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Retinal diseases, such as diabetic retinopathy (DR), age-related macular degeneration
(AMD), and retinopathy of prematurity (ROP), are some of the leading causes of blindness
all over the world. Several studies have recently described metabolic changes that occur
during the progression of retinal diseases. In this Collection of Life, we present a collection
of articles dedicated to various aspects of clinic and experimental research in retinal disor-
ders. Specifically, we highlight investigations of metabolic contributions to retinal disease
development and prevention, evaluations of current drug intervention and diagnosis, and
the identification of new biomarkers.

1. Metabolism-Related Risk Factors and Regulators

The retina is highly energetically demanding, with a very high density of mitochondria
in the body [1]. However, our current knowledge of retinal metabolism is still limited.
Aerobic glycolysis is essential to maintain photoreceptor health, and disturbance in glu-
cose uptake causes retinal degeneration [2,3]. Photoreceptors also utilize lipids as energy
sources, and a shortage of lipid supply leads to photoreceptor dysfunction and subretinal
neovascularization [4,5]. Hyperglycemia and dyslipidemia are associated with the devel-
opment and progression of retinal disorders across all age groups. Emerging evidence
has shown that disturbed metabolism and unbalanced retinal redox contribute to retinal
disease pathogenesis.

With the advancement of current omics technologies, our understanding of metabolic
alterations in retinal disorders has increased. Tomita et al. summarized the current experi-
mental and clinical investigations of metabolic alterations in ROP, a common complication
in premature infants and the leading cause of vision loss in children [6]. Lipidomics, pro-
teomics, and metabolomics have suggested that dysfunction in the lipid and amino acid
metabolism contributes to ROP [7–9]. Low essential lipids such as docosahexaenoic acid
(DHA) and arachidonic acid (AA), low postnatal sphingosine-a-phosphate (S1P), high
blood malonylcarnitine (C3DC), as well as elevated plasma amino acids such as glycine and
proline correlate with ROP [6]. Accompanying metabolic changes, decreased antioxidants,
and increased oxidative stress predict severe ROP. Further validation has been partially
conducted using two ROP mouse models: oxygen-induced retinopathy, which mimics
late-stage proliferative ROP, and hyperglycemia-associated retinopathy, which mimics
early ROP [10,11]. Nutritional supplementation, hormonal modulation, and other inter-
ventions to restore retinal metabolic and redox balance are very appealing options for the
prevention and treatment of ROP. Tsang et al. reviewed and discussed the beneficial effects
of some nutraceuticals on ROP [12]. These nutraceuticals, including oils such as DHA,
flavonoids such as green tea and Bilberries, and many others, may exert anti-angiogenic,
anti-oxidative, anti-inflammatory, and anti-apoptotic effects on ROP prevention and treat-
ment. However, further mechanistic investigations are needed to better elucidate the action
of these nutraceuticals in preventing retinal neovascularization.

Oxygen-related factors have been considered key for ROP pathogenesis. The sup-
plementation of oxygen is crucial to prevent mortality in extremely premature infants.
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However, hyperoxia can suppress physiological retinal vessel growth, setting the stage for
late vision-threatening proliferative ROP [13]. Therefore, promoting retinal vessel growth
at the early stage may prevent severe ROP. Singh et al. found that hyperoxia downregu-
lated Myc, a critical cell cycle regulator, and upregulated P53 proteins, thereby increasing
p21 protein levels in retinal endothelial cells in vitro [14]. P21, in turn, decreased pRb levels
and caused cell cycle arrest in the G1 phase. Further validation in animal models of ROP
would be interesting to examine if the modulation of Myc could prevent hyperoxia-induced
retinal vessel loss in vivo.

In addition to ROP, the contribution of dyslipidemia to AMD has also been well docu-
mented. Hu et al. summarized and discussed our current knowledge of apolipoprotein
E (ApoE) in AMD progression [15]. ApoE functions as a plasma lipid transport protein
and is involved in lipid clearance. APOE is produced and secreted locally from RPE and
Müller glia and is a major contributing factor in drusen formation in AMD pathogene-
sis [16]. APOE2 is associated with increased risk for AMD, while APOE4 seems to correlate
with decreased risk for AMD. APOE isoforms have shown differential behavior in their
interaction with retinal microglia. This review also discusses the interaction between APOE
and the complement system, amyloid-beta.

Moreover, Riddell et al. also found that there was a metabolic shift in myopia (short-
sightedness) and hyperopia (long-sightedness) induced chicks at an early stage, accompa-
nied by decreased retinal neuronal responses [17]. In the chick myopia model, increased
expression of genes involved in oxidative phosphorylation and decreased expression of
genes involved in the signal transduction pathways were identified with microarray analy-
sis. Meanwhile, increased expression of genes involved in sphingolipid metabolism and
decreased expression of genes involved in branch-chain amino acid degradation were
found in the chick hyperopia model. Further exploration with advanced omics technolo-
gies would provide more insight into the mechanistic changes at the early hours of myopia
and hyperopia induction.

Targeting unbalanced retinal redox and oxidative stress could be a therapeutic ap-
proach to treat retinal metabolic disorders. Pietras-Baczewska et al. investigated whether
there was an altered status of antioxidant in the vitreous of patients with rhegmatogenous
retinal detachment (RRD) with or without proliferative vitreoretinopathy (PVR), in compar-
ison to patients with macular hole (MH) or epiretinal membrane (ERM, controls) [18]. The
results showed no significant differences in total antioxidant status (TAS) and antioxidant
enzymes, including superoxide dismutase and glutathione reductase. The duration of the
disease influenced TAS in the vitreous of RRD with PVR. However, as the authors pointed
out, a limitation of the study was that the control group patients might also experience an
altered pattern of antioxidant status, as MH or ERM are retinal degenerative diseases with
a long duration.

Peroxisome proliferator-activated receptors (PPARs) are strong metabolic modula-
tors. Lee et al. summarized the therapeutic potential of PPARα in various CNS diseases
such as Alzheimer’s disorder and neuropsychiatric disorders [19]. PPARα activation also
modulates neuroinflammation, a significant contributor to amyotrophic lateral sclerosis
and multiple sclerosis. Experimental studies have also demonstrated positive effects of
PPARα activation by fenofibrate on ischemic stroke. In addition to the brain, fenofibrate
is beneficial in preventing the progression of diabetic retinopathy, a common eye com-
plication in diabetic patients. More recently, pemafibrate, which has higher potency and
selectivity for PPARα than fenofibrate and exerts fewer side effects on kidney injuries,
has been designed [20–22]. With the knowledge gained from PPARα therapeutics in CNS
disorders, we can better understand the protective roles of PPARα in retinal disorders. In
addition to PPARs, the liver-derived endocrine insulin-like growth factor (IGF)-1 is also a
significant regulator of retinal metabolism and angiogenesis. IGF-1 stimulation of VEGFA
secretion in human RPE cells has been reported [23]. Puddu et al. found that caveolin-1
was a mediator of IGF-1-induced VEGFA secretion in ARPE-19 cells [24]. Immortalized
human microvascular endothelial cells (HMEC-1) under the treatment of conditional media



Life 2022, 12, 183 3 of 7

from ARPE19 with caveolin-1 knockdown showed reduced endothelial cell migration rate,
further elucidating the mechanisms behind IGF-1 regulation of VEGFA.

2. Evaluation for Retinal Disease Treatment

VEGFA induction is a critical contributing factor to pathological retinal angiogene-
sis [25]. Anti-VEGF therapy is one of the major treatments for diabetic macular edema
(DME), AMD, retinal vein occlusion (RVO), and ROP [26,27]. Usui-Ouchi et al. retrospec-
tively analyzed prognostic factors affecting a short-term response to anti-VEGF therapy in
DME [28]. They presented higher glycosylated hemoglobin levels, a larger foveal avascular
zone (FAZ), and a higher number of microaneurysms in the pericapillary network (PCN),
which are poor anatomical prognostic factors in anti-VEGF therapy. Their data also revealed
a significant correlation between the number of microaneurysms (MAs) in the PCN and
FAZ size. Cystoid macular edema (CME) was the most common type of DME in poor
responders, and CME retinas had a higher number of MAs in the PCN and a larger FAZ
size. In addition, Tanwani et al. reported that treatment outcome based upon best-corrected
visual acuity (BVCA) and central macular thickness (CMT) was the same despite different
numbers of injections and intervals of injections to DME patients [29]. They summarized
that despite significant differences in the number of anti-VEGF injections administered and
the overall length of treatment of DME patients, all retina specialists had similar outcomes
concerning the changes in BCVA and CMT. Although these data came from one practice site
and a small number of patients, the study suggests that treatment protocol could be refined
to reduce the number of injections in DME. On the other hand, Wicinski et al. evaluated
possible modifications in blood coagulation parameters and pro-inflammatory cytokines in
AMD patients treated with intravitreal injections of aflibercept (IVA), one of the anti-VEGF
drugs [30]. Their results suggested that the repeated administration of IVA may influence
the common blood coagulation pathway such as thrombin time (TT). They also showed that
the serum concentration of IL-18, a pro-inflammatory cytokine, was significantly increased
during the initial loading phase of IVA. Thus, although anti-VEGF agents are a widespread
treatment worldwide, there is still room for debate regarding prognostic factors, injection
method, frequency, and side effects.

Anti-VEGF therapy has also been widely used for ME in branch retinal vein occlusion
(BRVO) [31]. Sakanishi et al. investigated the relationship between treatment outcomes
of IVA for ME due to BRVO and subfoveal choroidal thickness (SCT) [32]. There was
no significant difference in central foveal thickness improvement, visual acuity, and the
number of IVA injections between the SCT non-thickened and SCT thickened groups. ME
recurrence was higher in the SCT thickened group significantly. They concluded that
although SCT before treatment did not affect the efficacy of IVA, the risk of ME recurrence
was lower in cases in which SCT became thin during treatment. Thus, the SCT change
could be a therapeutic indicator of IVA for BRVO. Although the choroidal thickness varies
markedly among individuals daily and decreases with age, further large-scale studies of
choroidal thickness, including the examination time, could resolve this problem.

In addition to anti-VEGF therapy, laser treatment is another option for diseases such as
DME. One of the possible therapeutic mechanisms of laser treatment to the retina is the acti-
vation of metabolic states of RPE cells and subsequent functional improvement [33]. How-
ever, there is no effective way to evaluate the impacts of laser therapy on the metabolism
and function of the irradiated retina and its surroundings. Sonntag et al. presented an
exciting report demonstrating changes in a fluorescent lifetime (FLT) after retinal laser
treatment in vivo using fluorescence lifetime imaging ophthalmoscopy (FLIO) [33]. After
identifying a region around the laser spot where the FLT was transiently shorter than
surrounding areas, the authors speculated that it may indicate metabolic changes in the
surrounding cells responding to laser invasion. Thus, they summarized that FLIO may be
a useful tool for the evaluation of the metabolic and structural response of the retina to
laser treatments.
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Exploring and developing a generalized approach for rare retinal disorders resulting
from various genetic causes is therapeutically convenient. Retinitis pigmentosa (RP) is
a hereditary disease that causes progressive photoreceptor cell loss [34]. There have
been very limited clinically available drugs for RP treatment up to this point. Matsuo
et al. demonstrated in vitro and in vivo evidence of the neuroprotective effect of NK-5962,
which is a crucial component of photoelectric retinal prosthesis (OUReP) to prevent retinal
neuronal apoptosis [34]. Intravitreal injection of NK-5962 in the eyes of RCS rats reduces
the number of apoptotic cells in the photoreceptor layer. The authors suggested NK-5962
as a candidate treatment for delaying the deterioration of retinal dystrophy such as RP.

3. Diagnosis and Biomarkers of Retinal Disease

Early detection of retinal diseases is essential both for preventing disease progression
and developing potential therapeutic targets at an early stage. The ultra-widefield fundus
imaging systems, optical coherence tomography (OCT), and OCT angiography (OCTA)
are now essential for diagnosing various retinal diseases [35]. Wysocka-Mincewics et al.
described the prevalence of pediatric diabetic retinopathy and stressed the importance
of screening in patients with type 1 diabetes [36]. In this review, the authors discussed
the usefulness of the findings obtained by OCT and OCTA, including foveal thickness,
foveal avascular zone (FAZ), and vascular density for the early detection of retinopathy. In
addition, continuous supplementation of insulin using an insulin pump is recommended
for the treatment of pediatric patients because it has dramatically reduced the incidence of
early symptoms of DR in the pediatric population. Although they mentioned limitations
of OCTA, such as confinement of imaging to only the central retina, not its periphery,
and time requirements for good fixation, which could be problematic for young children;
improvements to the device could reasonably resolve these problems. Ozawa et al. newly
invented the eyelid clamper, which is able to keep an eye open without the need for topical
anesthesia [37]. They quantified pixels of the imaged retina and found the system could
capture fundus images of sufficient size as in the case of conventional tape fixation. These
devices could aid fundus imaging in children.

The fundus photos from the health examination program are important sources for
investigating the prevalence of retinal diseases and the association between retinal status
and systemic condition [38]. Shimizu et al. investigated the prevalence of ERM using
fundus photographs from 5042 eyes of 2552 subjects in Japan’s health examination program
database [39]. ERM was detected in 275 eyes (5.5%) from 217 subjects (8.5%). By univariate
analyses, ERM was significantly more common in the eyes with higher Scheie’s H grade,
S grade, and glaucoma. Moreover, ERM was significantly common in subjects with more
frequent histories of hypertension and hyperlipidemia, older age, shorter body height,
higher systolic blood pressure, more frequent use of medication for hyperlipidemia and
hypertension, and thicker intimal medial thickness. By multivariate analyses, older age
was the only significant factor of ERM prevalence. The major limitation of this study was a
lack of data regarding myopia and cataract surgery history, which were reported to be risk
factors of ERM. In addition, ERM was diagnosed only with fundus photos without OCT.

Concentric RP is a rare and atypical RP with retinal degeneration limited in the pe-
ripheral region [40]. Nakahara et al. identified 15 patients from 14 families with concentric
RP out of 673 with RP and presented their clinical characteristics and genetic analysis [41].
Compared to typical RP, patients with concentric RP had better visual acuity and preserved
ellipsoid zones. Two cases had myotonic dystrophy-associated retinopathy in the cohort,
an important differential diagnosis of concentric RP. Genetic testing was performed on nine
patients, and mutations in the EYS gene were found in one patient, and mutations in the
RP9 gene were found in another patient. As many patients are assumed to be undetected
or left undiagnosed due to mild symptoms, further studies are needed to determine the
difference and prevalence of concentric RP from typical RP. Matsuo et al. reported cases of
bilateral swelling of the optic disc in three consecutive patients with cryopyrin-associated
periodic syndrome or Blau syndrome, rare autoinflammatory diseases [42]. They described
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bilateral swelling of the optic disc as a plausible common ocular feature in autoinflamma-
tory diseases if it occurred as a complication in addition to conjunctivitis, anterior uveitis,
and posterior uveitis.

In addition to evaluating disease characteristics using retinal images, the quantification
of various proteins or molecules in the serum, aqueous humor, and vitreous is helpful
to predict the severity of various retinal or vascular diseases and understand the disease
pathogenesis [7]. Low et al. demonstrated that high levels of decorin, a small-leucine-
rich proteoglycan, increase with the severity of DR [43]. They also showed that non-
responders to DR treatment present high aqueous humor decorin concentrations, and
decorin concentrations were positively correlated with visual acuity in DR patients. They
concluded that decorin levels in the aqueous humor were found to be elevated in DR
subjects, possibly due to a compensatory response to changes in retinal microvasculature
during hyperglycemia. Increasing the sample size may help further classify DR groups.
Takayanagi et al. examined the association between serum oxidative stress markers in
eyes and retinal vessel diameters with primary open-angle glaucoma to investigate the
interaction between the pathogenesis of glaucoma and vessel narrowing [44]. In the POAG
group, the central retinal artery equivalent (CRAE), central retinal vein equivalent (CRVE),
and serum biological antioxidant potential (BAP) were lower compared to controls, and the
BAP showed a significant correlation both with CRAE and systolic blood pressure. These
data suggested a clinical impact of systemic antioxidant treatment for glaucoma patients.

In summary, this research topic includes original research articles, brief reports, and
reviews regarding novel therapeutic approaches, evaluations of drug interventions, and
mechanistic investigations of neurovascular retinopathies. These articles also elucidate the
crucial contribution of retinal metabolic alterations to disease pathogenesis. We believe that
this collection will be interesting to a broad audience of scientists in retinal research.
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