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Abstract: Garlic root cutting is generally performed manually; it is easy for the workers to sustain
hand injuries, and the labor efficiency is low. However, the significant differences between individual
garlic bulbs limit the development of an automatic root cutting system. To address this problem, a
deep learning model based on transfer learning and a low-cost computer vision module was used to
automatically detect garlic bulb position, adjust the root cutter, and cut garlic roots on a garlic root
cutting test bed. The proposed object detection model achieved good performance and high detection
accuracy, running speed, and detection reliability. The visual image of the output layer channel of
the backbone network showed the high-level features extracted by the network vividly, and the
differences in learning of different networks clearly. The position differences of the cutting lines
predicted by different backbone networks were analyzed through data visualization. The excellent
and stable performance indicated that the proposed model had learned the correct features in the
data of different brightness. Finally, the root cutting system was verified experimentally. The results
of three experiments with 100 garlic bulbs each indicated that the mean qualified value of the system
was 96%. Therefore, the proposed deep learning system can be applied in garlic root cutting which
belongs to food primary processing.

Keywords: garlic root cutting; object detection; YOLO; convolutional neural network; artificial intelligence

1. Introduction

Garlic (Allium sativum L.) is a traditional food grown worldwide, both as a flavoring
and medicinal food [1–7], with a harvested area of 1.63 million hectares worldwide [8].
Currently, the harvesting and post-processing of garlic in China are primarily carried out
manually, which is labor-intensive and inefficient. In the post-processing, root cutting must
be carried out manually. Cutting off the garlic root reduces the probability of mildew at the
bottom of the bulb due to the reduction of moisture contained in the garlic root and the soil
entrained by it.

Garlic bulbs vary in shape and size, which is the main factor limiting the development
of mechanized garlic root cutting. The mechanical equipment cannot accurately determine
the cutting position of the root cutting knife. If a fixed root cutter is used, larger bulbs will
be cut incorrectly, whereas the roots of smaller bulbs will be cut insufficiently. Furthermore,
garlic bulbs are easily cankered after being cut, which affects their economic value.

In recent years, the application of computers has developed rapidly with the dramatic
improvement in computing power, reduction of equipment cost, and deepening of research.
It has also been increasingly used in the classification and detection of garlic. Recent
studies have successfully applied deep learning to an automatic grading system for garlic,
which was used to classify garlic automatically after root cutting [9]. Moreover, garlic
clove direction was adjusted using machine vision [10], garlic varieties were classified
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using a semiconductor gas sensor [11], and the change of garlic aroma was evaluated by an
electronic nose [12]. The extant research suggests that computers are increasingly used in
garlic processing. However, garlic root cutting requires the computer to not only make a
classification but also obtain the object location information and convert the information
into the correct amount of movement of the root cutting knife. Garlic root cutting requires
a complex computer system that considers accuracy, speed, and reliability. In addition,
random quantities of soil are usually attached to the bulbs and garlic roots, making it
challenging to perform object classification and positioning using traditional computer
vision techniques [9]. Therefore, an intelligent system for garlic root cutting has not been
constructed yet.

With the development of deep learning technology, the combination of deep learning
and computer vision has become an effective detection method. In a previous study, deep
learning was the more effective means to identify the edible safety of porcini, compared
with partial least square discriminant analysis [13]. The accuracy and robustness of a model
using a convolutional neural network (CNN) in the identification of hybrid okra seeds were
higher than those of other models [14]. A deep neural network was used to detect weeds in
a wheat field in real time [15]. Through comparison, it was found that the application of a
CNN makes an important breakthrough in the detection of citrus fruit pulp [16]. Moreover,
a deep learning model was more accurate than a traditional machine learning method in
detecting watermelon seeds [17]. The application of a deep learning network to semantic
segmentation of grape vine detection achieved higher overall performance than classical
methods [18], and the proposed deep learning method achieved high accuracy in image
detection of rice diseases [19].

The you only look once (YOLO) algorithm solves object detection as a regression
problem, realizing the output from image data and input to object category and predicting
the bounding box coordinates [20–22]. The mechanism of YOLO enables faster detection
speed while maintaining relatively high average precision [23]. The adoption of improved
YOLOv3 enabled accurate detection of tomatoes under complex environmental conditions,
such as illumination changes, occlusion, and overlap [24]. The improved YOLOv4-tiny
model could accurately detect table grapes in complex growth environments, with shadows
of branches and leaves and overlapping fruits [25]. Online detection of defective apples
was conducted based on the YOLOv4 deep learning model [26]. The YOLO + MRM model
was used to detect the vertigo state of broiler chickens quickly and accurately [27], and
strawberries were detected in real time based on the improved YOLOv4-tiny model [28].
Improvement of the YOLOv3 model through the MobileNetV1 network improved the
detection of fish [29]. Furthermore, the YOLOv4 model was applied to detect fig fruit
with small color differences from the background [30]. Another experiment showed that
the precision and speed of the lightweight peanut detection model based on YOLOv3
improvement had been improved [31]. Finally, the application of the YOLOv4 model in the
detection system of crab peeling achieved a high detection accuracy [32]. The above studies
indicate that the YOLO model is suitable for object detection in complex environments and
has excellent detection performance.

The YOLOv2 method is more accurate and faster than the YOLO method [21]. How-
ever, the YOLOv2 method uses Darknet-19 as a backbone network, and Darknet-19 suffers
from low performance of feature extraction, insufficient depth of network, and easily accu-
mulated training errors [33]; these characteristics limit its detection accuracy. The YOLOv3
method uses a deep residual network to effectively deepen the backbone network and fuses
multi-scale features to effectively improve the detection capability of small and adjacent
objects but performs poorly on medium and larger objects [22]. However, the network
of YOLOv3 method is more complex than that of YOLOv2, and the calculation amount
increases, thus reducing the detection speed [34]. A recent study showed that YOLOv2
is three times faster than YOLOv3 in non-destructive testing of fish behavior [35], and
38.47 FPS was used in benthonic organism detection (YOLOv2) (544 × 544) and YOLOv3
has FPS of 21.63 (608× 608) [36]. On the PASCAL VOC2007 test dataset, the detection speed
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of YOLOv2 was nearly twice as high as that of YOLOv3 [34]. Moreover, Tiny-YOLOv2 was
faster than YOLOv3 when used by a robot that detected badminton [23]. However, to the
best of our knowledge, the comparison of YOLOv2, YOLOv3, and YOLOv4 in detection
is limited at present. Further, the comparative research on the improvement of the YOLO
series methods is limited.

Therefore, based on the comparison of YOLOv2, YOLOv3, and YOLOv4, we improved
the detection performance of YOLOv2 while maintaining its high detection speed and used
it for bulb detection. Based on the alignment of the upper surface of the bulb, the position
of the cutting line (the lower edge line of the prediction box) is judged using the improved
YOLOv2 method, and the height of the root cutter is automatically adjusted by the control
system. An automatic root cutting method of garlic based on artificial intelligence, suitable
for food processing, production, and combined harvest, is explored.

To the best of our knowledge, our team are the first to develop a YOLO object detec-
tion system for garlic root cutting. This study was based on our previous research. We
investigated which features of the garlic plant are suitable for object detection with the
purpose of root cutting and performed root cutting experiments using a classical feature
extraction network [37]. We conducted an optimization study for the training parameters
and investigated the detection performance of classical and lightweight network detection
models for bulbs [38]. The main contributions of the work in the paper are as follows.

(1) An experimental platform consisting of equipment and a control system was built.
An object detection model with a lightweight feature extraction network was preferred. The
position of the cutting line was obtained by the prediction frame of the YOLO algorithm
and the height of the root cutting knife was adjusted automatically. Garlic root cutting
based on non-destructive detection and positioning of bulbs was achieved.

(2) The features learned by the same lightweight network before and after training
were visualized and analyzed. Additionally, the features learned by different lightweight
networks were visualized and analyzed. The reasons for different prediction results ob-
tained by different object detection models were analyzed and discussed.

The remainder of this paper is organized as follows. Section 2 presents the materials
and methods used in this study, Section 3 the experimental setup and results, Section 4
discussions, and Section 5 our conclusions.

2. Materials and Methods
2.1. Garlic Root Cutting Test Bed
2.1.1. Introduction to Test Bed

The garlic harvesting and root cutting device based on deep learning object measure-
ment is constructed from a garlic seedling conveying device, root cutter, and control system.
The control system for object detection and automatic adjustment of the root cutter is a set
of hardware and software. The test bed is shown in Figure 1.

The deep learning-based garlic harvesting and root cutting device completes the root
cutting operation through the cooperation of the garlic seedling conveying device, root
cutter, and control system. After the root cutter is reset, its cutter head is in a plane with the
axis line of the camera. The control system collects images at the beginning of the garlic
seedling conveying and performs object detection. The height position of the root cutter
is adjusted according to the cutting line predicted by the deep CNN. The garlic seedling
conveying device transports the garlic seedlings forward at a set speed. In the process of
conveying, the garlic root is cut by the reverse high-speed rotating root cutter, resulting
in the separation of the garlic root and bulb. After the garlic seedling conveying device
stops moving, it returns to the starting place, takes down the garlic seedling that has passed
through the root cutting, and finally fixes the next uncut garlic seedling to enter the next
working cycle. All root cutting work is completed under the control system without manual
regulation. Moreover, there is no need for contact between the mechanical structure and
the bulb during position detection, which avoids certain types of damage [37].
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Figure 1. Overview of the test bed.

2.1.2. Root Cutter

To separate the garlic bulb from the garlic root effectively, a disc cutting blade with
wedge edge was designed according to the characteristics of the garlic root. During work, a
two-way shear force is applied to the garlic root through a pair of blades of the double disc
root cutter. After being stressed, the garlic root has no swing space. The shear force acts
effectively on the garlic root and cuts it off. As can be seen in Figure 2, the garlic root can
be effectively cut with a double disc root cutter fitted on the test stand. The cut is straight,
and the garlic root below the cut is completely separated.
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2.1.3. Hardware Composition of the Control System

Figure 3 shows the hardware block diagram of the control system. The control system
hardware consists of an industrial camera, transport location sensing system, motor control
system, root cutter speed control system, and upper computer. The transport position
sensing system senses the slider position by the proximity switches I–III arranged on the
transport module and the touch switches arranged on the height adjustment module. The
signal voltage of each switch is changed by the voltage conversion module to 3.3 V. The
speed of the DC brushless motor is changed by changing the frequency of PWM waves
emitted by the speed controller. The upper computer can complete object detection based
on a deep CNN.
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2.1.4. Camera Calibration

As shown in Figure 4, O0 in the image is the origin of the pixel coordinate system,
(u, v) represents the abscissa and ordinate of any pixel point. The pixel coordinates of the
optical axis projection point O1 of the camera lens are (u0, v0). An image coordinate system
in millimeters is established with the point O1 and the X and Y axes ((x, y) is any point in
the coordinate system), and the width and height of each pixel in the image are ρw and ρh.
The relationship is as follows [37]: = x

ρw
+ u0; v = y

ρh
+ v0. The correspondence between

pixel coordinates and physical size in the height direction is y = (v− v0)ρh. However, due
to the distortion of the lens, it is necessary to obtain the distortion parameters of the camera
and calibrate the camera to ensure the accuracy of pixel information [39].
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2.1.5. Microcontroller

A development board with an STM32F103ZET6 chip as a core is used as the lower
computer to control the movement of the conveying and height adjusting stepping motors.
STM32F10x series chips belong to ARM architecture and are developed based on the Cortex-
M3 core. The maximum working frequency is 72 MHz. There are four general timers and
two UARTS. They have the advantages of high performance, low power consumption, and
low cost [40].

2.1.6. Communication System Design

UART communication is adopted between the upper and the lower computers.
STM32F103ZET6 is connected with the USB port of the upper computer through the
onboard USB to RS232 converter to receive TTL level signal. The program converts the
data into decimal digital command code with a value of 0–255, and the baud rate is set to
115,200 b/s.
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2.1.7. Design of the Control Algorithm

In the design of the control algorithm, the edge line of the boundary box predicted by
the deep CNN is used as the cutting line. According to the garlic root cutting requirements,
when the object of object detection is the bulb, the lower edge of the prediction boundary
box is used as the cutting line.

After the object detection is completed, the host computer calculates the pixel ordinate
of the cutting line. Taking the bulb as the detection object, the host computer calculates the
pixel ordinate of the lower edge line of the boundary box, and the position of the cutting
line is shown by the red line in Figure 5.
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After the previous root cutting, the upper computer converts the image coordinates of
the cutting line according to the pixel coordinates of the cutting line predicted this time and
feeds them back to the motor control system to adjust the height of the root cutting knife.
According to the formula y = (v− v0)ρh, the adjustment displacement of the height of the
root cutter is4hn+1 = (kn+1 − kn)ρh′ (n ∈ N+), where ∆hn+1 is the coordinate difference
between the n + 1st root cutting line and the nth root cutting line in the image coordinate
system in the height direction. The value is below the timing cutter and upward in mm for
the negative cutter. The nth predicted vertical coordinate of the cutting line pixel is kn, and
kn+1 is the vertical coordinate of the cutting line pixel predicted at the n + 1st time; ρh′ is
the height of each pixel in the detected image. In addition, the relationship at the first root
cutting is4h1 = (k1 − k0)ρh′, where k0 is set to 300 px to complete the pixel ordinates of
the cut surface of the root cutter after resetting.

To obtain the value of ρh
′, it is necessary to establish the corresponding relationship

between the image pixels and the actual size [41]. In this study, the image acquisition of
the vertically placed scale was performed. It was found in the measurement that 159 px
corresponded to 30 mm in length at the given distance; thus, the calibration coefficient of
the direction of the pixels was obtained as ρh

′ = 30 mm/159 px = 0.1887 mm/px.

2.2. Image Acquisition

Sheyang County in Jiangsu Province is a major garlic production area in China. In this
study, field tests were conducted at the test base of Nanjing Institute of Agricultural Mech-
anization, Ministry of Agriculture and Rural Affairs of Sheyang County, and local garlic
planted in Sheyang was selected as the research sample. Garlic has a strong geographical
representation and a wide planting area in Jiangsu Province. Field tests were conducted in
May 2021 with garlic from a field located at the coordinates of 33◦51′56′′ N, 120◦13′49′′ E.
The parameters of the industrial camera used to acquire the images are shown in Table 1.
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Table 1. Camera parameter setting.

Variable Value/State

Camera model Minsvision MS-UB500C
Image size 800 × 600 px

Aperture D/f′ F1:1.6
Focal length (mm) 6–12

Format 1/2”
Horizontal field 53◦–28◦

Operation mode
Zoom Manual
Focus Manual

Iris Manual
Macro Off

Image type bmp

2.2.1. Image Data

To provide reliable location information to the computer, the images contained only
one garlic per image. The collected dataset contained 2500 non-repetitive garlic images;
their collection was conducted over 3 days from 8 a.m. to 7 p.m. This enabled the dataset
to contain different levels of brightness and ensured the adaptability of the object detection
method on the test bed to different illuminations. Owing to the absence of any supplemen-
tary lighting measures, the levels of object brightness in the dataset differ considerably.

To facilitate visualization and quantitative analysis of the differences of brightness
levels, the acquired image was converted from the RGB color space to the YUV color
space [42], where Y represents the brightness information of the image and the differences
of Y values of different images are shown in Figure 6. It can be seen that the brightness of
the bulb and garlic root in Figure 6d was the highest, and the corresponding brightness grid
curve is shown in Figure 6a. The local brightness of the bulb and garlic root in Figure 6b
corresponding to Figure 6e was higher than the background brightness, and the brightness
of the bulb and garlic root in Figure 6c corresponding to Figure 6f was lower. The large
differences in brightness levels increase the difficulty of object detection.
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tion method on the test bed to different illuminations. Owing to the absence of any sup-
plementary lighting measures, the levels of object brightness in the dataset differ consid-
erably.  

To facilitate visualization and quantitative analysis of the differences of brightness 
levels, the acquired image was converted from the RGB color space to the YUV color space 
[42], where Y represents the brightness information of the image and the differences of Y 
values of different images are shown in Figure 6. It can be seen that the brightness of the 
bulb and garlic root in Figure 6d was the highest, and the corresponding brightness grid 
curve is shown in Figure 6a. The local brightness of the bulb and garlic root in Figure 6b 
corresponding to Figure 6e was higher than the background brightness, and the bright-
ness of the bulb and garlic root in Figure 6c corresponding to Figure 6f was lower. The 
large differences in brightness levels increase the difficulty of object detection. 
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(d) (e) (f) 

Figure 6. Diagram of brightness level differences: (a) corresponds to (d), (b) corresponds to (e),
(c) corresponds to (f); (d) the average value of Y is 224.4; (e) the average value of Y is 100.5; and
(f) the average value of Y is 58.7.
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2.2.2. Partition of Datasets

From the dataset of 2500 images, 500 images were selected randomly as test data, and
the remaining 2000 images were used as training data for the object detection algorithm.
The ratio between the training set (1400 images) and the verification set (600 images) in the
training data was 7:3.

2.3. Pretreatment
2.3.1. Image Annotation

A YOLO model detects the object in the test data according to the label box information
of the training data and generates a prediction box. Considering the input size, training
time, and computer performance of the network model, the image resolution of the training
data was adjusted to 224 × 168 px before image labeling. Then, the training data were
labeled, and the labeled file was saved in an XML format. Based on the collected images,
the optional detection objects were bulb, root plate, and garlic root. In Figure 7, the bulb is
marked with a green box, root disc with a red box, and garlic root with a purplish red box.
It can be seen that when the bulb was used as the detection object, the label box contained
the entire bulb, and the upper edge lines of the label boxes of the root disc and garlic root
passed through the bulb (Figure 7). Furthermore, it was found that when the root disc was
used as the object, multiple prediction boxes were prone to errors.
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Therefore, the bulbs were selected as the only detection object, and only the bulbs
were labeled in the training data. The labeling ensured that each bulb was framed in a label
box and occupied as much area as possible in the label box. In the classification stage, the
area detected by the YOLO algorithm model was considered a bulb, and the image was
divided into “bulb” and “non-bulb” areas to evaluate the effectiveness of this algorithm.

2.3.2. Data Augmentation

Overfitting may occur during the training of a deep CNN. An effective way to avoid
overfitting is to increase the amount of training data [43–45]. However, the acquisition
of data requires considerable human and financial resources, and in some cases, images
cannot be obtained. Therefore, data enhancements are generally used to expand datasets.
In this study, mirroring, hue, saturation, and exposure changes were used for data enhance-
ment [46,47]. We performed mirroring, hue, saturation, and exposure changes once each
for each training set image (1400 images in total) in the experiment. Thus, the new training
set contains 5600 data-enhanced images.

2.4. Lightweight CNNs

Although a CNN can be used in many image recognition tasks, its large model files and
high computational load lead to slow object detection [48]. As the application of CNN has
become increasingly popular, the need to improve the speed of object detection has become
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increasingly urgent. The garlic root cutting device requires high precision and efficiency
and especially high detection speed. To address the low speed problem, researchers have
designed lightweight networks with fast convolution and compression schemes. In this
study, three representative lightweight networks (SqueezeNet [49], ShuffleNet [50], and
MobileNetV2 [51]) were selected for training and research.

2.5. Prediction of the Bounding Box Location

The YOLO network model is a one-stage method. In the YOLOv2 model, the backbone
network divides the input image into S × S grids, and the feature map size is equal to
the grid size. The YOLOv2 model provides S × S × ((4 + 1 + m) × N) tensor output with
N bounding boxes per cell and 4 + 1 + m predictions per bounding box. The predicted
values for each bounding box include the pixel coordinates (tx, ty), width (tw) and height
(th), objectness score (Pobj), and class score (C1, C2, . . . , Cm) of the upper left corner of
the bounding box. Ultimately, only the best bounding box is retained using the non-
maximum suppression method. The objectness score indicates whether the object exists in
the bounding box (with a value of 0 or 1), and class score is the confidence level that the
object belongs to a category. Therefore, YOLOv2 detects the bulb, and the pixel ordinate of
the cutting line is tg = ty + th, which is a determined value [20,21] (Figure 8).
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The total loss in the training process of the detection model is represented by Lall, which
is composed of boundary box detection loss (LIOU), confidence detection loss (Lconfidence),
and classification loss (Lclass) [20,21]: Lall = LIOU + Lconfidence + Lclass.

3. Experiment
3.1. Model Training and Testing

In this study, three classic networks, ResNet50 [33], GoogLeNet [52], and AlexNet [53],
were also compared. The experiment included the comparison of YOLOv2, YOLOv3, and
YOLOv4 algorithms. By comparing lightweight networks with classical networks, the
performance and advantages of different network types were analyzed. Meanwhile, the
models with different algorithms were compared to lay a foundation for selecting a suitable
model for garlic object detection tasks.

The process of using the migration learning training object detection model is shown
in Figure 9. The random gradient descent training network with momentum was used
with a momentum of 0.9 and learning rate of 1 × 10−3 to perform the object classification of
one object (bulb only); see Table 2 for specific values. The GPU used was NVIDIA GeForce
GTX1650 (4GB GDDR6 memory).
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Table 2. Comparison of model structures.

Algorithm Backbone
Network

AP
(%) Test Heads Network Input Size of

Feature Map
Size
(MB) MaxEpochs MiniBatchSize Anchorboxes Training

Time/(s)

DarkNet19 94.93 1 224 × 224 × 3 7 × 7 137 60 16 7 4970
ResNet50 97.75 1 224 × 224 × 3 14 × 14 97.6 60 16 7 893

ShuffleNet 98.67 1 224 × 224 × 3 14 × 14 6.1 60 16 7 3665
YOLOv2 MobileNetV2 99.15 1 224 × 224 × 3 14 × 14 23.5 60 16 7 4921

SqueezeNet 97.98 1 224 × 224 × 3 14 × 14 18.7 60 16 7 2901
GoogLeNet 96.93 1 224 × 224 × 3 14 × 14 56.7 60 16 7 4101

AlexNet 96.79 1 227 × 227 × 3 13 × 13 12.5 60 16 7 2647

DarkNet53 98.94 3 256 × 256 × 3 32 × 32/16 × 16/8 × 8 236 25 8 9 13,987
YOLOv3 ResNet50 99.79 2 224 × 224 × 3 28 × 28/14 × 14 111 25 8 6 11,281

MobileNetV2 99.82 3 224 × 224 × 3 28 × 28/14 × 14/7 × 7 42 25 8 9 9098

YOLOv3-tiny-COCO 99.91 2 224 × 224 × 3 14 × 14/7 × 7 30.8 25 8 6 3108
YOLOv4-tiny-COCO 99.97 2 416 × 416 × 3 26 × 26/13 × 13 20.9 30 8 6 6759
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3.2. Training Results and Evaluation 
In this study, garlic plants were pulled out without any treatment, and a certain ran-

dom amount of soil that adhered to the surface of the bulb or between the roots of garlic 
was left on the plant, which made the detection more difficult. The accuracy of object de-
tection was measured by average precision (AP) when IoU = 0.5. Furthermore, the storage 
space and training time of the model were also examined. Comprehensive evaluation of 
the training process was conducted to select a suitable detection model. The value of AP 
is equal to the area under the precision–recall curve. 

When evaluating the detection model, we examined the confidence score (class score) 
and detection time required for object detection. In addition, as garlic root cutting based 
on object detection is the focus of this study, the reliability of the predicted cutting line 
was evaluated, and the position of the cutting line was considered the decisive factor af-
fecting the quality of root cutting. Therefore, we studied the cutting line positions of dif-
ferent models and backbone networks to determine which backbone network had more 
reliable cutting lines. When investigating the differences of boundary box positions, the 
average and standard deviation of the predicted cutting line positions were examined to 
evaluate the performance of the detection model. 
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3.2. Training Results and Evaluation

In this study, garlic plants were pulled out without any treatment, and a certain
random amount of soil that adhered to the surface of the bulb or between the roots of
garlic was left on the plant, which made the detection more difficult. The accuracy of
object detection was measured by average precision (AP) when IoU = 0.5. Furthermore,
the storage space and training time of the model were also examined. Comprehensive
evaluation of the training process was conducted to select a suitable detection model. The
value of AP is equal to the area under the precision–recall curve.

When evaluating the detection model, we examined the confidence score (class score)
and detection time required for object detection. In addition, as garlic root cutting based on
object detection is the focus of this study, the reliability of the predicted cutting line was
evaluated, and the position of the cutting line was considered the decisive factor affecting
the quality of root cutting. Therefore, we studied the cutting line positions of different
models and backbone networks to determine which backbone network had more reliable
cutting lines. When investigating the differences of boundary box positions, the average
and standard deviation of the predicted cutting line positions were examined to evaluate
the performance of the detection model.

3.2.1. Comparison of Results of Different Model Tests

To evaluate the performance of the models, YOLOv2, YOLOv3, and YOLOv4 models
based on different backbone networks were compared. To ensure the consistency of training
parameters of various YOLO algorithms, the total loss of each model was stable below 0.5 at
the later stage of training as the basis for training. Table 2 shows the structural comparison
of different models, which shows that the average accuracy of YOLOv4-tiny-COCO was
99.97% and that of the YOLOv2-MobileNetV2 model was 99.15%. Among the 12 models,
YOLOv3 and YOLOv4 models had multiple detection heads, and the number of extracted
feature maps was equal to the number of detection heads. YOLOv3 and YOLOv4 algorithms
implemented multi-scale feature fusion. The model was trained and 12 bulb detectors
were obtained.

The confidence scores and detection times of the 12 detectors on the test set were
determined (Figure 10). For suitable reaction speed, the garlic root cutting system re-
quires the detector to have a high detection confidence score, and the detection time
should be the shortest possible. Among the 12 compared models, the detection time
of YOLOv2-SqueezeNet was the shortest, and YOLOv2-MobileNetV2 was only 0.0062 s
slower than YOLOv2-SqueezeNet, which was almost negligible. However, the confidence
score of YOLOv2-MobileNetV2 was 0.00407 higher than that of YOLOv2-SqueezeNet and
higher than that of YOLOv2-ShuffleNet, which indicates that the YOLOv2-MobileNetV2
model has the most suitable combination of detection confidence score and detection speed.
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Therefore, the YOLOv2-MobileNetV2 model achieved the most suitable performance
from the 12 models and can realize fast and accurate detection of bulbs. The test set
consisted of 500 images with different brightness, bulb shapes, and amounts of soil on the
bulb surface. The results of the YOLOv2-MobileNetV2 detection on the test set are shown in
Figure 11. In each image, the bulb object location was accurately detected, and a confidence
score was output, indicating that the bulb detector trained by the YOLOv2-MobileNetV2
model had good generalization, and the model had not been fitted.
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After statistical analysis, the average width and height of the prediction box obtained
by YOLOv2-MobileNetV2 for bulb object detection in test data (500 images) were 307 px
and 245.6 px, respectively. From the pixel size, the bulb in the image is a single large
object [54]. During the test, it was found that the YOLOv3 algorithm provided several
prediction boxes incorrectly when detecting bulbs. As shown in Figure 12, although
there was only one bulb in the image, YOLOv3-DarkNet53, YOLOv3-MobileNetV2, and
YOLOv3-tiny-COCO all output incorrect results with two prediction boxes. However,
YOLOv2-MobileNetV2 correctly detected the images where the YOLOv3 algorithm made
errors and did not output multiple prediction boxes in the test data (500 images). Tests
showed that YOLOv2-MobileNetV2 was less prone to errors than YOLOv3-based models
in bulb detection.
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3.2.2. Visualization of Feature Maps

To compare the differences between different CNNs and their differences before
and after migration learning training, the features extracted by the CNNs were visualized.
Generally, visualization of features extracted by CNNs is considered an appropriate method
for evaluating model performance [55].

Different CNNs learn different characteristics of images. The learning characteristics
of a CNN will change before and after training. As the training proceeds, the CNN learns
the characteristics of images by itself, but sometimes, it is not clear what it learned during
the training process. In the YOLO algorithm, each layer of the CNN outputs an active 3-D
object, which is sliced along the third dimension of the active 3-D object (i.e., the channel),
and each slice corresponds to a single filter generated by that layer. Further, the active
3-D volume output from the deeper neural network is an advanced combination of the
shallower learning characteristics.

We compared visualized images of the features extracted from the output layers of
different backbone networks on channels 1 to 12, as shown in Figure 13. The CNN before
training had the ability of classification owing to transfer learning. There are obvious
differences in image features extracted by YOLOv2-SqueezeNet, YOLOv2-ShuffleNet, and
YOLOv2-MobileNetV2 in the output layer before and after training. Moreover, there are
significant differences among the filters of the three backbone networks. Differences in
features extracted from different backbone networks cause deviations in the predicted
cutting line position. In addition, Figure 13 shows a visual difference in the activation of the
backbone network to the object area before and after training. It can be seen that the bulbs
are strongly activated after the backbone network has been trained. Better trained activation
of garlic features in images is conducive to improving the accuracy of object detection.

Foods 2022, 11, x FOR PEER REVIEW 13 of 21 
 

 

differences in image features extracted by YOLOv2-SqueezeNet, YOLOv2-ShuffleNet, 
and YOLOv2-MobileNetV2 in the output layer before and after training. Moreover, there 
are significant differences among the filters of the three backbone networks. Differences 
in features extracted from different backbone networks cause deviations in the predicted 
cutting line position. In addition, Figure 13 shows a visual difference in the activation of 
the backbone network to the object area before and after training. It can be seen that the 
bulbs are strongly activated after the backbone network has been trained. Better trained 
activation of garlic features in images is conducive to improving the accuracy of object 
detection. 

 
Figure 13. Comparison of model test results before and after training. 

3.2.3. Difference in Cutting Line Position 
As the YOLOv2 model had a suitable combination of detection speed and confidence 

score to meet the requirements of garlic root cutting, only the YOLOv2-based models are 
discussed in this section. As shown in Figure 14, the YOLOv2 models of the three back-
bone networks, SqueezeNet, ShuffleNet, and MobileNetV2, differed greatly in the cutting 
line positions predicted in Image84, Image283, and Image291. It can be seen that different 
backbone networks predicted different cutting line positions. As, in some instances, the 
cutting line passed through the bulb, the position of the cutting line must be studied. 

From the point of view of object detection, the position of the boundary box predicted 
by the YOLOv2 model is directly related to the position of the annotation box in the train-
ing data. We guarantee that the border of the label box did not pass through the bulb when 
labeling the training data. Therefore, the occurrence of the cutting line passing through 
the garlic bulb in the object detection result was caused by the prediction of the YOLOv2 
models. 

To find a reliable detection model and avoid cutting the bulbs during root cutting, it 
is necessary to study the differences in cutting line positions. First, the cutting line posi-
tions predicted by various YOLOv2 models on the test set were analyzed statistically. In 
Figure 15, the horizontal coordinate represents the serial number of the sample and the 
vertical coordinate the predicted vertical coordinate value of the cutting line pixel. Thus, 
when object detection is performed on the same image, the larger the ordinate value, the 
greater the distance between the cutting line and the bulb, which is beneficial to avoid 
scaling the bulb. The trend of the curve change of the cutting line position of each YOLOv2 
model is basically the same, but there are obvious fluctuations among the curves (Figure 
15). This indicates that when object detection was performed on the same image, the pre-
dicted cutting line positions might have been significantly different. 

Then, the prediction bias formula for the vertical coordinate values of the cutting line 
pixels at each sample point is 𝜎௝௞ = 𝑥௝௞ − 𝑥௝, 𝑥௝ = ଵ௠ ∑ 𝑥௝௜௠௜ୀଵ , where j is the number of sam-
ple points (j = 1, 2, …, 500), m is the type of the model (m = 5), k is the number of the model 
(k = 1, 2, …, 5), 𝑥௝௞ is the pixel coordinate value of the cutting line predicted by the kth 
model at the jth sample point (image), 𝑥௝  is the average of the cutting line pixel 

Figure 13. Comparison of model test results before and after training.



Foods 2022, 11, 3268 14 of 21

3.2.3. Difference in Cutting Line Position

As the YOLOv2 model had a suitable combination of detection speed and confidence
score to meet the requirements of garlic root cutting, only the YOLOv2-based models are
discussed in this section. As shown in Figure 14, the YOLOv2 models of the three backbone
networks, SqueezeNet, ShuffleNet, and MobileNetV2, differed greatly in the cutting line
positions predicted in Image84, Image283, and Image291. It can be seen that different
backbone networks predicted different cutting line positions. As, in some instances, the
cutting line passed through the bulb, the position of the cutting line must be studied.
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From the point of view of object detection, the position of the boundary box predicted
by the YOLOv2 model is directly related to the position of the annotation box in the
training data. We guarantee that the border of the label box did not pass through the
bulb when labeling the training data. Therefore, the occurrence of the cutting line passing
through the garlic bulb in the object detection result was caused by the prediction of the
YOLOv2 models.

To find a reliable detection model and avoid cutting the bulbs during root cutting,
it is necessary to study the differences in cutting line positions. First, the cutting line
positions predicted by various YOLOv2 models on the test set were analyzed statistically.
In Figure 15, the horizontal coordinate represents the serial number of the sample and the
vertical coordinate the predicted vertical coordinate value of the cutting line pixel. Thus,
when object detection is performed on the same image, the larger the ordinate value, the
greater the distance between the cutting line and the bulb, which is beneficial to avoid
scaling the bulb. The trend of the curve change of the cutting line position of each YOLOv2
model is basically the same, but there are obvious fluctuations among the curves (Figure 15).
This indicates that when object detection was performed on the same image, the predicted
cutting line positions might have been significantly different.
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Then, the prediction bias formula for the vertical coordinate values of the cutting line
pixels at each sample point is σjk = xjk − xj, xj = 1

m ∑m
i=1 xji, where j is the number of

sample points (j = 1, 2, . . . , 500), m is the type of the model (m = 5), k is the number of
the model (k = 1, 2, . . . , 5), xjk is the pixel coordinate value of the cutting line predicted
by the kth model at the jth sample point (image), xj is the average of the cutting line
pixel coordinates predicted by each model for the jth sample point (image), and σjk is the
deviation of the pixel coordinate values of the cutting line predicted by the kth model at
the jth sample point (image).

The distribution of prediction bias for each YOLOv2 model can be seen in Figure 16.
Assuming that the predicted cutting line pixel coordinate average xj is considered to be
the exact cutting line location, a larger σjk indicates that the predicted cutting line is farther
from the bulb, and a smaller σjk indicates that the predicted cutting line is closer to the bulb.
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Figure 16. Cutting line position deviation predicted by different backbone networks.

The farther the cutting line is from the bulb, the lower the risk of bulb cuts, and the
more reliable the cutting line. The closer the cutting line is to the bulb, the more likely
will the bulb be cut, and the more unreliable the cutting line. As shown in Figure 16, the
prediction bias of YOLOv2-MobileNetV2 at sample points 51, 100, 106, 204, 312, and 322 is
significantly smaller than that of other models. Although YOLOv2-MobileNetV2 predicted
cutting lines close to the bulb at sample points 51, 100, 106, 204, 312, and 322, none of the
cutting lines penetrated the bulb (Figure 17).
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Finally, the deviations of the different models in Figure 16 were complex, so a statistical
analysis of the deviations was conducted to determine which model to choose. Figure 18
was obtained by statistical analysis of the deviations of the vertical coordinate values
of cutting line pixels predicted by the five YOLOv2 models. The order of the average
values of prediction deviations was ShuffleNet, MobileNetV2, AlexNet, ResNet50, and
SqueezeNet from largest to smallest (Figure 18). The standard deviations of prediction
deviations were in the order of ResNet50, MobileNetV2, SqueezeNet, ShuffleNet, AlexNet
from the smallest to largest. The larger the mean of the prediction bias, the farther the
cutting line is from the bulb, and the better the reliability. However, as can be seen from
Figure 16, there are prediction errors in each model. Considering the stability and reliability
of predictions, the smaller the standard deviation of prediction errors, the more reliable
the prediction. Considering both the mean and standard deviation of prediction bias,
YOLOv2-MobileNetV2 has the best reliability from the five YOLOv2 models in predicting
cutting lines.
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3.2.4. Root Cutting Test

After the comparison, YOLOv2-MobileNetV2 was chosen as the object detection model
for the root cutting test considering the accuracy, size, confidence score, detection speed,
and reliability of the predicted cutting line.

During the test, the conveying speed was 0.7 m/s, and the rotating speed of the cutter’s
disc was 1200 r/min. There were three groups of experiments, each with 100 samples. The
brightness of the collected images was determined by weather conditions. In this study,
samples with cut bulbs and remaining garlic roots no longer than 10 mm in length were
considered qualified, as the bottom of the bulbs after root cutting would not be mildewed.
The qualified rate of root cutting was obtained through observation and measurement. The
formula for calculating the qualified rate of root cutting was α = N1

N0
× 100%, where N1 is

the number of qualified samples of root cutting, and N0 is the total number of samples. The
field test system is shown in Figure 19.
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The comparison of the bulbs before and after the test root cutting is shown in Figure 20.
It can be seen that the garlic root has been effectively cut by the root cutter. Table 3 shows
the results of the experiments; the mean confidence score of detecting a bulb object was
0.98099, the mean qualified rate of root cutting was 96%, and the mean detection time was
0.0354 s. In the root cutting test, two types of unqualified samples were observed: cut bulbs
and excessively long residual roots. Unqualified samples reduced the qualified rate of root
cutting. In a follow-up study, feasible measures to further improve the qualified rate of root
cutting will be found.
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Figure 20. Comparison of before and after root cutting: (I) before, during, and after a root cutting
process; (II) before, during, and after a root cutting process.

Table 3. Results of the root cutting test.

Experiment
Mean Value

1 2 3

Confidence score 0.97814 0.97894 0.98589 0.98099
Qualified rate (α)/% 95 97 96 96

Detection time/s 0.0354 0.0352 0.0356 0.0354

4. Discussion

The error in this work on garlic root cutting based on deep learning may come from
several sources. We mainly analyzed the detection errors that exist in different target
detection models when performing target detection. In addition, the errors include the
motion error of the actuator, the rounding error of the position of the prediction frame
in the pixel coordinate system, etc. The rounding error of the position of the prediction
frame in the pixel coordinate system is no more than 1 pixel and can be ignored for small
values. Here, we mainly discuss the motion error of the height adjustment module. The
height adjustment module mainly contains a stepper motor (57CM18, Rtelligent, Shen Zhen,
China) and an enclosed single-line rail slide (DXG40-1610-400, Hengchuangchuandong,
Tai Zhou, China). The stepper motor (57CM18, Rtelligent, Shen Zhen, China) has a step
accuracy of ±5% (full step, no load), 2000 pulse/rev. The enclosed single-line rail slide
(DXG40-1610-400, Hengchuangchuandong, Tai Zhou, China) has a screw. The accuracy
is 0.03 mm~0.05 mm. It can be seen that the combination of a stepper motor and an
enclosed single-line rail slide table can achieve high-accuracy motion control at a low cost.
In addition, the contact switch (SS-5GL2, OMRON, Japan) used for resetting the root cutter
has a positioning error of 0.4 mm, ensuring reliable resetting.

Since garlic cutting requires the smallest possible motion error of the root cutter,
subsequent tests will focus on the reliability of the combination of the stepper motor and
the enclosed single-line rail slide. If the root cutter requires higher motion accuracy, a servo
motor drive will be considered.
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5. Conclusions

In this study, deep learning was innovatively introduced into the automatic root
cutting of garlic for the first time. A transfer learning-based YOLOv2-MobileNetV2 method
was proposed for non-destructive bulb object detection. The average accuracy of the
YOLOv2-MobileNetV2 model was 99.15%, the detection time was 0.0356 s, and detection
was reliable. The brightness of training and test data was quantitatively analyzed by color
space conversion. The feature visualization of the output channel of the backbone network
showed the advanced features of network learning before and after training as well as the
advanced features of different methods of network training. The position differences of
cutting lines predicted by different backbone networks were visually analyzed. Its excellent
and stable performance indicated that YOLOv2-MobileNetV2 had learned the correct
features in data with different brightness levels. Based on this, YOLOv2-MobileNetV2
was successfully applied to the garlic root cutting test stand to complete the automatic
adjustment of the root cutting knife, and the effect of the automatic adjustment was verified.
The mean confidence score of detecting a bulb object was 0.98099, the mean qualified rate
of root cutting was 96%, and the mean detection time was 0.0354 s. In conclusion, all
the results show that the proposed garlic root cutting method based on deep learning is
effective and suitable for automatic garlic root cutting. Deep learning has a wide range of
application scenarios in food processing.
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