultural 
technical personnel. A prior study revealed that the deficiency in human capital within China exerts an adverse influence on envi-
ronmental pollution [77]. In rural communities, an absence of low-carbon consciousness and awareness of sustainable development 
can lead to significant wastage of agricultural resources and environmental degradation. Therefore, the government, universities, and 
research institutes should carefully select professionals and organize suitable training courses to raise the environmental awareness of 
grassroots agricultural practitioners and assist them in the proper use of technical equipment. Additionally, farmers should be sup-
ported in carrying out agricultural practices to effectively apply acquired knowledge in practical settings. 

Investment in science and technology can efficiently mitigate carbon emissions [83]. Regarding technological innovation, given the 
challenges of swiftly implementing uniform technological standards nationwide, it is preferable to introduce similar technologies in 
regions with comparable resource endowments and geographic conditions, while also considering local factors. By fostering the ex-
change of key technologies aimed at bolstering food production and reducing emissions in similar regions, we can promote the transfer 
of technologies among neighboring areas, facilitating positive interactions. Additionally, it is crucial to strengthen the development 
and promotion of mechanized agricultural products tailored to the specific characteristics of Chinese agricultural production and to 
facilitate the widespread adoption and popularization of agricultural machinery. By intensifying our commitment to agricultural 
innovation, we can overcome the challenges associated with outsourcing services in technology-intensive sectors, amplify the market 
share for agricultural machinery services, and diminish the expenses associated with agricultural production. Integrating low-carbon 
principles throughout all stages of agricultural production and implementing emission reduction programs based on scientific and 
technological inputs are essential. 

Research indicates that the Internet can play a role in carbon emissions reduction and enhancing carbon efficiency [72,84]. 
Therefore, on a societal level, there is a necessity to enhance the utilization of the Internet and cultivate smart agriculture. The internet 
can offer technical support for localized expansion of circular and eco-agriculture, rendering agricultural production precise and 
promoting transparency in agricultural management. It can also aid in the enhancement of integrated management systems. The 
Internet can also enhance integrated management systems and boost the efficacy of green supply chain management in the agri-
business sector [85]. 

Technological advancements, including testing soil for formulated fertilization, agricultural film recycling, and biological pest 
control, can efficiently reduce resource overuse and pesticide redundancy. Implementing pest monitoring technology enhances pre-
cision in pesticide application, minimizing waste. The combination of planting and breeding improves resource utilization, lowers 
pollution, and boosts technical efficiency in agriculture. Cleaner production methods can advance the efficient integration of farming. 

5. Conclusion 

This paper employs the Super-Efficient SBM Model, which takes non-desired outputs into account, to measure the agricultural 
carbon emissions efficiency in 31 provinces of China from 2010 to 2019. The environmental regulation intensity of each province was 
measured using the entropy method after constructing the evaluation index system. When developing the evaluation indicator system 
for environmental regulation, indicators related to agriculture were prioritized due to their relevance. An SDM was built to examine 
the effects of environmental regulations and other explanatory variables on agricultural carbon emissions efficiency. The discussion 
and analysis of the findings follow. Firstly, across the nation, the ACEE rises every year and the growth rate tends to level off from 2015 
to 2017, while the growth rate increases significantly after 18 years. Within the studied period in this paper, the Eastern region of 
China had the greatest agricultural carbon emissions efficiency, whereas Central China had the lowest, with a remarkable gap in the 
ACEE nationwide. There are significant gaps in emissions efficiency among different regions, but there are significant spatial spillover 
effects within these areas. The study’s second finding reveals that while environmental regulations positively impact the ACEE of the 
studied province, they have little impact on the bordering provinces’ ability to reduce agricultural carbon emissions. This is because 
environmental rules can both encourage technical advancements and economic growth on the one hand, while lowering the level of 
agricultural carbon emissions on the other. Thirdly, the study discovered a link between public financial investments and industrial 
structure with the ACEE. However, because of the complexity of economic operations, the investigated province’s efficiency of carbon 
emissions might also be adversely affected by industrialization and environmental damage. Additionally, these factors exhibit an 
association with the ACEE of adjacent regions. Advanced economic growth has a beneficial impact on the examined province’s 
agricultural carbon emissions efficiency as well, but it hurts the ACEE in the neighboring provinces. The ACEE should be analyzed 
comprehensively, taking into account various influencing factors from the time and space domains. Regions with different resource 
endowments and development levels should be considered separately and the strategies for different stages of development should be 
adjusted appropriately from time to time. Environmental regulations can improve the ACEE. Hence, it is crucial to implement 
appropriate environmental policies that consider the production characteristics of the region, fully realizing the “innovation 
compensation” effect for the agricultural sector, and carrying out effective environmental management. We should improve the 
flexibility of the command-and-control environmental regulations and at the same time refine the responsibilities [56]. For agricul-
tural output to be sustainable, it is imperative to boost economic growth while concurrently lowering environmental degradation. This 
can be done by utilizing eco-friendly technology that lessens the damaging effects of agricultural production on the environment. The 
less-developed regions should focus on the transformation process from labor-intensive to capital-intensive agriculture. At the same 
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time, these regions need to focus on investment in technology and talent. On the other hand, much more developed regions should 
focus more on investing in low-carbon agricultural products as well as agricultural machinery with energy-saving and emission re-
ductions. Besides, these regions should prioritize the green transformation of production practices to increase agricultural production 
in terms of both quality and quantity. In addition, more precise measurement of policy effects remains a focus of our future research. 

6. Limitations and future research directions 

This paper has some shortcomings and can be further analyzed: The assessment of environmental regulations has consistently 
constituted a central concern and challenge in related research. While this paper assesses the impact of environmental regulations by 
establishing a reasonably structured evaluation framework for AER, there is an aspiration for continuous refinement of the evaluation 
methodology in the future, to enhance the comprehensiveness and scientific rigor of the research. Furthermore, since farmers’ conduct 
is highly influenced by grassroots governments, the environmental regulatory status of township governments directly impacts the 
management of agricultural pollution. Therefore, the implementation of environmental regulations by township-level governments is 
the most direct factor affecting the management of agricultural pollution. However, the existing data on grassroots governments in 
China is relatively incomplete and cannot provide sufficient evidence for empirical research. If we could collect this data, we would 
engage in more comprehensive research in this field. 

Funding 

This work is supported by Jilin University Graduate Student Innovative Research Program, (2023CX052), Jilin Provincial Social 
Science Foundation Project, (2023B49), Science and Technology Development Plan Project of Jilin Province, China, 
(20230601139FG), Social Science Research Project of Education Department of Jilin Province, (JJKH20241360SK), and Social Science 
Research Project of Education Department of Jilin Province, (JJKH20241359SK). 

Data availability statement 

The data underlying this article are available in China Statistical Yearbook (http://www.stats.gov.cn/sj/ndsj/), China Rural Sta-
tistical Yearbook (https://www.stats.gov.cn/zs/tjwh/tjkw/tjzl/202302/t20230215_1907997.html), and Peking University Law 
website (https://home.pkulaw.com/). 

CRediT authorship contribution statement 

Yujie Xia: Supervision, Methodology, Data curation, Conceptualization. Hongpeng Guo: Validation, Supervision. Shuang Xu: 
Methodology. Chulin Pan: Visualization, Validation, Methodology. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

References 

[1] B. Obama, The irreversible momentum of clean energy, Science 355 (6321) (2017) 126–129. 
[2] H. Guo, et al., The impact of climate change on the efficiency of agricultural production in the world’s main agricultural regions, Environmental Impact 

Assessment Review 97 (2022) 106891. 
[3] J.V.N.S. Prasad, et al., Can adoption of climate resilient management practices achieve carbon neutrality in traditional green revolution states of Punjab and 

Haryana? Journal of Environmental Management 338 (2023) 117761. 
[4] O.N.a. Jared, et al., Smallholder farmers’ perception of climate change and adoption of climate smart agriculture practices in Masaba South Sub-county, Kisii, 

Kenya, Heliyon 7 (4) (2021) e06789. 
[5] G.S. Jia, S. E, P. Artaxo, Special Report: Special Report on Climate Change and Land, 2019. Available from: https://www.ipcc.ch/srccl/chapter/chapter-2/. 
[6] C.L. Quere, et al., Global carbon budget 2017, Earth System Science Data 10 (1) (2018). 
[7] C. An, X. He, L. Zhang, The coordinated impacts of agricultural insurance and digital financial inclusion on agricultural output: evidence from China, Heliyon 9 

(2) (2023) e13546. 
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