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Mendelian randomization analysis using mixture
models for robust and efficient estimation of causal
effects
Guanghao Qi1 & Nilanjan Chatterjee 1,2

Mendelian randomization (MR) has emerged as a major tool for the investigation of causal

relationship among traits, utilizing results from large-scale genome-wide association studies.

Bias due to horizontal pleiotropy, however, remains a major concern. We propose a novel

approach for robust and efficient MR analysis using large number of genetic instruments,

based on a novel spike-detection algorithm under a normal-mixture model for underlying

effect-size distributions. Simulations show that the new method, MRMix, provides nearly

unbiased or/and less biased estimates of causal effects compared to alternative methods and

can achieve higher efficiency than comparably robust estimators. Application of MRMix to

publicly available datasets leads to notable observations, including identification of causal

effects of BMI and age-at-menarche on the risk of breast cancer; no causal effect of HDL and

triglycerides on the risk of coronary artery disease; a strong detrimental effect of BMI on the

risk of major depressive disorder.
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D iscoveries of genetic susceptibility variants underlying
complex traits continue to increase rapidly with ever-
growing size of genome-wide association studies1–5.

Mendelian randomization (MR)—a form of instrumental variable
analysis for the assessment of the causal effect of one trait on
another—provides major opportunity for translation of the
increasing knowledge of genetics to improve human health6,7.
MR analysis has already been widely used for obtaining evidence
for drug targets, causal basis for epidemiologic associations, and
cascading effects among complex molecular traits8,9. While MR
was originally designed to be used with individual genetic
instruments with known biologic functions, the recent trend has
been to exploit the multitude of genetic variants emerging from
large GWAS. The use of multiple genetic variants can allow to
increase the power of MR analysis, correct for weak instrument
bias and can provide evidence of causality across a broader set of
underlying mechanisms for intervening on the traits7,8.

When all of the selected variants satisfy the key assumption of
MR analysis, i.e., they only have direct effects on one trait, then
the causal effect of that trait on the other can be efficiently esti-
mated by meta-analysis of the well-known ratio estimates across
the different variants10. It is, however, recognized that while the
availability of many variants provides an opportunity to
strengthen MR analysis, there is potential for bias as the key
assumption, i.e., the variants have no direct effect on the second
trait, can be violated due to pleiotropy7,8. Indeed, recent empirical
studies3,11–16 have unequivocally shown that common variants
have wide spread pleiotropic effects, and consequently, polygenic
MR analysis can be susceptible to bias. Originally, some methods
were developed that allow genetic variants to have pleiotropic
effects, but they require the strong InSIDE assumption, i.e. the
direct and indirect effects are uncorrelated16–19. Under this
assumption, any genetic correlation between the two traits, as
measured by the selected SNPs, can arise solely due to the
underlying causal relationship between the traits.

The effects of genetic variants on multiple traits can be cor-
related when they are mediated through common causal factors.
Thus, most recently there has been effort to develop methods that
can allow for the presence of invalid instruments which may have
complex, possibly correlated pleiotropic effects. In particular,
median- and mode-based ratio estimators have been proposed for

removing effects of invalid instruments under different
assumptions20,21. Further, a recent study proposed the use of
methods for outlier detection for conducting sensitivity analysis
to the presence of invalid instruments22. While these and other
new methods present important progress, there remain important
gaps as they can be susceptible to substantial residual bias in the
presence of a large number of invalid instruments or/and can
produce estimates of causal effects with large uncertainty.

In this article, we propose a novel method for estimation of
causal effects in multi-marker MR analysis by taking advantage of
a working parametric model for the underlying bivariate effect-
size distribution of the SNPs across pairs of traits. The model
allows genetic correlation to arise both from causal and non-
causal relationships. This model implies the zero modal pleio-
tropy (ZEMPA) assumption, which is also required by the mode-
based estimator. For robust estimation of causal effects, we pro-
pose an estimating equation approach that essentially requires
maximization of the probability concentration of the residuals,
β̂Trait2 � θβ̂Trait1, at the null component of a normal-mixture
model (method named MRMix, see Fig. 1 for an overview). We
use extensive simulation studies to show that the proposed
method can provide much better trade-off between bias and
variance than existing estimators in a wide set of scenarios. We
apply the proposed and existing methods for conducting MR
analysis across a variety of exposures and health outcomes using
publicly available summary-statistics from very large GWAS. The
analysis reveals important differences across methods and new
insights to causal relationships underlying some of these traits.

Results
Simulations. Simulation studies show that MRMix can be far
more robust compared to existing alternatives in a wide range of
scenarios (Figs 2 and 3, Supplementary Figure 1). For example,
when genetic correlation due to the causal relationship and
pleiotropic effects are in the same direction (Fig. 2), MRMix
generally produced nearly unbiased estimates of causal effects as
long as the sample size for GWAS for the exposure (X) and the
corresponding number of instruments reached a minimum
threshold (e.g., nx > 100 K, K > 100). The bias was minimal or
moderate even when only 25% of the instruments were valid.
Among the alternatives, the inverse-variance weighted (IVW) and
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Fig. 1 Overview of MRMix approach. a Four components of the Mendelian randomization mixture (MRMix) model: (1) Direct effect on X and an indirect
effect on Y only through X; (2) direct effects on both X and Y; (3) direct effect on Y but no relationship with X; (4) related to neither X nor Y. Direct effects
are denoted by ux and uy and the causal effect is denoted by θ. Parameters π1, π2, π3, π4 are the mixing probabilities associated with components (1), (2),

(3), and (4), respectively; within each component, we assume ux and uy to either be 0 or follow normal distributions and σ2x ; σ
2
y ; σxy are the variance-

covariance parameters. b Schematic of the MRMix estimation algorithm. The line corresponding to the true causal effect (0.2) maximizes the number of
points “close” to the line. Here the regions that are covered by the 95% probability band under the null distribution (shaded area, expressed as

β̂y � θβ̂x

��� ��� � 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2y þ θ2s2x

q
) are highlighted. We plot the line β̂y ¼ θβ̂x corresponding to three values θ=−0.3, 0.2, 0.48; π̂0 is the estimated proportion

of valid IVs. Source data are provided as a Source Data file
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the Egger regression methods had the largest bias in directions
away from null; the weighted median method was less sensitive,
but had a considerable bias in many scenarios, and the weighted
mode method had least bias. The bias of the weighted mode
method was comparable to that of MRMix in most scenarios
when the number of valid instruments was 50%, but was sub-
stantially more when the number of valid instruments dropped to

25% and the sample size for the GWAS of the outcome (Y) was
relatively small (e.g., nx= 100 K, ny= 33.3 K).

When the genetic correlations due to causal relationship and
pleiotropic effects were in the opposite directions (Fig. 3) MRMix
showed more notable bias in estimation of causal effect—the
direction of bias was generally towards the null and did not lead
to estimates that were in the opposite direction of the true effect.
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Fig. 2 Simulation results when genetic correlation due to causal and pleiotropic effects are in the same direction. Mean and standard deviation of causal
estimates are reported over 100 simulations. The true causal effect θ is 0.2. Estimates of association coefficient for SNPs across two traits are simulated
assuming an underlying four-component model for effect-size distribution (Scenario A, see Methods), where SNPs could have direct effects on neither
traits, only on X, only on Y, or on both with the effects being correlated. The proportion of valid instruments, i.e., the SNPs which have only direct effects on
X, as a proportion of the total number of SNPs which are associated with X, are fixed at 50% or 25%. nx= N: sample size of the study associated with X; ny:
sample size of the study associated with Y. Standard error bars higher than 60 are truncated and marked with *true-value. The average number of IVs,
defined as the SNPs which reach genome-wide significance (z-test p < 5 × 10−8) in the study associated with X, is 14, 105, 399, 1135, and 1780 for N= 50 k,
100 k, 200 k, 500 k, and 1000 k, respectively. Source data are provided as a Source Data file
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The degree of bias was more when the number of valid
instruments was smaller, but the bias steadily disappeared with
increasing sample size irrespective of the proportion of valid
instruments. In this scenario, the bias of all the other methods
were much more severe and sometimes led to average estimates of
causal effects in the opposite direction as those of the true effects.
As earlier, the weighted mode method was the most robust
among the alternatives considered, and yet it produced
substantially more biased estimate of causal effect compared to
MRMix in a number of scenarios.

Simulation studies also reveal MRMix estimates have much
higher precision, i.e., smaller standard errors, relative to
comparably robust estimators. In particular, the relative efficiency
of MRMix compared to the weighted mode estimator, evaluated
as the inverse of the ratio of respective variances, reached up to
3–4 fold in some of the settings. As expected, the IVW method
generally had the smallest standard errors across all the scenarios,

but because it produced severe bias its efficiency is not
comparable to that of MRMix. There were also several scenarios
where the weighted median estimator had smaller standard errors
compared to MRMix, but in all of these cases the former method
produced substantially more biased estimates. Finally, across all
scenarios, the Egger regression method produced estimates with
much larger standard errors than the alternatives.

Reverse directional MR analysis shows that MRMix is highly
sensitive to the causal direction (Supplementary Figures 2, 3). In
contrast, the IVW, Egger regression and the weighted median
method often produced estimates of causal effect of substantial
magnitude from the outcome (Y) to the exposure (X). The
weighted mode method, similar to MRMix, was found to be
robust in the regard. In alternative simulation scenario, where we
allow SNPs with larger effects to be more likely to be valid IVs,
the methods rank similarly as described above, although all the
methods tend to be less biased (Supplementary Figures 4, 5).
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Fig. 3 Simulation results when genetic correlation due to causal and pleiotropic effects are in opposite directions. Mean and standard deviation of causal
estimates are reported over 100 simulations. The true causal effect θ=−0.2. Estimates of association coefficient for SNPs across two traits are simulated
assuming an underlying four-component model for effect-size distribution (Scenario A, see Methods), where SNPs could have direct effects on neither
traits, only on X, only on Y, or on both with the effects being correlated. The proportion of valid instruments, i.e. the SNPs which have only direct effects on
X as a proportion of the total number of SNPs which are associated with X, are fixed at 50% or 25%. nx = N: sample size of the study associated with X; ny:
sample size of the study associated with Y. Standard error bars higher than 60 are truncated and marked with *true-value. The average number of IVs,
defined as the SNPs which reach genome-wide significance (z-test p < 5 × 10−8) in the study associated with X, is 14, 105, 399, 1135, and 1780 for N= 50 k,
100 k, 200 k, 500 k and 1000 k, respectively. Source data are provided as a Source Data file
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When the effect-sizes are generated from non-normal distribu-
tions, MRMix shows similar robustness and efficiency gain
compared to MR-mode (Supplementary Figures 6–9). Simulation
studies also showed that when the number of selected instru-
ments were large, the analytical formula of standard error
through asymptotic theory is generally quite accurate (Supple-
mentary Table 1). When nx is between 100 K and 200 K, the
estimator is conservative in the sense that it leads to some degree
of overestimation of the true standard error.

Data analysis. We summarized the datasets we used in Supple-
mentary Table 2. The MRMix analysis detected significant causal
effects of genetically determined LDL-C, BMI, and blood pres-
sure, but not that for HDL-C and triglycerides (TG), on the risk
of coronary artery diseases (CAD) (Table 1). There were
important differences across the methods in estimates of the
causal effect for some of these factors. In particular, both IVW
and the weighted median method detected significant causal
effects of HDL-C and triglycerides, in directions consistent with
known epidemiologic associations. The weighted mode method
detected some effect for triglycerides, but the estimate had large
standard error and was not statistically significant. The MRMix
method estimated the causal effect for both of these lipid factors
virtually to be zero. All methods detected causal effect of LDL-C
in the expected direction and produced estimate of effect-size in
similar range with respect to each other (OR for CAD per SD unit
increase in LDL ranged between 1.28 and 1.51), but notably lower
than those reported by previous MR analysis based on smaller
number of genetic instruments23. Almost all methods detected
causal effect of blood pressure and BMI in directions consistent
with epidemiologic studies and produced estimates of effect-size
in similar range. Egger regression and MR-mode yielded sub-
stantially wider confidence intervals thus leading to statistically
non-significant or borderline significant results.

The MRMix analysis detected the significant causal effect of
genetically determined BMI on the risk of breast cancer (BC). The
method also detected suggestive evidence for causal effects for
HDL-C and age-at-menarche (AAM), but not those for height,
LDL-C, and TG. There were, again, important differences across
methods. MRMix inferred negative causal relationship between
increased level of BMI and the risk of BC, inconsistent with
positive association that is typically seen in epidemiologic studies.

A previous MR analysis24 that used fewer genetic instruments
also detected the negative direction of the causal effect, but they
reported the estimated effect-sizes to be somewhat stronger (OR
for per SD unit increase in BMI reported to be in the range
0.56–0.75 compared to 0.84 by MRMix in the current study). The
estimates from all the other methods were also in the negative
direction, but those obtained from the weighted mode and Egger
regression did not reach statistical significance due to large
confidence intervals.

MRMix method indicated an increased level of HDL-C could
be causally related to higher risk of BC (OR= 1.27 per SD
increase in HDL-C level), but the result was only borderline
statistically significant. The IVW and weighted median methods
also detected these effects in the same direction, but the estimated
effect-sizes were notably (by 50%) smaller. The weighted mode
and Egger regression methods did not detect the effect to be
statistically significant due to large confidence intervals. The
MRMix was the only method which detected suggestive evidence
of the casual effect of AAM on the risk of BC and the direction of
effect was consistent with known epidemiologic association.
Intriguingly, one previous study also noted that the standard
IVW analysis does not detect any causal effect of AAM on the
risk of breast cancer25. However, significant causal effect, in the
same direction as the MRMix, has been reported in previous MR
analysis which had adjusted for genetic relationship between
AAM with BMI25,26. Finally, none of the methods detected a
significant causal relationship between height and risk of BC
although epidemiologic studies have consistently reported a
positive association.

MRMix detected that genetically determined BMI increases the
risk of major depressive disorder (MDD). All the other methods
detected the same directional effect, but the magnitude of effect-
sizes were notably smaller for the IVW, weighted median and
Egger regression compared to the weighted mode and the MRMix
method. The MRMix estimate for the effect of genetically
determined years of education (EDY) on MDD had very large
confidence interval and indicated no evidence of statistical
significance for the causal effect. In contrast, the IVW and the
weighted median methods detected a statistically inverse causal
relationship between EDY and MDD. The weighted mode
method also estimated the effect to be in the same direction,
but the magnitude of the effect was attenuated and did not reach
statistical significance.

Table 1 Estimates and 95% confidence intervals for causal effects (log-OR of disease per SD-unit increase in risk-factor) of
various putative risk-factors on three disease outcomes

Diseasea Risk-factorsb # of
IVsc

MRMix IVW Weighted median Weighted mode Egger LDSCd

CAD BMI 972 0.39 [0.32, 0.46] 0.34 [0.3, 0.39] 0.36 [0.3, 0.42] 0.23 [−0.02, 0.48] 0.76 [0.44, 1.08] 0.44
LDL 155 0.33 [0.23, 0.43] 0.28 [0.21, 0.35] 0.28 [0.22, 0.35] 0.25 [0.04, 0.45] 0.41 [0.05, 0.76] 0.14
HDL 200 −0.01 [−0.12, 0.1] −0.17 [−0.24, −0.1] −0.08 [−0.15, −0.02] −0.01 [−0.2, 0.17] 0.23 [−0.09, 0.54] −0.28
TG 128 −0.04 [−0.25, 0.17] 0.24 [0.16, 0.31] 0.19 [0.11, 0.28] 0.14 [−0.14, 0.42] 0.23 [−0.12, 0.58] 0.26
SBP 215 0.49 [0.33, 0.65] 0.44 [0.34, 0.54] 0.44 [0.35, 0.54] 0.43 [0.17, 0.69] 0.5 [−0.18, 1.18] 0.54
DBP 237 0.4 [0.24, 0.56] 0.4 [0.31, 0.5] 0.36 [0.28, 0.45] 0.33 [0.08, 0.59] 0.3 [−0.37, 0.97] 0.58

BC BMI 839 −0.18 [−0.28, −0.08] −0.1 [−0.16, −0.05] −0.14 [−0.2, −0.08] −0.15 [−0.45, 0.14] −0.14 [−0.5, 0.21] −0.19
Height 3794 0.03 [−0.02, 0.08] 0.02 [0, 0.04] 0.02 [0, 0.05] 0.01 [−0.15, 0.17] 0.04 [−0.11, 0.18] 0.08
LDL 125 0.11 [−0.24, 0.46] 0.06 [−0.01, 0.12] 0.08 [0.01, 0.15] 0.09 [−0.11, 0.3] 0.12 [−0.2, 0.45] 0.02
HDL 152 0.24 [0, 0.48] 0.09 [0.04, 0.15] 0.11 [0.05, 0.17] 0.13 [0, 0.27] 0.03 [−0.22, 0.27] 0.1
TG 104 −0.07 [−0.43, 0.29] −0.06 [−0.13, 0.01] −0.07 [−0.15, 0] −0.11 [−0.25, 0.03] −0.2 [−0.52, 0.11] −0.04
Age at
menarche

262 −0.13 [−0.28, 0.02] −0.02 [−0.08, 0.04] −0.05 [−0.11, 0.02] −0.08 [−0.25, 0.1] 0.18 [−0.24, 0.59] 0.21

MDD BMI 971 0.34 [0.09, 0.59] 0.14 [0.09, 0.2] 0.19 [0.12, 0.25] 0.39 [0.01, 0.76] 0.11 [−0.24, 0.45] 0.14
Years of
education

510 −0.18 [−2.18, 1.82] −0.31 [−0.39, −0.23] −0.3 [−0.39, −0.2] −0.23 [−0.57, 0.11] −0.4 [−0.97, 0.18] −0.52

aCAD: coronary artery disease; BC: breast cancer; MDD: major depressive disorder
bLDL: low-density lipoprotein cholesterol. HDL: high-density lipoprotein cholesterol. TG: triglycerides. DBP: diastolic blood pressure. SBP: systolic blood pressure
cIVs are defined as SNPs which reach genome-wide significance (z-test p < 5 × 10−8) in the study associated with X
dLDSC: LD score regression estimates of causal effects is defined as ρg=h

2
x , the ratio between the estimated genetic covariance and the estimated heritability of the exposure (see Supplementary Notes

for details)
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Discussion
In this article, we develop a novel and powerful method for
conducting MR analysis using a large number of genetic instru-
ments based on normal-mixture models for effect-size distribu-
tion where distinct mixture components are incorporated to allow
genetic correlations to arise both from causal and non-causal
relationships. To gain robustness against possible model mis-
specification, we do not directly rely on the likelihood for model-
based inference. Instead, we develop an estimating equation
approach, that, in essence, involves estimation of causal effect
through maximization of the probability concentration of resi-
duals—defined by the total effect of SNPs on one trait after
subtracting off indirect effects through the other trait—at the null
component of a two-component normal mixture model. Both
simulation studies and extensive data analyses show the method
is not only robust, i.e., immune to bias in the presence of a large
number of invalid instruments, but also can be highly efficient,
i.e., it produces substantially more precise estimates of putative
causal effects compared to alternative robust methods. The
investigations also show the method is sensitive to the direction of
causality and hence suitable for bi-directional MR analysis.

Simulation studies clearly demonstrate the superior perfor-
mance of MRMix compared to a number of existing popularly
used methods for MR analysis (Figs 2 and 3, Supplementary
Figures 1–9). Stability of the method does require an adequately
large sample size for the GWAS of the putative exposure of
interest so that the number of instrument available for the ana-
lysis is reasonably large (e.g., >50). Once such threshold is
exceeded, the method appears to be highly adaptive in dealing
with invalid instruments and can maintain excellent trade-off
between bias and efficiency compared to other methods. Even in
the presence of large number of invalid instruments, the method
often produces unbiased estimates of causal effect and, in settings,
where there was notable bias, the bias was generally towards null
and disappeared with increasing sample size. In the same settings,
the alternative methods generally produced much larger bias,
sometimes in the directions away from null and the bias always
does not diminish with sample size. Among the alternatives
considered, the mode-based ratio estimator shows similar level of
robustness as MRMix for large sample size, which is intuitive
given that both MRMix and mode-base estimator relies on the
ZEMPA assumption. In spite of this similarity, for smaller sample
size, in several settings, MRMix produces distinctly smaller bias.
Further, MRMix clearly produces estimates with much smaller
standard errors and this gain in efficiency is more pronounced
when the number of valid instruments is larger, demonstrating
the ability of the method to more effectively use the valid
instruments compared to the weighted mode estimator. Although
tuning the bandwidth of the mode-base estimator could improve
its stability and efficiency, it is an additional difficulty for the
users to deal with.

The MR analysis of the causal relationship of age-at-menarche
and the risk of breast cancer provides an important empirical
illustration of the strength of MRMix. It has been previously
reported that genetic correlations between AAM and BC—due to
underlying direct causal effect and that due to confounding/
mediating effect of BMI—acts in opposite directions. Thus,
polygenic MR analysis using standard IVW method could fail to
identify the causal relationship25. However, when the IVW esti-
mator is adjusted for the relationship of AAM associated SNPs
with BMI, evidence of the casual effect of the inverse relationship
between AAM and BC risk, consistent with epidemiologic
observation, has been reported26. Consistent with previous stu-
dies, in our analysis, the standard IVW method produced esti-
mate of causal effect for AAM to be virtual null. The MRMix,
although did not explicitly account for BMI, produced estimate of

causal effect that is similar as those reported from BMI adjusted
IVW in previous studies25,26. The weighted mode method, while
pulled the estimate more towards the right direction compared to
IVW, the estimate was attenuated and had very wide confidence
intervals. Further, bi-directional MR analysis between BMI and
AAM using MRMix suggested that genetically predicted BMI has
an inverse causal effect on AAM, and the reverse directional effect
is much weaker (Supplementary Tables 3, 4), and thus it appears
that the SNPs which are associated with AAM through BMI,
which, on its own, influences the risk of BC, are the underlying
invalid instruments. The example demonstrates that MRMix has
the ability to produce robust and efficient estimate of causal
effects in the presence of potentially unobservable confounding
factors.

Additional data analyses also illustrated the distinct property of
MRMix compared to alternatives. In particular, the MRMix
method estimated the causal effect of HDL and triglycerides on
the risk of CAD to be virtually null, while standard IVW and
weighted median methods detected these effects to be sig-
nificantly away from null in directions consistent with known
epidemiologic associations. A recent study reported the sig-
nificant putative causal effect of years of education on reducing
risk of major depressive disorder based on standard IVW ana-
lyis27. MRMix analysis produced large degree of uncertainty in
the underlying estimate of causal effect and did not provide any
evidence of statistical significance. MRMix found the causal effect
of genetically determined BMI on increasing the risk of MDD to
be notably stronger than that is indicated by the traditional IVW
method. Thus, it is possible that there are common genetic
pathways underlying these traits, which lead to genetic correlation
in opposite directions than that is due to the direct causal effect of
BMI on MDD.

Recently a number of alternative methods have been proposed
for conducting robust MR analysis in the presence of invalid
instruments. One such method, termed as MR-PRESSO16, applies
outlier detection test to each individual genetic variant and
removes potentially invalid instruments. While the method was
shown to be highly useful for the detection of bias in reported
estimates of causal effects in existing MR analysis, the method can
only partially correct for bias and relies on the InSIDE assump-
tion. Further, because the method requires conducting a series of
tests and evaluating their significance based on simulations,
implementation of it can be time-consuming and estimation of
uncertainty associated with the final estimator can be challenging.
A related method for instrument selection, termed two stage hard
thresholding (TSHT) with voting, constructs many estimates of
the set of valid IVs and use majority or plurality voting to make
final decisions28. This method was proved to be consistent in
instrument selection and effect estimation, but requires
individual-level data and is not as widely applicable as summary
level data based methods. Another method proposes to obtain
IVW estimators for all possible subsets of genetic instruments
and then combine them with a model averaging method with
lower weight given to more heterogeneous subsets29. While the
method is shown to be highly robust as well as powerful, it is
currently not scalable for the analysis of large number of
instruments which is the focus of the current study.

Another study proposed analysis of the causal relationship
between traits based on genetic relationship, but using a different
framework than that for the standard MR analysis. The study
defined one trait to be partially or fully causal for another, if there
is an underlying genetically determined latent variable which
influences both traits, but has a stronger relationship with the first
than the second30. The study defined moment equations for
the estimation of parameters quantifying degree of partial
causality using GWAS summary-statistics. We believe this novel
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framework and more traditional MR hypothesis can complement
each other to provide an improved understanding of the nature of
genetic correlation across traits. The use of latent variable fra-
mework, for example, detected evidence of partial causality of
several cholesterol traits on blood pressure level. Neither MRMix,
nor any of the other methods, detected any evidence of direct
causal effects underlying these traits (see Supplementary Table 3).
Thus the evidence of partial causality is likely to have been pri-
marily driven by the existence of underlying common genetic
pathways which are more strongly related to cholesterol level
than blood pressure.

The MRMix method has limitations as well. First, the method
relies on certain model for underlying effect-size distribution. As
we have noted before, the mis-specification of effect-size dis-
tribution is not as critical as we do not use the model directly to
perform maximum-likelihood estimation, but instead use the
model as an efficient way of identifying certain “mode”-based
estimator based on underlying estimating equations. Simulation
studies show that even when the underlying effect-size distribu-
tion has more complexity than the assumed model, the estimation
of causal effect parameters can remain relatively robust. Never-
theless, more extensive simulation and theoretical studies are
needed to further understand the property of the method under
complex but realistic models for effect-size distributions as has
been evidenced from recent study5. Second, the method does
require pre-selection of SNPs as genetic instruments based on p-
value in the z-test for the significance of their association. We
have observed that as long as the significance threshold is strin-
gent (e.g., p-value <5 × 10−8), there is not substantial winner’s
curse bias due to the selection of SNPs and estimation of their
coefficients from the same study (Supplementary Table 5). While
the method, in principle, can be extended to include SNPs with
more liberal threshold, it can suffer from winner’s curse bias
unless the SNP selection and coefficient estimation are performed
based on independent studies (Supplementary Table 5). Third, in
our current study, we have focused on the analysis of independent
SNPs selected from GWAS through stringent LD-pruning after
prioritizing by p-values. As we perform MR analysis based on the
marginal effects of the individual SNPs, some of which may tag
multiple underlying causal SNPs, the underlying pattern of LD
may cause some bias in MRMix as well the other methods.
Further studies are needed to investigate the effect of LD in MR
analysis, especially when large number of genetic instruments are
used. Fourth, though our simulation settings are flexible and
realistic, they assume zero modal pleiotropy. Further studies are
needed to investigate the performance in scenarios where ZEMPA
is violated or scenarios that favor other methods (e.g., median or
Egger regression). Further studies are also merited to explore the
property of MRMix under more complex causal structure in the
data, such as partial causality30 and multiple components of
causality29.

In conclusion, MRMix provides a novel tool for conducting
robust and powerful MR analysis using large number of genetic
instruments that are now rapidly becoming available from the
recent expansion of GWAS. We demonstrate through simulation
studies, as well as variety of real data analyses, that the method
has notable ability to trade-off bias and efficiency for estimation
of causal effects in the presence of invalid instruments. Applica-
tion of MRMix for future MR studies will lead to improved
understanding of causal basis of genetic correlation across traits.

Methods
Model setup. We propose a method for two-sample MR analysis that requires only
summary-level GWAS association statistics for a putative exposure (X) and the
outcome (Y) from separate studies. We describe the proposed method in the
context of independent SNPs. Let (βjx, βjy), j= 1,2,…M, denote the underlying true

association coefficients in a standardized scale for the M SNPs for the exposure (X)
and the outcome (Y). The standard MR analysis assumes that all the SNPs are valid
instruments, i.e., they are associated with X but have no direct effect on Y. If the
assumption is satisfied, then the two sets of regression coefficients will satisfy a
proportional relationship in the form βy= θβx, where θ is the causal effect of X on
Y.

The proportional relationship holds if X and Y follow linear models of the form

Y ¼ αy þ θX þ ϵy and X ¼ αx þ βxGþ ϵxwith the assumption that E ϵy jG;X
� �

¼
E ϵy jX
� �

¼ 0 and E ϵx jGð Þ ¼ 0. Further, the relationship holds for binary Y if X

and Y follow log-linear model P Y ¼ 1jXð Þ ¼ exp αy þ θX
� �

and the regression

model for X is X ¼ αx þ βxGþ ϵx , where ϵxis independently distributed of G.

Then we can derive P Y ¼ 1jGð Þ ¼ exp αy

� �
E exp θXð ÞjGf g / exp θβxG

� �
. The

proportionality assumption also approximately holds under logistic regression
model when the outcome is relatively rare (in the population) under which log-
linear and logistic models become similar. In our data analysis for disease
outcomes, we assume that the proportionate relationship holds in the log-odds-
ratio parameter scale31.

Instead of assuming the proportional relationship holds across all instruments,
we propose modeling the bivariate effect-size distribution using a flexible normal-
mixture model where the proportional relationship needs to be satisfied only for a
fraction of the genetic variants.

We assume a SNP can have four different types of effects: (1) direct effect on X
and an indirect effect on Y only through X, (2) direct effects on both X and Y, (3)
direct effect on Y but no relationship with X, (4) related to neither X nor Y
(Fig. 1a). If we let ux and uy be the direct effects of a SNP on X and Y, respectively,
then we can write βx= ux and βy= uy+ θux. We also make distributional
assumptions for the four types of effects: (1) ux � N 0; σ2x

� 	
; uy ¼ 0, (2)

ux
uy


 �
� N

0
0


 �
;

σ2x σxy
σxy σ2y


 �
 �
, (3) ux ¼ 0; uy � Nð0; σ2yÞ, (4) ux= uy = 0.

The first component includes the valid IVs. The second component includes SNPs
in horizontal pleiotropy, i.e., SNPs with potentially correlated effects on X and Y.
This component allows violation of the InSIDE assumption as we allow σxy ≠ 0.
The SNPs in third and fourth components are not associated with X, but can be
included when we apply a liberal instrument selection threshold.

Note that our model implies the zero modal pleiotropy (ZEMPA) assumption,
which is also required by the mode-based estimator21. To see this, note that the
pleiotropic effect uy = 0 in the first and fourth components, and follows continuous
distribution Nð0; σ2yÞ in the second and third components. Hence the most
common value of uy is 0, which is equivalent to the ZEMPA assumption.

MR analysis using mixture-model (MRMix). In GWAS, we obtain noised esti-
mates β̂xand β̂y , where one can assume β̂x � N βx ; s

2
x

� 	
; β̂y � Nðβy ; s2yÞ; with

known standard errors s2x and s2y . In principle, a likelihood for the observed data
can be written by integrating over the “prior” model for the bivariate effect-size
distribution. However, maximum-likelihood estimation of the target parameter θ,
jointly with all of the nuisance parameters ðπ1; π2; π3; σ2x ; σ2y ; σxyÞ may face com-
putational challenges due to identifiability issues associated with mixture like-
lihoods. Further, the inference can be sensitive to violation of the underlying
modeling assumptions.

In the following, we propose an alternative estimation procedure that is
computationally simple and rely less on the underlying model assumption. This
procedure effectively solves a spike-detection problem. Intuitively, we observe that
under this model, the true causal effect θ maximizes the number of points “close”
to the line β̂y ¼ θβ̂x , i.e. points for which the vertical distance β̂y � θβ̂x can be

covered by the null distribution N 0; s2y þ θ2s2x

� �
. For a different value ~θ the null

distribution N 0; s2y þ ~θ2s2x

� �
covers a smaller number of points (Fig. 1b). We

characterize this observation statistically as follows. The distribution of the
residuals β̂y � θβ̂x can be written at the true (θ) and alternative value ð~θÞ under the
proposed model in the form

β̂y � θβ̂x � π1 þ π4ð ÞN 0; s2y þ θ2s2x

� �
þ ðπ2 þ π3ÞNð0; σ2y þ s2y þ θ2s2xÞ

β̂y � ~θβ̂x � π1N 0; θ � ~θ
� �2

σ2x þ s2y þ ~θ2s2x


 �

þπ2N 0; σ2y þ 2 θ � ~θ
� �

σxy þ θ � ~θ
� �2

σ2x þ s2y þ ~θ2s2x


 �

þπ3N 0; σ2y þ s2y þ ~θ2s2x

� �
þ π4N 0; s2y þ ~θ2s2x

� �

See Supplementary Notes for details. Note that when ~θ ¼ θ, the first and fourth

terms collapse, leading to an enrichment of the point mass at N 0; s2y þ ~θ2s2x

� �
.

Only at the true value θ, β̂y � θβ̂x does have an enriched point mass π1 + π4 at

N 0; s2y þ ~θ2s2x

� �
, while for other values ~θ this point mass is π4. The enrichment π1
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is contributed by the SNPs that have no direct effects on Y, the key assumption
underlying instrumental variable (IV) method. Our approach uses this property to
identify the causal effect.

Based on the above observations, we propose the following estimation
procedure:

(i) For a fixed ~θ, perform maximum-likelihood to fit the two-component normal
mixture model in the form

β̂y � ~θβ̂x � π0N 0; s2y þ ~θ2s2x

� �
þ 1� π0ð ÞN 0; σ2ð Þto get estimates of

unknown parameters as π̂0ð~θÞ and σ̂2ð~θÞ;
(ii) Search over a grid of ~θ values and choose the one that maximizes π̂0ð~θÞas the

estimate, i.e., θ̂ ¼ argmax~θ ½π̂0ð~θÞ�.
Under the working model β̂y � ~θβ̂x � π0N 0; s2y þ ~θ2s2x

� �
þ 1� π0ð ÞN 0; σ2ð Þ,

π0 is the proportion of valid IVs and σ2 is the unknown variance parameter
associated with the invalid IVs. We note that in step (i), for computational
simplification, we are only fitting a two-component normal mixture model which is
correct when ~θ ¼ θ (the true value). When ~θ≠θ, the two-component model is not
correct and can only provide an approximation of the underlying multi-component
normal mixture model. We observe in simulation studies that although the model
is wrong under the alternative, the proposed estimate θ̂ has no asymptotic bias. In
contrast, a maximum-likelihood estimator, which maximizes the likelihood of the
residuals under the two-component normal-mixture model, produces substantially
biased estimate of causal effect due to mis-specification of the model under
alternative.

If the study for X and Y have overlapping subjects, the null component

N 0; s2y þ ~θ2s2x

� �
in step (i) can be easily modified to account for correlation in

estimated effects. For example, one could use the bivariate LD score regression13,32

to estimate, sxy ¼ covðβ̂x ; β̂y jβx ; βyÞ, the covariance of GWAS estimates given the
effect-sizes. Hence the null component could be modified as

N 0; s2y þ ~θ2s2x � 2~θsxy
� �

to account for sample overlap across studies of X and Y.

Variance estimation. In this section, we use asymptotic theory to derive the
standard error of MRMix estimator. Although the inference for spike-detection is
non-standard, we can derive an underlying estimating equation by exploiting the
fact that θ maximizes π̂0ðθÞ, which itself is obtained by maximization of a para-
metric likelihood. Note that the value of θ that maximizes π̂0ðθÞ can be found by
solving equation ∂π̂0=∂θ ¼ 0. We can express ∂π̂0=∂θ in terms of the parametric
likelihood using implicit function theorem. For each θ, we fit a two-component

normal mixture model with log-likelihood l θ; π0; σ
2jβ̂1x ; β̂1y ; ¼ ; β̂Mx; β̂My

� �
to

estimate π0 and σ2. The score equations are ∂l/∂π0= 0,∂l/∂σ2= 0. Using implicit
function theorem, we can show that solving ∂π̂0=∂θ ¼ 0 is equivalent to solving

∂2l

∂ σ2ð Þ2
∂2l

∂π0∂θ
� ∂2l
∂σ2∂π0

∂2l
∂σ2∂θ

¼ 0 ð1Þ

under conditions π0 ¼ π̂0ðθ; β̂1x ; β̂1y ; ¼ β̂Mx ; β̂MyÞ and
σ2 ¼ σ̂2 θ; β̂1x; β̂1y ; ¼ β̂Mx; β̂My

� �
. By taking the Taylor expansion of the estimat-

ing function with respect to first θ and then β’s, we obtained an influence function
representation of the final estimator (See Supplementary Notes for details). The
standard error of θ̂ can be easily calculated from the influence function
representation.

Simulation setup. We conduct extensive simulation studies to evaluate the pro-
posed method under different scenarios.

We simulate genome-wide summary statistics of 200,000 independent SNPs.
We first simulate the direct effect-sizes (ux, uy) and compute the total effect-sizes
as: βx= ux and βy= uy+ θux. Then we generated the summary statistics by

simulating independently from β̂x � N βx;
1
nx

� �
and β̂y � N βy ;

1
ny

� �
, where nx and

ny are the sample sizes for studies associated with X and Y, respectively. This
mimics the two-sample MR setup where the exposure and the outcome are
measured on independent samples. In all our simulations, we set ny ¼ nx

C where we
vary to C= 1, 3 with the choice of C= 3 reflects scenarios where the effective
sample size for Y can be expected to be lower than the exposure X.

We simulated true effect-sizes for the SNPs under the hypothesized four-
component model as well as more complex models that include additional mixture
components. Under Scenario A, we simulated effect-sizes ux and uy from the four-
component mixture model (Fig. 1a), where we vary the proportion of valid IVs by
changing the ratio of π1 and π2 according to the following specifications:

50% causal SNPs for X are valid IVs: π1= π2= 0.01.

25% causal SNPs for X are valid IVs: π1= 0.005,π2= 0.015.

For both cases, we set π3 ¼ 0:01; π4 ¼ 0:97; σ2x ¼ σ2y ¼ 5 ´ 10�5 and σxy=
0.5σxσy. According to the model, a total of 2% of the SNPs have direct effect on X

and either 2% or 2.5% of the SNPs have direct effect on Y; and the overlapping
SNPs have strongly correlated effects (correlation= 0.5). The total heritability of X
is 20% and that for Y ranges from 18.8% to 28.8%, respectively. We allow the causal
effect (θ) of X on Y to be null, or non-null in positive or negative directions so that
the genetic correlations due to pleiotropic and causal effects can act in opposite
directions.

In Scenario B, we simulated effect-sizes using more complex normal mixture
model that allows existence of clusters of non-null SNPs with distinctly larger
effects than others5. In particular, we allow a fraction of causal SNPs for X to have
distinctly larger effects and we assume the SNPs that have larger effects are more
likely to be valid IVs. Similarly, among SNPs which have direct effects on Y, we
allow existence of SNPs which have distinctly larger effects and these SNPs are less
likely to have direct effect on X. We allow SNPs with distinct cluster of effect-sizes
through incorporation of additional normal-mixture components with varying
variance-component parameters (see Supplementary Notes for more details).

Finally, in a third scenario (Scenario C), we conduct simulations to study the
robustness of the proposed methods when effect-size distribution does not follow
normal or mixture-normal forms. In particular, we simulated effect-sizes across X
and Y using the same mixture model as depicted in Fig. 1a, but generated effect-
sizes under each component using non-normal, but symmetric and unimodal
distributions, such as Laplace and T distributions (Supplementary Notes).

Inclusion of SNPs with liberal threshold. In our main analysis, we focused on
analysis based on SNPs as instruments that have achieved genome-wide sig-
nificance in the study associated with X. We further explored the ability of the
method to handle additional SNPs below genome-wide significance. When SNPs
are included using more liberal threshold, one would expect a fraction of these
SNPs to be null. In the presence of null SNPs, the probability concentration of the
two-component mixture model for the residuals at the null component is (π1+ π4),
where π1 is the proportion of valid instruments and π4 is the proportion of null
SNPs. Thus, while the inclusion of more SNPs as potential instruments could lead
to increase in efficiency due to increase in the underlying valid instruments, if a
very liberal threshold is used, then large value of π4 can obscure estimation of π1.
Thus, one would expect there would be an optimal threshold for SNP selection, as
is typically observed for building polygenic risk scores for risk-prediction. We
varied the p-value threshold in the z-test for instrument selection to 0.005, 5 × 10
−4, 5 × 10−6 and studied the bias and standard errors for resulting MRMix esti-
mates. Further, as the winner’s curse problem can create bias when selection of
SNPs and estimation of their effects are done based on the same study, we also
studied the performance of MRMix when effect-sizes of the SNPs associated with X
are estimated based on an independent dataset than the one used to select
the SNPs.

Summary level data. We applied MRMix for the analysis of publicly available
GWAS summary level data to explore causal relationships underlying a variety of
exposure-outcome pairs of interest. We selected these pairs based on available
sample sizes and number of underlying instruments, existing evidence of epide-
miologic associations in the literature or/and evidence of causality from recent MR
studies. On the exposure side, we accessed data for height and body mass index4,
blood lipids33, education attainment34, blood pressure35 and age at menarche26.
For data analysis, we only selected SNPs to be potential instruments if they reach
genome-wide significance (z-test p-value <5 × 10−8) in the respective studies.
Further, we used LD-clumping with an r2 threshold of 0.1 to select a set of
independent instruments for each trait. The number of instruments across the
different exposures varied between 104 and 3794, with the largest numbers being
available for height (K= 3794), BMI (K= 972) and years of education (K= 510)
due to the availability of results from the large UK Biobank study.

On the outcome side, we accessed data for coronary artery disease (CAD)36 for
its analysis in relationship to known major risk factors BMI, blood lipids and blood
pressure37–43; breast cancer44 in relationship to several known epidemiologic risk-
factors, including height, age-at-menarche, BMI, cholesterol level45–48; and major
depressive disorder (MDD)27 in relationship to BMI and years of education49–51.
In addition, we explored potential causal interrelationships among some of the
exposures themselves, such as between BMI and blood pressure, and between BMI
and age-at-menarche52,53. See Supplementary Table 2 for more information.

For all datasets, we only included SNPs among a set of ~1.07 million HapMap3
SNPs that have MAF > 0.05 and have matching alleles in the 1000 Genomes
European sample. We set the first allele in 1000G data as effect allele, flipping the
sign of the β̂ coefficient when necessary. We also removed SNPs whose reported
sample sizes were less than 2/3 of the 90th percentile of the sample size distribution
across SNPs in respective studies. Finally, we removed SNPs in major
histocompatibility complex (MHC) region (26 ~34 Mb on chromosome 6) and
SNPs that have very large z score (z2 > 80) to prevent the outliers that may unduly
influence the results54.

Alternative methods. For both simulations and real data applications, we com-
pare MRMix with existing popularly used MR methods that allow the estimation of
causal effects. In particular, we included inverse-variance weighted (IVW)
method10, weighted median20, weighted mode21 and Egger regression17. Further,
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we observe that if the InSIDE assumption holds across all SNPs, then the LD score
regression methodology13 can be used to estimate the causal effect without any pre-
selection of SNPs. In this case, the estimate is simply given by θ ¼ ρg=h

2
x , where ρg

is the estimated genetic covariance of the pair of traits and h2x is the estimated
heritability of X. This estimator is nearly equivalent to Egger regression using the
same set of SNPs (see Supplementary Notes for details). In fact, any method to
estimate heritability and genetic correlation can be used in this way to estimate
causal effects. Thus, as a benchmark for comparison, in real data analysis, we also
report estimates of causal effect based on the LD score regression.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
The data used in this study are publicly available at the URLs below. 1000 Genomes
Phase 3 European sample, HapMap3 SNP list, https://data.broadinstitute.org/alkesgroup/
LDSCORE/; GIANT Consortium (BMI and height) summary statistics, http://portals.
broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files; Global
Lipids Genetics Consortium (cholesterol traits), http://csg.sph.umich.edu/abecasis/
public/lipids2013/; Neal lab UK Biobank GWAS (blood pressure summary statistics),
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-
337000-samples-in-the-uk-biobank; ReproGen Consortium (age at menarche), http://
www.reprogen.org/data_download.html; Social Science Genetic Association Consortium
(SSGAC), https://www.thessgac.org/data; CARDIoGRAMplusC4D Consortium
(coronary artery disease), http://www.cardiogramplusc4d.org/data-downloads/; Breast
Cancer Association Consortium (BCAC) summary statistics, http://bcac.ccge.medschl.
cam.ac.uk/bcacdata/oncoarray/gwas-icogs-and-oncoarray-summary-results/; Psychiatric
Genomics Consortium (PGC), https://www.med.unc.edu/pgc/results-and-downloads/
downloads. The source data underlying Figs. 1b, 2, 3, Supplementary Figures 1–9 and
Supplementary Tables 1 and 5 are provided as a Source Data file. All other relevant data
are available upon request.

Code availability
MRMix software is publicly available at: https://github.com/gqi/MRMix. The software
has been tested on MAC OS 10.11.5 with R version 3.5.1. PLINK 1.9 was used to
calculate linkage disequilibrium (LD) coefficients and hence perform LD clumping and
calculate LD scores.
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